In this paper, a low-dimensional multiple-input and multiple-output (MIMO) model predictive control (MPC) configuration is presented for partial differential equation (PDE) unknown spatially-distributed systems ...In this paper, a low-dimensional multiple-input and multiple-output (MIMO) model predictive control (MPC) configuration is presented for partial differential equation (PDE) unknown spatially-distributed systems (SDSs). First, the dimension reduction with principal component analysis (PCA) is used to transform the high-dimensional spatio-temporal data into a low-dimensional time domain. The MPC strategy is proposed based on the online correction low-dimensional models, where the state of the system at a previous time is used to correct the output of low-dimensional models. Sufficient conditions for closed-loop stability are presented and proven. Simulations demonstrate the accuracy and efficiency of the proposed methodologies.展开更多
Achieving nanoconfinement-controlled synthesis of nanoplatelets(NPLs)via solution process under ambient condition remains a challenge.In this work,we developed a general ligand-induced strategy to synthesize colloidal...Achieving nanoconfinement-controlled synthesis of nanoplatelets(NPLs)via solution process under ambient condition remains a challenge.In this work,we developed a general ligand-induced strategy to synthesize colloidal stable all-inorganic semiconductor NPLs with controllable lateral dimensions.By introducing certain metal salts(cations:Zn^(2+)and In^(3+),anions:NO_(3)^(−),BF_(4)^(−),or triflate OTf−),wurtzite-structured(WZ-)CdS,CdSe,CdTe,and alloy Cd1−xZnxSe NPLs were directly synthesized in solution through the controlled diffusion of magic-size clusters(MSCs)at room temperature.Mechanism studies revealed that destabilization of MSCs and nanoconfined growth in templates facilitated the formation of NPLs.The present study not only provides a new synthetic route for the preparation of NPLs but also helps to provide insight into their probable formation mechanism and presents an important advance toward the rational design of functional nanomaterials.展开更多
Wax pattern fabrication in the investment casting of hollow turbine blades directly determines the dimension accuracy of subsequent casting,and therefore significantly affects the quality of final product.In this work...Wax pattern fabrication in the investment casting of hollow turbine blades directly determines the dimension accuracy of subsequent casting,and therefore significantly affects the quality of final product.In this work,we develop a machine learning-based multi-objective optimization framework for improving dimension accuracy of wax pattern by optimizing its process parameters.We consider two optimization objectives on the dimension of wax pattern,i.e.,the surface warpage and core offset.An active learning of Bayesian optimization is employed in data sampling to determine process parameters,and a validated numerical model of injection molding is used to compute objective results of dimension under varied process parameters.The collected dataset is then leveraged to train different machine learning models,and it turns out that the Gaussian process regression model performs best in prediction accuracy,which is then used as the surrogate model in the optimization framework.A genetic algorithm is employed to produce a non-dominated Pareto front using the surrogate model in searching,followed by an entropy weight method to select the most optimal solution from the Pareto front.The optimized set of process parameters is then compared to empirical parameters obtained from previous trial-and-error experiments,and it turns out that the maximum and average warpage results of the optimized solution decrease 26.0%and 20.2%,and the maximum and average errors of wall thickness compared to standard part decrease from 0.22 mm and 0.0517 mm using empirical parameters to 0.10 mm and 0.0356 mm using optimized parameters,respectively.This framework is demonstrated capable of addressing the challenge of dimension control arising in the wax pattern production,and it can be reliably deployed in varied types of turbine blades to significantly reduce the manufacturing cost of turbine blades.展开更多
基金supported by National High Technology Research and Development Program of China (863 Program)(No. 2009AA04Z162)National Nature Science Foundation of China(No. 60825302, No. 60934007, No. 61074061)+1 种基金Program of Shanghai Subject Chief Scientist,"Shu Guang" project supported by Shang-hai Municipal Education Commission and Shanghai Education Development FoundationKey Project of Shanghai Science and Technology Commission, China (No. 10JC1403400)
文摘In this paper, a low-dimensional multiple-input and multiple-output (MIMO) model predictive control (MPC) configuration is presented for partial differential equation (PDE) unknown spatially-distributed systems (SDSs). First, the dimension reduction with principal component analysis (PCA) is used to transform the high-dimensional spatio-temporal data into a low-dimensional time domain. The MPC strategy is proposed based on the online correction low-dimensional models, where the state of the system at a previous time is used to correct the output of low-dimensional models. Sufficient conditions for closed-loop stability are presented and proven. Simulations demonstrate the accuracy and efficiency of the proposed methodologies.
基金supported by the National Natural Science Foundation of China(No.22171132)the Innovation Fund from Nanjing University(No.020514913419)the Program for Innovative Talents and Entrepreneurs in Jiangsu(Nos.020513006012 and 020513006014).
文摘Achieving nanoconfinement-controlled synthesis of nanoplatelets(NPLs)via solution process under ambient condition remains a challenge.In this work,we developed a general ligand-induced strategy to synthesize colloidal stable all-inorganic semiconductor NPLs with controllable lateral dimensions.By introducing certain metal salts(cations:Zn^(2+)and In^(3+),anions:NO_(3)^(−),BF_(4)^(−),or triflate OTf−),wurtzite-structured(WZ-)CdS,CdSe,CdTe,and alloy Cd1−xZnxSe NPLs were directly synthesized in solution through the controlled diffusion of magic-size clusters(MSCs)at room temperature.Mechanism studies revealed that destabilization of MSCs and nanoconfined growth in templates facilitated the formation of NPLs.The present study not only provides a new synthetic route for the preparation of NPLs but also helps to provide insight into their probable formation mechanism and presents an important advance toward the rational design of functional nanomaterials.
基金funded by the National Key Research and Development Program of China(Grant No.2019YFA0705302)the National Science and Technology Major Project“Aeroengine and Gas Turbine”of China(Grant No.2017-VII-0008-0102).
文摘Wax pattern fabrication in the investment casting of hollow turbine blades directly determines the dimension accuracy of subsequent casting,and therefore significantly affects the quality of final product.In this work,we develop a machine learning-based multi-objective optimization framework for improving dimension accuracy of wax pattern by optimizing its process parameters.We consider two optimization objectives on the dimension of wax pattern,i.e.,the surface warpage and core offset.An active learning of Bayesian optimization is employed in data sampling to determine process parameters,and a validated numerical model of injection molding is used to compute objective results of dimension under varied process parameters.The collected dataset is then leveraged to train different machine learning models,and it turns out that the Gaussian process regression model performs best in prediction accuracy,which is then used as the surrogate model in the optimization framework.A genetic algorithm is employed to produce a non-dominated Pareto front using the surrogate model in searching,followed by an entropy weight method to select the most optimal solution from the Pareto front.The optimized set of process parameters is then compared to empirical parameters obtained from previous trial-and-error experiments,and it turns out that the maximum and average warpage results of the optimized solution decrease 26.0%and 20.2%,and the maximum and average errors of wall thickness compared to standard part decrease from 0.22 mm and 0.0517 mm using empirical parameters to 0.10 mm and 0.0356 mm using optimized parameters,respectively.This framework is demonstrated capable of addressing the challenge of dimension control arising in the wax pattern production,and it can be reliably deployed in varied types of turbine blades to significantly reduce the manufacturing cost of turbine blades.