Mordenite with different Si/Al ratios were synthesized by solvent-free method and used for dimethyl ether(DME)carbonylation reaction.The influence of Si/Al ratio in the feedstock on the structure,porosity and acid sit...Mordenite with different Si/Al ratios were synthesized by solvent-free method and used for dimethyl ether(DME)carbonylation reaction.The influence of Si/Al ratio in the feedstock on the structure,porosity and acid sites were systematically investigated.The characterization results showed that with the increase of Si/Al ratio in the feedstock,part of silicon species fail to enter the skeleton and the specific surface area and pore volume of the samples decreased.The amount of weak acid and medium strong acid decreased alongside with the increasing Si/Al ratio,and the amount of strong acid slightly increased.The Al atoms preferentially enter the strong acid sites in the 8 member ring(MR)channel during the crystallization process.The high Si/Al ratio sample had more acid sites located in the 8 MR channel,leading to more active sites for carbonylation reaction and higher catalytic performance.Appropriately increasing the Si/Al ratio was beneficial for the improvement of carbonylation reaction activity over the mordenite(MOR)catalyst.展开更多
Compared with organic electrolytes,aqueous electrolytes exhibit significantly higher ionic conductivity and possess inherent safety features,showcasing unique advantages in supercapacitors.However,challenges remain fo...Compared with organic electrolytes,aqueous electrolytes exhibit significantly higher ionic conductivity and possess inherent safety features,showcasing unique advantages in supercapacitors.However,challenges remain for low-salt aqueous electrolytes operating at high voltage and low temperature.Herein,we report a low-salt(0.87 m,m means mol kg^(-1))'salt in dimethyl sulfoxide/water'hybrid electrolyte with non-flammability via hybridizing aqueous electrolyte with an organic co-solvent of dimethyl sulfoxide(hydrogen bond acceptor).As a result,the 0.87 m hybrid electrolyte exhibits enhanced electrochemical stability,a freezing temperature below-50℃,and an outstanding ionic conductivity of 0.52mS cm~(-1)at-50℃.Dimethyl sulfoxide can anchor water molecules through intermolecular hydrogen bond interaction,effectively reinforcing the stability of water in the hybrid electrolyte.Furthermore,the interaction between dimethyl sulfoxide and water molecules diminishes the involvement of water in the generation of ordered ice crystals,finally facilitating the low-temperature performance of the hybrid electrolyte.When paired with the 0.87 m'salt in dimethyl sulfoxide/water'hybrid electrolyte,the symmetric supercapacitor presents a 2.0 V high operating voltage at 25℃,and can operate stably at-50℃.Importantly,the suppressed electrochemical reaction of water at-50℃further leads to the symmetric supercapacitor operated at a higher voltage of 2.6 V.This modification strategy opens an effective avenue to develop low-salt electrolytes for high-voltage and low-temperature aqueous supercapacitors.展开更多
Background:Complementary medicine is an interesting field for extracting bio-active compounds from various plant and animal sources.The hepatoprotective effect of the methanolic extract of a species of sea cucumber ca...Background:Complementary medicine is an interesting field for extracting bio-active compounds from various plant and animal sources.The hepatoprotective effect of the methanolic extract of a species of sea cucumber called Holothuria leu-cospilota in an animal model of liver cancer caused by dimethyl nitrosamine(DMN)was studied.Methods:Wistar female rats were randomly divided into five groups(n=12):control(intact),positive control(received 1%DMN[10 mg/kg/week,intraperitoneally]for 12 weeks),and three treatment groups(received 50,100,and 200 mg/kg/day H.leu-cospilota extract orally for 12 weeks along with intraperitoneal administration of 1%DMN[10 mg/kg/week]).In all groups,ultrasound was performed on the liver every week to check its density.Blood sampling and liver isolation were performed on three occasions,at 4,8,and 12 weeks,to check liver enzymes and the histopathological condition of the liver tissue(every week,four animals from each group were randomly selected).Results:Liver density changes were evident from the eighth week onward in the positive control group.Histopathological results indicated pathologic changes in the positive control group after 4 weeks.The increase in liver enzymes in the posi-tive control group was significantly different from that in the treatment and control groups.Conclusions:We demonstrated the hepatoprotective effect of H.leucospilota on DMN-induced liver damage in rats using biochemical and histological parameters and ultrasonography.More additional research(in silico or in vitro)is needed to find the exact mechanism and the main biological compound in H.leucospilota.展开更多
Dimethyl carbonate(DMC)is a crucial chemical raw material widely used in organic synthesis,lithiumion battery electrolytes,and various other fields.The current primary industrial process employs a conventional sodium ...Dimethyl carbonate(DMC)is a crucial chemical raw material widely used in organic synthesis,lithiumion battery electrolytes,and various other fields.The current primary industrial process employs a conventional sodium methoxide basic catalyst to produce DMC through the transesterification reaction between vinyl carbonate and methanol.However,the utilization of this catalyst presents several challenges during the process,including equipment corrosion,the generation of solid waste,susceptibility to deactivation,and complexities in separation and recovery.To address these limitations,a series of alkaline poly(ionic liquid)s,i.e.[DVBPIL][PHO],[DVCPIL][PHO],and[TBVPIL][PHO],with different crosslinking degrees and structures,were synthesized through the construction of cross-linked polymeric monomers and functionalization.These poly(ionic liquid)s exhibit cross-linked structures and controllable cationic and anionic characteristics.Research was conducted to investigate the effect of the cross-linking degree and structure on the catalytic performance of transesterification in synthesizing DMC.It was discovered that the appropriate cross-linking degree and structure of the[DVCPIL][PHO]catalyst resulted in a DMC yield of up to 80.6%.Furthermore,this catalyst material exhibited good stability,maintaining its catalytic activity after repeated use five times without significant changes.The results of this study demonstrate the potential for using alkaline poly(ionic liquid)s as a highly efficient and sustainable alternative to traditional catalysts for the transesterification synthesis of DMC.展开更多
Product selectivity and reaction pathway are highly dependent on surface structure of heterogeneous catalysts.For vapor-phase hydrogenation of dimethyl oxalate(DMO),"EG route"(DMO→methyl glycolate(MG)ethyle...Product selectivity and reaction pathway are highly dependent on surface structure of heterogeneous catalysts.For vapor-phase hydrogenation of dimethyl oxalate(DMO),"EG route"(DMO→methyl glycolate(MG)ethylene glycol(EG)→ethanol(ET))and"MA route"(DMO→MG→methyl acetate(MA))were proposed over traditional Cu based catalysts and Mo-based or Fe-based catalysts,respectively.Herein,tunable yield of ET(93.7%)and MA(72.1%)were obtained through different reaction routes over WO_(x) modified Cu/SiO_(2) catalysts,and the corresponding reaction route was further proved by kinetic study and in-situ DRIFTS technology.Mechanistic studies demonstrated that H_(2) activation ability,acid density and Cu-WO_(x) interaction on the catalysts were tuned by regulating the surface W density,which resulted in the different reaction pathway and product selectivity.What's more,high yield of MA produced from DMO hydrogenation was firstly reported with the H_(2) pressure as low as 0.5 MPa.展开更多
In this paper,the highly efficient ZnAlLa layered double oxide(ZnAlLa-LDO)catalyst was evaluated and used in methyl carbamate(MC)alcoholysis synthesis of dimethyl carbonate.Under optimal conditions,the MC conversion w...In this paper,the highly efficient ZnAlLa layered double oxide(ZnAlLa-LDO)catalyst was evaluated and used in methyl carbamate(MC)alcoholysis synthesis of dimethyl carbonate.Under optimal conditions,the MC conversion was 33.5% and the dimethyl carbonate(DMC)selectivity was up to 92,4% at 443 K and in 9 h.The prepared catalysts were well characterized to investigate the effect on the catalytic performance and reaction catalysis mechanism.The experimental results show that the addition of La adjusted the structure and chemical properties of ZnAl composite oxide and that the synergistic effect among Zn,Al and La play a key role in adjusting the acid-base properties and stability of the catalyst,which definitely improved the DMC selectivity and catalytic stability.Based on the proposed reaction mechanism,two kinetic models of the catalytic reaction were established and modified:LangmuirHinshelwood and power-rate law kinetic model.The good agreement between kinetic models and experimental data showed that the power-rate law kinetic model based on the elementary reactions is a suitable model for providing a theoretical basis.The pre-exponential factor and activation energy of the main reaction are 5.77×10^(7)and 77.60 kJ·mol^(-1),respectively.展开更多
In this work,the oxidation of a mixture of dimethyl ether(DME) and methyl formate(MF) was studied in both an aqueous electrochemical cell and a vapor-fed polymer electrolyte membrane fuel cell(PEMFC)utilizing a multi-...In this work,the oxidation of a mixture of dimethyl ether(DME) and methyl formate(MF) was studied in both an aqueous electrochemical cell and a vapor-fed polymer electrolyte membrane fuel cell(PEMFC)utilizing a multi-metallic alloy catalyst,Pt_(3)Pd_(3)Sn_(2)/C,discovered earlier by us.The current obtained during the bulk oxidation of a DME-saturated 1 M MF was higher than the summation of the currents provided by the two fuels separately,suggesting the cooperative effect of mixing these fuels.A significant increase in the anodic charge was realized during oxidative stripping of a pre-adsorbed DME+MF mixture as compared to DME or MF individually.This is ascribed to greater utilization of specific catalytic sites on account of the relatively lower adsorption energy of the dual-molecules than of the sum of the individual molecules as confirmed by the density fu nctional theory(DFT) calculations.Fuel cell polarization was also conducted using a Pt_(3)Pd_(3)Sn_(2)/C(anode) and Pt/C(cathode) catalysts-coated membrane(CCM).The enhanced surface coverage and active site utilization resulted in providing a higher peak power density by the DME+MF mixture-fed fuel cell(123 mW cm^(-2)at 0.45 V) than with DME(84mW cm^(-2)at 0.35 V) or MF(28 mW cm^(-2)at 0.2 V) at the same total anode hydrocarbon flow rate,temperature,and ambient pressure.展开更多
Dimethyl ether carbonylation to methyl acetate was comparatively investigated over mor- denite supported copper (Cu/HMOR) catalysts prepared by different methods including evaporation, urea hydrolysis, incipient wet...Dimethyl ether carbonylation to methyl acetate was comparatively investigated over mor- denite supported copper (Cu/HMOR) catalysts prepared by different methods including evaporation, urea hydrolysis, incipient wetness impregnation and ion-exchange. The results showed that Cu/HMOR prepared via iron-exchange method exhibited the highest catalytic activity due to the synergistic effect of active-site metal and acidic molecular sieve support. Conversion of 95.3% and methyl acetate selectivity of 94.9% were achieved under conditions of 210℃, 1.5 MPa, and GSHV of 4883 h-1. The catalysts were characterized by nitrogen absorption, X-ray diffraction, NH3 temperature program desorption, and CO temperature program desorption techniques. It was found that Cu/HMOR prepared by ion-exchange method possessed high surface area, moderate strong acid centers, and CO adsorption centers, which improved catalytic performance for the reaction of CO insertion to dimethyl ether.展开更多
基金supported by China National Natural Science Foundation(22008260,21908123)。
文摘Mordenite with different Si/Al ratios were synthesized by solvent-free method and used for dimethyl ether(DME)carbonylation reaction.The influence of Si/Al ratio in the feedstock on the structure,porosity and acid sites were systematically investigated.The characterization results showed that with the increase of Si/Al ratio in the feedstock,part of silicon species fail to enter the skeleton and the specific surface area and pore volume of the samples decreased.The amount of weak acid and medium strong acid decreased alongside with the increasing Si/Al ratio,and the amount of strong acid slightly increased.The Al atoms preferentially enter the strong acid sites in the 8 member ring(MR)channel during the crystallization process.The high Si/Al ratio sample had more acid sites located in the 8 MR channel,leading to more active sites for carbonylation reaction and higher catalytic performance.Appropriately increasing the Si/Al ratio was beneficial for the improvement of carbonylation reaction activity over the mordenite(MOR)catalyst.
基金partly supported by the National Key R&D Program of China(2022YFB4101602)the National Natural Science Foundation of China(22078052)the Fundamental Research Funds for the Central Universities(DUT22ZD207)。
文摘Compared with organic electrolytes,aqueous electrolytes exhibit significantly higher ionic conductivity and possess inherent safety features,showcasing unique advantages in supercapacitors.However,challenges remain for low-salt aqueous electrolytes operating at high voltage and low temperature.Herein,we report a low-salt(0.87 m,m means mol kg^(-1))'salt in dimethyl sulfoxide/water'hybrid electrolyte with non-flammability via hybridizing aqueous electrolyte with an organic co-solvent of dimethyl sulfoxide(hydrogen bond acceptor).As a result,the 0.87 m hybrid electrolyte exhibits enhanced electrochemical stability,a freezing temperature below-50℃,and an outstanding ionic conductivity of 0.52mS cm~(-1)at-50℃.Dimethyl sulfoxide can anchor water molecules through intermolecular hydrogen bond interaction,effectively reinforcing the stability of water in the hybrid electrolyte.Furthermore,the interaction between dimethyl sulfoxide and water molecules diminishes the involvement of water in the generation of ordered ice crystals,finally facilitating the low-temperature performance of the hybrid electrolyte.When paired with the 0.87 m'salt in dimethyl sulfoxide/water'hybrid electrolyte,the symmetric supercapacitor presents a 2.0 V high operating voltage at 25℃,and can operate stably at-50℃.Importantly,the suppressed electrochemical reaction of water at-50℃further leads to the symmetric supercapacitor operated at a higher voltage of 2.6 V.This modification strategy opens an effective avenue to develop low-salt electrolytes for high-voltage and low-temperature aqueous supercapacitors.
文摘Background:Complementary medicine is an interesting field for extracting bio-active compounds from various plant and animal sources.The hepatoprotective effect of the methanolic extract of a species of sea cucumber called Holothuria leu-cospilota in an animal model of liver cancer caused by dimethyl nitrosamine(DMN)was studied.Methods:Wistar female rats were randomly divided into five groups(n=12):control(intact),positive control(received 1%DMN[10 mg/kg/week,intraperitoneally]for 12 weeks),and three treatment groups(received 50,100,and 200 mg/kg/day H.leu-cospilota extract orally for 12 weeks along with intraperitoneal administration of 1%DMN[10 mg/kg/week]).In all groups,ultrasound was performed on the liver every week to check its density.Blood sampling and liver isolation were performed on three occasions,at 4,8,and 12 weeks,to check liver enzymes and the histopathological condition of the liver tissue(every week,four animals from each group were randomly selected).Results:Liver density changes were evident from the eighth week onward in the positive control group.Histopathological results indicated pathologic changes in the positive control group after 4 weeks.The increase in liver enzymes in the posi-tive control group was significantly different from that in the treatment and control groups.Conclusions:We demonstrated the hepatoprotective effect of H.leucospilota on DMN-induced liver damage in rats using biochemical and histological parameters and ultrasonography.More additional research(in silico or in vitro)is needed to find the exact mechanism and the main biological compound in H.leucospilota.
基金supported by the National Key Research and Development Program of China(2022YFB4101800)National Natural Science Foundation of China(22278077,22108040)+2 种基金Key Program of Qingyuan Innovation Laboratory(00221004)Research Program of Qingyuan Innovation Laboratory(00523006)Natural Science Foundation of Fujian Province(2022J02019)。
文摘Dimethyl carbonate(DMC)is a crucial chemical raw material widely used in organic synthesis,lithiumion battery electrolytes,and various other fields.The current primary industrial process employs a conventional sodium methoxide basic catalyst to produce DMC through the transesterification reaction between vinyl carbonate and methanol.However,the utilization of this catalyst presents several challenges during the process,including equipment corrosion,the generation of solid waste,susceptibility to deactivation,and complexities in separation and recovery.To address these limitations,a series of alkaline poly(ionic liquid)s,i.e.[DVBPIL][PHO],[DVCPIL][PHO],and[TBVPIL][PHO],with different crosslinking degrees and structures,were synthesized through the construction of cross-linked polymeric monomers and functionalization.These poly(ionic liquid)s exhibit cross-linked structures and controllable cationic and anionic characteristics.Research was conducted to investigate the effect of the cross-linking degree and structure on the catalytic performance of transesterification in synthesizing DMC.It was discovered that the appropriate cross-linking degree and structure of the[DVCPIL][PHO]catalyst resulted in a DMC yield of up to 80.6%.Furthermore,this catalyst material exhibited good stability,maintaining its catalytic activity after repeated use five times without significant changes.The results of this study demonstrate the potential for using alkaline poly(ionic liquid)s as a highly efficient and sustainable alternative to traditional catalysts for the transesterification synthesis of DMC.
基金supported by National Natural Science Foundation of China (No.22102147 and 22002151)State Key Laboratory of Chemical Engineering (No.SKL-ChE-22A02)+2 种基金Zhejiang Provincial Natural Science Foundation of China under Grant No.LQ21B030009the Strategic Priority Research Program of the Chinese Academy of Sciences (No.XDA29050300)Qinchuang Yuan high-level innovation and entrepreneurship talents implementing project (No.QCYRCXM-2022-177)。
文摘Product selectivity and reaction pathway are highly dependent on surface structure of heterogeneous catalysts.For vapor-phase hydrogenation of dimethyl oxalate(DMO),"EG route"(DMO→methyl glycolate(MG)ethylene glycol(EG)→ethanol(ET))and"MA route"(DMO→MG→methyl acetate(MA))were proposed over traditional Cu based catalysts and Mo-based or Fe-based catalysts,respectively.Herein,tunable yield of ET(93.7%)and MA(72.1%)were obtained through different reaction routes over WO_(x) modified Cu/SiO_(2) catalysts,and the corresponding reaction route was further proved by kinetic study and in-situ DRIFTS technology.Mechanistic studies demonstrated that H_(2) activation ability,acid density and Cu-WO_(x) interaction on the catalysts were tuned by regulating the surface W density,which resulted in the different reaction pathway and product selectivity.What's more,high yield of MA produced from DMO hydrogenation was firstly reported with the H_(2) pressure as low as 0.5 MPa.
基金The financial support from the National Natural Science Foundation of China(22178089)。
文摘In this paper,the highly efficient ZnAlLa layered double oxide(ZnAlLa-LDO)catalyst was evaluated and used in methyl carbamate(MC)alcoholysis synthesis of dimethyl carbonate.Under optimal conditions,the MC conversion was 33.5% and the dimethyl carbonate(DMC)selectivity was up to 92,4% at 443 K and in 9 h.The prepared catalysts were well characterized to investigate the effect on the catalytic performance and reaction catalysis mechanism.The experimental results show that the addition of La adjusted the structure and chemical properties of ZnAl composite oxide and that the synergistic effect among Zn,Al and La play a key role in adjusting the acid-base properties and stability of the catalyst,which definitely improved the DMC selectivity and catalytic stability.Based on the proposed reaction mechanism,two kinetic models of the catalytic reaction were established and modified:LangmuirHinshelwood and power-rate law kinetic model.The good agreement between kinetic models and experimental data showed that the power-rate law kinetic model based on the elementary reactions is a suitable model for providing a theoretical basis.The pre-exponential factor and activation energy of the main reaction are 5.77×10^(7)and 77.60 kJ·mol^(-1),respectively.
基金Ariel UniversityIsrael National Research Center for Electrochemical PropulsionNew Technologies Research Centre,University of West Bohemia,Pilsen for financially supporting this research。
文摘In this work,the oxidation of a mixture of dimethyl ether(DME) and methyl formate(MF) was studied in both an aqueous electrochemical cell and a vapor-fed polymer electrolyte membrane fuel cell(PEMFC)utilizing a multi-metallic alloy catalyst,Pt_(3)Pd_(3)Sn_(2)/C,discovered earlier by us.The current obtained during the bulk oxidation of a DME-saturated 1 M MF was higher than the summation of the currents provided by the two fuels separately,suggesting the cooperative effect of mixing these fuels.A significant increase in the anodic charge was realized during oxidative stripping of a pre-adsorbed DME+MF mixture as compared to DME or MF individually.This is ascribed to greater utilization of specific catalytic sites on account of the relatively lower adsorption energy of the dual-molecules than of the sum of the individual molecules as confirmed by the density fu nctional theory(DFT) calculations.Fuel cell polarization was also conducted using a Pt_(3)Pd_(3)Sn_(2)/C(anode) and Pt/C(cathode) catalysts-coated membrane(CCM).The enhanced surface coverage and active site utilization resulted in providing a higher peak power density by the DME+MF mixture-fed fuel cell(123 mW cm^(-2)at 0.45 V) than with DME(84mW cm^(-2)at 0.35 V) or MF(28 mW cm^(-2)at 0.2 V) at the same total anode hydrocarbon flow rate,temperature,and ambient pressure.
文摘Dimethyl ether carbonylation to methyl acetate was comparatively investigated over mor- denite supported copper (Cu/HMOR) catalysts prepared by different methods including evaporation, urea hydrolysis, incipient wetness impregnation and ion-exchange. The results showed that Cu/HMOR prepared via iron-exchange method exhibited the highest catalytic activity due to the synergistic effect of active-site metal and acidic molecular sieve support. Conversion of 95.3% and methyl acetate selectivity of 94.9% were achieved under conditions of 210℃, 1.5 MPa, and GSHV of 4883 h-1. The catalysts were characterized by nitrogen absorption, X-ray diffraction, NH3 temperature program desorption, and CO temperature program desorption techniques. It was found that Cu/HMOR prepared by ion-exchange method possessed high surface area, moderate strong acid centers, and CO adsorption centers, which improved catalytic performance for the reaction of CO insertion to dimethyl ether.