Dinitrogen(N_(2)) is the major component of the atmosphere and many factors bring about dinitrogen inertness with low reactivity. Dinitrogen activation on metal complexes and clusters under ambient condition is the lo...Dinitrogen(N_(2)) is the major component of the atmosphere and many factors bring about dinitrogen inertness with low reactivity. Dinitrogen activation on metal complexes and clusters under ambient condition is the long-standing goal in the modern chemistry. In this review,an attempt has been made to survey the mechanistic aspects of dinitrogen activation and functionalization based on different coordination binding modes of dinitrogen. Our goal is to provide a comprehensive survey of dinitrogen activation in order to guide the relevant research in the future.展开更多
Reactions of gas-phase species with small molecules are being actively studied to understand the elementary steps and mechanistic details of related condensed-phase processes.Activation of the very inert N≡N triple b...Reactions of gas-phase species with small molecules are being actively studied to understand the elementary steps and mechanistic details of related condensed-phase processes.Activation of the very inert N≡N triple bond of dinitrogen molecule by isolated gas-phase species has attracted considerable interest in the past few decades.Apart from molecular adsorption and dissociative adsorption,interesting processes such as C-N coupling and degenerate ligand exchange were discovered.The present review focuses on the recent progress on adsorption,activation,and functionalization of N2 by gas-phase species(particularly metal cluster ions)using mass spectrometry,infrared photo-dissociation spectroscopy,anion photoelectron spectroscopy,and quantum chemical calculations including density functional theory and high-level ab initio calculations.Recent advances including characterization of adsorption products,dependence of clusters’reactivity on their sizes and structures,and mechanisms of N≡N weakening and splitting have been emphasized and prospects have been discussed.展开更多
Dinitrogen activation under mild conditions is important but extremely challenging due to the inert nature of the N≡N triple bond evidenced by high bond dissociation energy(945 k J/mol) and large HOMOLUMO gap(10.8 e ...Dinitrogen activation under mild conditions is important but extremely challenging due to the inert nature of the N≡N triple bond evidenced by high bond dissociation energy(945 k J/mol) and large HOMOLUMO gap(10.8 e V). In comparison with largely developed transition metal systems, the reported main group species on dinitrogen activation are rare. Here, we carry out density functional theory calculations on methyleneboranes to understand the reaction mechanisms of their dinitrogen activation. It is found that the methyleneboranes without any substituent at the boron atom performs best on dinitrogen activation, which could be contributed to its small singlet-triplet gap. In addition, strong correlations are achieved on dinitrogen activation between the singlet-triplet energy gap and the reaction energies for the formation of the end-on products as well as the side-on ones. The principal interacting orbital analysis suggests that methyleneboranes can mimic transition metals to cleave the N≡N triple bond. Our findings could be helpful for experimental chemists aiming at dinitrogen activation by main group species.展开更多
Adsorption and activation of dinitrogen(N_(2)) is an indispensable process in nitrogen fixation.Metal nitride species continue to attract attention as a promsing catalyst for ammonia synthesis.However,the detailed mec...Adsorption and activation of dinitrogen(N_(2)) is an indispensable process in nitrogen fixation.Metal nitride species continue to attract attention as a promsing catalyst for ammonia synthesis.However,the detailed mechanisms at a molecular level between reactive nitride species and N_(2) remain unclear at elevated temperature,which is important to understand the temperature effect and narrow the gap between the gas phase system and condensed phase system.Herein,the ^(15)N/^(14)N isotopic exchange in the reaction between tantalum nitride cluster anions Ta_(3)^(14)N_(3)^(-) and ^(15)N_(2) leading to the regeneration of ^(14)N_(2)/^(14)N^(15)N was observed at elevated temperature(393-593 K)using mass spectrometry.With the aid of theoretical calculations,the exchange mechanism and the effect of temperature to promote the dissociation of N_(2) on Ta_(3)N_(3)^(-) were elucidated.A comparison experiment for Ta_(3)^(14)N_(4)^(-)/^(15)N_(2) couple indicated that only desorption of ^(15)N_(2) from Ta_(3)^(14)N_(4)^(15)N_(2)^(-) took place at elevated temperature.The different exchange behavior can be well understood by the fact that nitrogen vacancy is a requisite for the dinitrogen activation over metal nitride species.This study may shed light on understanding the role of nitrogen vacancy in nitride species for ammonia synthesis and provide clues in designing effective catalysts for nitrogen fixation.展开更多
Aromaticity,in general,can promote a given reaction by stabilizing a transition state or a product via a mobility ofπelectrons in a cyclic structure.Similarly,such a promotion could be also achieved by destabilizing ...Aromaticity,in general,can promote a given reaction by stabilizing a transition state or a product via a mobility ofπelectrons in a cyclic structure.Similarly,such a promotion could be also achieved by destabilizing an antiaromatic reactant.However,both aromaticity and transition states cannot be directly measured in experiment.Thus,computational chemistry has been becoming a key tool to understand the aromaticity-driven reaction mechanisms.In this review,we will analyze the relationship between aromaticity and reaction mechanism to highlight the importance of density functional theory calculations and present it according to an approach via either aromatizing a transition state/product or destabilizing a reactant by antiaromaticity.Specifically,we will start with a particularly challenging example of dinitrogen activation followed by other small-molecule activation,Csingle bondF bond activation,rearrangement,as well as metathesis reactions.In addition,antiaromaticity-promoted dihydrogen activation,CO_(2)capture,and oxygen reduction reactions will be also briefly discussed.Finally,caution must be cast as the magnitude of the aromaticity in the transition states is not particularly high in most cases.Thus,a proof of an adequate electron delocalization rather than a complete ring current is recommended to support the relatively weak aromaticity in these transition states.展开更多
基金National Natural Science Foundation of China(21902182,22033005 and 22038002)Fundamental Research Funds for the Central Universities(2022YQHH01)The support of Guangdong Provincial Key Laboratory of Catalysis(No.2020B121201002)is also acknowledged.
文摘Dinitrogen(N_(2)) is the major component of the atmosphere and many factors bring about dinitrogen inertness with low reactivity. Dinitrogen activation on metal complexes and clusters under ambient condition is the long-standing goal in the modern chemistry. In this review,an attempt has been made to survey the mechanistic aspects of dinitrogen activation and functionalization based on different coordination binding modes of dinitrogen. Our goal is to provide a comprehensive survey of dinitrogen activation in order to guide the relevant research in the future.
基金supported by the National Natural Science Foundation of China(No.21833011 and No.21973101)the Youth Innovation Promotion Association CAS(No.2020034)the K.C.Wong Education Foundation。
文摘Reactions of gas-phase species with small molecules are being actively studied to understand the elementary steps and mechanistic details of related condensed-phase processes.Activation of the very inert N≡N triple bond of dinitrogen molecule by isolated gas-phase species has attracted considerable interest in the past few decades.Apart from molecular adsorption and dissociative adsorption,interesting processes such as C-N coupling and degenerate ligand exchange were discovered.The present review focuses on the recent progress on adsorption,activation,and functionalization of N2 by gas-phase species(particularly metal cluster ions)using mass spectrometry,infrared photo-dissociation spectroscopy,anion photoelectron spectroscopy,and quantum chemical calculations including density functional theory and high-level ab initio calculations.Recent advances including characterization of adsorption products,dependence of clusters’reactivity on their sizes and structures,and mechanisms of N≡N weakening and splitting have been emphasized and prospects have been discussed.
基金Financial support by the National Science Foundation of China (No. 22073079)the Top-Notch Young Talents Program of China is gratefully acknowledged。
文摘Dinitrogen activation under mild conditions is important but extremely challenging due to the inert nature of the N≡N triple bond evidenced by high bond dissociation energy(945 k J/mol) and large HOMOLUMO gap(10.8 e V). In comparison with largely developed transition metal systems, the reported main group species on dinitrogen activation are rare. Here, we carry out density functional theory calculations on methyleneboranes to understand the reaction mechanisms of their dinitrogen activation. It is found that the methyleneboranes without any substituent at the boron atom performs best on dinitrogen activation, which could be contributed to its small singlet-triplet gap. In addition, strong correlations are achieved on dinitrogen activation between the singlet-triplet energy gap and the reaction energies for the formation of the end-on products as well as the side-on ones. The principal interacting orbital analysis suggests that methyleneboranes can mimic transition metals to cleave the N≡N triple bond. Our findings could be helpful for experimental chemists aiming at dinitrogen activation by main group species.
基金supported by the National Natural Science Foundation of China(No.21973101 and No.21833011)the Youth Innovation Promotion Association CAS(No.2020034)the K.C.Wong Education Foundation。
文摘Adsorption and activation of dinitrogen(N_(2)) is an indispensable process in nitrogen fixation.Metal nitride species continue to attract attention as a promsing catalyst for ammonia synthesis.However,the detailed mechanisms at a molecular level between reactive nitride species and N_(2) remain unclear at elevated temperature,which is important to understand the temperature effect and narrow the gap between the gas phase system and condensed phase system.Herein,the ^(15)N/^(14)N isotopic exchange in the reaction between tantalum nitride cluster anions Ta_(3)^(14)N_(3)^(-) and ^(15)N_(2) leading to the regeneration of ^(14)N_(2)/^(14)N^(15)N was observed at elevated temperature(393-593 K)using mass spectrometry.With the aid of theoretical calculations,the exchange mechanism and the effect of temperature to promote the dissociation of N_(2) on Ta_(3)N_(3)^(-) were elucidated.A comparison experiment for Ta_(3)^(14)N_(4)^(-)/^(15)N_(2) couple indicated that only desorption of ^(15)N_(2) from Ta_(3)^(14)N_(4)^(15)N_(2)^(-) took place at elevated temperature.The different exchange behavior can be well understood by the fact that nitrogen vacancy is a requisite for the dinitrogen activation over metal nitride species.This study may shed light on understanding the role of nitrogen vacancy in nitride species for ammonia synthesis and provide clues in designing effective catalysts for nitrogen fixation.
基金the National Natural Science Foundation of China(22073079,22025105 and 21873079)the Ministry of Education of China(H20200504)+2 种基金the Top-Notch Young Talents Program of China is gratefully acknowledgedM.S.thanks the Ministerio de Ciencia e Innovación of Spain(project PID2020-113711GB-I00)the Generalitat de Catalunya(project 2017SGR39).
文摘Aromaticity,in general,can promote a given reaction by stabilizing a transition state or a product via a mobility ofπelectrons in a cyclic structure.Similarly,such a promotion could be also achieved by destabilizing an antiaromatic reactant.However,both aromaticity and transition states cannot be directly measured in experiment.Thus,computational chemistry has been becoming a key tool to understand the aromaticity-driven reaction mechanisms.In this review,we will analyze the relationship between aromaticity and reaction mechanism to highlight the importance of density functional theory calculations and present it according to an approach via either aromatizing a transition state/product or destabilizing a reactant by antiaromaticity.Specifically,we will start with a particularly challenging example of dinitrogen activation followed by other small-molecule activation,Csingle bondF bond activation,rearrangement,as well as metathesis reactions.In addition,antiaromaticity-promoted dihydrogen activation,CO_(2)capture,and oxygen reduction reactions will be also briefly discussed.Finally,caution must be cast as the magnitude of the aromaticity in the transition states is not particularly high in most cases.Thus,a proof of an adequate electron delocalization rather than a complete ring current is recommended to support the relatively weak aromaticity in these transition states.