Most aquatic ecosystems contribute elevated N2 O to atmosphere due to increasing anthropogenic nitrogen loading. To further understand the spatial heterogeneity along an aquatic continuum from the upriver to wetland t...Most aquatic ecosystems contribute elevated N2 O to atmosphere due to increasing anthropogenic nitrogen loading. To further understand the spatial heterogeneity along an aquatic continuum from the upriver to wetland to lake to downriver, the study was conducted on spatial variations in N2 O emission along Poyang Lake aquatic continuum during the flood season from 15 July 2013 to 10 August 2013. The results showed the N2 O concentrations, the ratio of N2O/dinitrogen(N2) gases production, N2 O emission and denitrification rates ranged from 0.10 to 1.11 μg N/L,- 0.007% to 0.051%,- 9.73 to 127 μg N/m2/hr and 1.33 × 104to31.9 × 104μg N2/m2/hr, respectively, across the continuum. The average N2 O concentrations,the ratio of N2O/N2 and N2O emission was significantly lower in wetlands as compared to the rivers and lake(p 〈 0.01). The significantly high denitrification rate and low N2 O emission together highlighted that most N2 O can be converted into N2 via near complete denitrification in the Poyang Lake wetlands. Our study suggests that the wetlands might impact N2 O budget in an integrated aquatic ecosystems. Moreover, N2 O emission from different aquatic ecosystem should be considered separately when quantifying the regional budget in aquatic ecosystem.展开更多
基金supported by the Research Program of State Key Laboratory of Lake Science and Environment(No.2012SKL012)CAS Key Project(No.KJZD-EW-TZ-G10)+1 种基金the National Basic Research Program(973)of China(No.2012CB417005)the Poyang Lake Wetland Integrated Research Station for their help on field study
文摘Most aquatic ecosystems contribute elevated N2 O to atmosphere due to increasing anthropogenic nitrogen loading. To further understand the spatial heterogeneity along an aquatic continuum from the upriver to wetland to lake to downriver, the study was conducted on spatial variations in N2 O emission along Poyang Lake aquatic continuum during the flood season from 15 July 2013 to 10 August 2013. The results showed the N2 O concentrations, the ratio of N2O/dinitrogen(N2) gases production, N2 O emission and denitrification rates ranged from 0.10 to 1.11 μg N/L,- 0.007% to 0.051%,- 9.73 to 127 μg N/m2/hr and 1.33 × 104to31.9 × 104μg N2/m2/hr, respectively, across the continuum. The average N2 O concentrations,the ratio of N2O/N2 and N2O emission was significantly lower in wetlands as compared to the rivers and lake(p 〈 0.01). The significantly high denitrification rate and low N2 O emission together highlighted that most N2 O can be converted into N2 via near complete denitrification in the Poyang Lake wetlands. Our study suggests that the wetlands might impact N2 O budget in an integrated aquatic ecosystems. Moreover, N2 O emission from different aquatic ecosystem should be considered separately when quantifying the regional budget in aquatic ecosystem.