Diode pumped monolithic nonplanar ring laser has been developed, yielding single frequency laser and has the advantages of compactness, reliability and high efficiency. Its principles are given in detail and a monolit...Diode pumped monolithic nonplanar ring laser has been developed, yielding single frequency laser and has the advantages of compactness, reliability and high efficiency. Its principles are given in detail and a monolithic nonplanar ring laser is designed. As a result, a laser of hundreds milliwatts cw single frequency output was built up, placed in a magnetic field and pumped by LD. The optical conversion efficiency was more than 15% and the slope efficiency more than 30%. The laser beam had a good quality, with M 2 about 1 2.展开更多
We experimentally demonstrated a diode-pumped Kerr-lens mode-locked femtosecond laser based on an Yb:YAG ceramic. Stable laser pulses with 97-fs duration, 2.8-nJ pulse energy, and 320-mW average power were obtained. ...We experimentally demonstrated a diode-pumped Kerr-lens mode-locked femtosecond laser based on an Yb:YAG ceramic. Stable laser pulses with 97-fs duration, 2.8-nJ pulse energy, and 320-mW average power were obtained. The femtosecond oscillator operated at a central wavelength of 1049 nm and a repetition rate of 115 MHz. To the best of our knowledge, this is the first demonstration of a Kerr-lens mode-locked operation in a diode-pumped Yb:YAG ceramic laser with sub-100 fs pulse duration.%@ 1674-1056展开更多
A self-starting mode-locked femtosecond laser is accomplished with an oxoborate self-frequency doubling crystal Yb:YCa4O(BO3)3 (Yb:YCOB) as the gain medium and a semiconductor mirror as the saturable absorber. P...A self-starting mode-locked femtosecond laser is accomplished with an oxoborate self-frequency doubling crystal Yb:YCa4O(BO3)3 (Yb:YCOB) as the gain medium and a semiconductor mirror as the saturable absorber. Pumped by a 976-nm fiber-coupled diode laser with 50-ktm core diameter, stable mode-locked laser pulses up to 430 mW were obtained at a repetition rate of 83.61 MHz under 5-W pump power. The autocorrelation measurement shows that the pulse duration is as short as 150 fs by assuming the sech2 pulse shape at a central wavelength of 1048 nm. This work has demonstrated a compact and reliable femtosecond laser source for prospective low-cost applications.展开更多
A diode pumped Kerr-lens mode-locked femtosecond Yb:LSO laser is experimentally demonstrated for the first time. The 54fs laser pulses at central wavelength of 1052nm with a bandwidth of 22.5nm are obtained at the re...A diode pumped Kerr-lens mode-locked femtosecond Yb:LSO laser is experimentally demonstrated for the first time. The 54fs laser pulses at central wavelength of 1052nm with a bandwidth of 22.5nm are obtained at the repetition rate of 113 MHz. To the best of our knowledge, this is the shortest pulse duration ever produced from the Yb-doped orthosilicates lasers family.展开更多
Wuhan Sapo Laser Industry Ltd.has recently introduced HipoweTM series 1064 nm high power doide laser pumping modules,which not only fill the gaps in Chinese market and end the history of importing this kind products ...Wuhan Sapo Laser Industry Ltd.has recently introduced HipoweTM series 1064 nm high power doide laser pumping modules,which not only fill the gaps in Chinese market and end the history of importing this kind products from abroad,but also have great influence on Chinese laser industry and medical laser market.展开更多
Starting from the data obtained recently,that the crystal yttrium aluminum borat e(NAB)is an ideal material for LD pumped microchip laser is demonstrated.Coopera ting with Material Physics Department of Autonoma Unive...Starting from the data obtained recently,that the crystal yttrium aluminum borat e(NAB)is an ideal material for LD pumped microchip laser is demonstrated.Coopera ting with Material Physics Department of Autonoma University of Madrid,Ti:sappir e laser was used to simulate laser diode to pump a NAB crystal sample of 0.3mm t hickness.For incident pump power of 375mW,laser output power at 1.064μm reach 1 57mW with optical to optical efficiency as high as 42%.The corresponding effici e ncy at 1.341μm is 25%.Output laser beams belong to TEM 00 mode.The thresho ld of laser oscillation at 1.064μm were 13,18,30,100 and 140mW for output mirr ors with transmittance of 0.36%,1%,2%,4% and 6% respectively.NAB crystal has a wide and flat absorption band with half high width of 45nm for pump light and so th e temperature shift of the laser diode wavelength will not affect the pumping effi ciency.All the advantages mentioned show the this crystal is obviously an ideal material for LD pumped microchip laser. Therefrom,the possible application of a series of self ativated laser crystal developed in the seventies years 20th century will be discussed in the case of L D lasers have been well developed.展开更多
A passively Q-switched diode pumped Yb:YAG microchip laser with Cr4+:YAG saturable absorber mirror is reported. The TEMoo laser pulses are obtained with 1,7-uJ pulse energy, 15-ns pulse width, 0.11-kW peak power, and ...A passively Q-switched diode pumped Yb:YAG microchip laser with Cr4+:YAG saturable absorber mirror is reported. The TEMoo laser pulses are obtained with 1,7-uJ pulse energy, 15-ns pulse width, 0.11-kW peak power, and a repetition rate of 2.2 kHz at 1049 nm. The doped concentration and dimension of Yb:YAG microchip crystal are 10 at.-% and 5×0.6 mm2, respectively.展开更多
We demonstrate an all-solid quasi-continuous-wave (QCW) narrow-band source tunable to sodium D2a line at 589.159 nm. The source is based on sum-frequency mixing between lasers at 1064 nm and 1319 nm in a LBO crystal...We demonstrate an all-solid quasi-continuous-wave (QCW) narrow-band source tunable to sodium D2a line at 589.159 nm. The source is based on sum-frequency mixing between lasers at 1064 nm and 1319 nm in a LBO crystal. The 1064 nm and 1319 nm lasers are produced from two diode side-pumped Nd:YAG master oscillator power amplifier (MOPA) laser systems, respectively. A 33 W output of 589 nm laser is obtained with beam quality factor M^2 = 1.25, frequency stability better than ±0.2 GHz and linewidth less than 0.44 GHz. A prototype 589 nm laser system is assembled, and a sodium laser guided star has been successfully observed in the field test.展开更多
Diode pumped, injection seeded single-longitudinal-mode (SLM) Nd:YAG laser is achieved through buildup time minimizing technique in Q-switching operation. Pulses with energy of 20 mJ are obtained at a repetition ra...Diode pumped, injection seeded single-longitudinal-mode (SLM) Nd:YAG laser is achieved through buildup time minimizing technique in Q-switching operation. Pulses with energy of 20 mJ are obtained at a repetition rate of 100 Hz. Mx^2 and My^2 are 1.41 and 1.38, respectively.展开更多
We demonstrate a diode-pumped femtosecond Yb:CaGdAlO_(4)(Yb:CALGO)laser with a semiconductor saturable absorber mirror(SESAM)for stable mode-locking operation.A perfect beam profile is measured under 10 W output power...We demonstrate a diode-pumped femtosecond Yb:CaGdAlO_(4)(Yb:CALGO)laser with a semiconductor saturable absorber mirror(SESAM)for stable mode-locking operation.A perfect beam profile is measured under 10 W output power with M_(x)^(2)=1.017 and M_(y)^(2)=1.016 in the horizontal and vertical directions,respectively.At the repetition rate of 71.66 MHz,the optical pulse duration is 247 fs and the pulse energy is 140 nJ at the central wavelength of 1041 nm,corresponding to a peak power of 0.56 MW.In addition,we also generate continuous wave(CW)power of more than 15 W with TEM00 mode,corresponding to an optical-to-optical efficiency of 44.1%.展开更多
A good thermo-optic property of strontium dodeca-aluminum oxide[SrAl_(12)O_(12),SRA]host material is very advantageous to the development of high-performance lasers by doping rare-earth ions for gain medium.In this wo...A good thermo-optic property of strontium dodeca-aluminum oxide[SrAl_(12)O_(12),SRA]host material is very advantageous to the development of high-performance lasers by doping rare-earth ions for gain medium.In this work,we report on diode-end-pumped high-performance continuous-wave and passively Q-switched Nd:SRA lasers.For continuous-wave operation,a maximum output power of 6.45 W is achieved at 1049 nm with a slope eficiency of about 41.6%.Using a Y_(3)Al_(12)O_(19)etalon,we have firstly achieved a 1066 nm laser with a maximum output power of 4.15 W and a slope efficiency of about 27%,to the best of our knowledge.For passively Q switched operation,with Cr^(4+):YAG as a saturable absorber,a maximum average output power of 1.82 W was achieved with the shortest pulse width of 18.2 ns at pulse repetition rate of 22.9 kHz.The single-pulse energy and pulse peak power were 79.4μJ and 4.3 kW.This work has further verified that the Nd:SRA crystal is very promising for high-performance laser generation.展开更多
We demonstrate a high-pulse-energy, short-pulse-width passively Q-switched(PQS) Nd:YAG∕V3t:YAG laser at 1.3 μm, which is end-pumped by a pulsed laser diode. During the PQS regime, a maximum total output pulse en...We demonstrate a high-pulse-energy, short-pulse-width passively Q-switched(PQS) Nd:YAG∕V3t:YAG laser at 1.3 μm, which is end-pumped by a pulsed laser diode. During the PQS regime, a maximum total output pulse energy of 3.3 m J is obtained under an absorbed pump pulse energy of 21.9 m J. Up to 400 μJ single-pulse energy is realized with the shortest pulse width of 6.16 ns and a pulse repetition frequency of 34.1 k Hz,corresponding to a peak power of 64.9 k W. The high-energy laser pulse is operated in the dual wavelengths of 1319 and 1338 nm, which is a potential laser source for THz generation.展开更多
By using a reflective graphene oxide as saturable absorber, a diode-pumped passively mode-locked Yb^3+:Sc2Si O5(Yb:SSO) laser has been demonstrated for the first time. Without extra negative dispersion compensati...By using a reflective graphene oxide as saturable absorber, a diode-pumped passively mode-locked Yb^3+:Sc2Si O5(Yb:SSO) laser has been demonstrated for the first time. Without extra negative dispersion compensation, the minimum pulse duration of 1.7 ps with a repetition rate of 94 MHz was obtained at the central wavelength of 1062.6 nm. The average output power amounts to 355 m W under the absorbed pump power of 15 W. The maximum peak power of the mode-locking laser is up to 2.2 k W, and the single pulse energy is 3.8nJ.展开更多
A mode-locked ytterbium-doped rod-type fiber laser with 85 ~tm core diameter is developed based on the nonlinear polarization evolution in an all-normal-dispersion ring cavity, in which a uniaxial birefringent plate i...A mode-locked ytterbium-doped rod-type fiber laser with 85 ~tm core diameter is developed based on the nonlinear polarization evolution in an all-normal-dispersion ring cavity, in which a uniaxial birefringent plate is used as the spectral filter. Average power up to 16 W is obtained at the repetition rate of 58 MHz, and the pulse duration is compressed to 182 fs with a grating-pair compressor. The output laser pulses show very good beam quality and power stability.展开更多
Diode-pumped rare gas lasers are potential candidates for high-energy and high-beam quality laser systems.Currently,most investigations are focused on metastable Ar lasers.The Kr system has the unique advantages of hi...Diode-pumped rare gas lasers are potential candidates for high-energy and high-beam quality laser systems.Currently,most investigations are focused on metastable Ar lasers.The Kr system has the unique advantages of higher quantum efficiency and lower discharge requirements for comparison.In this paper,a diode-pumped metastable Kr laser was demonstrated for the first time.Using a repetitively pulsed discharge at a Kr/He pressure of up to approximately1500 Torr,metastable Kr atoms of more than 10^(13)cm^(-3)were generated.Under diode pumping,the laser realized a dual-wavelength output with an average output power of approximately 100 mW and an optical conversion efficiency of approximately 10% with respect to the absorbed pump power.A kinetics study involving population distribution and evolution was conducted to analyze the laser performance.展开更多
Nd:Sr<sub>5</sub>(VO<sub>4</sub>)<sub>3</sub>F (Nd:SVAP) is a new type of laser crystal reported in recent years. L. George declared the growth of Nd:SVAP crystal for the first ...Nd:Sr<sub>5</sub>(VO<sub>4</sub>)<sub>3</sub>F (Nd:SVAP) is a new type of laser crystal reported in recent years. L. George declared the growth of Nd:SVAP crystal for the first time at MRS fall meeting in 1993. Soon after, the laser performance of Nd:SVAP pumped by a Ti:sapphire laser was reported. With the advantages of low pumping threshold and high conversion efficiency,Nd:SVAP is suitable for compact solid-state lasers pumped by laser diodes (LD) and has wide prospects in application. In this letter, we report the experimental results of an LD-pumped Nd:SVAP laser for the first time.展开更多
The Australian first working sodium guide star laser system has been designed and developed for various astronomical and space-related applications. A completely diode-pumped pulsed system was developed initially foll...The Australian first working sodium guide star laser system has been designed and developed for various astronomical and space-related applications. A completely diode-pumped pulsed system was developed initially followed by a largely fiber-based continuous wave (CW) system operating at 589 nm achieved through a unique wavelength conversion scheme by combining 1342 and 1050 nm through a sum frequency generation process. For the CW system, single-mode laser beams at both 1342 and 1050 nm are achieved from fiber-based seed oscillators and fiber amplifiers. The output power of ~25 W at 1342 nm is achieved from a single frequency fiber Raman amplifier. Output power up to 70 W at 1050 nm is achieved from a Yb-doped fiber pre-amplifier followed by a Yb-doped fiber power amplifier. For the sum frequency generation process, optimum focusing parameters are evaluated and determined. The CW system has generated more than 20 W output power at 589 nm, a circularly polarised beam with a good beam quality, spectral linewidth ≤ 2 MHz, and the laser output locked on the sodium D2 line at 589.159 nm. The system has been successfully demonstrated at EOS Space Research Centre, Mt Stromlo, Canberra, and become the Australian first working sodium guide star laser system.展开更多
We present a study on a watt-level acousto-optically Q-switched Pr:YLF laser at three different repetition rates(10 kHz,20 kHz,and 50 kHz)for the first time,to the best of our knowledge.The corresponding average outpu...We present a study on a watt-level acousto-optically Q-switched Pr:YLF laser at three different repetition rates(10 kHz,20 kHz,and 50 kHz)for the first time,to the best of our knowledge.The corresponding average output powers and pulse widths were measured to be 1.14 W,1.2 W,and 1.32 W,and 40 ns,52 ns,and 80 ns,respectively.A maximum pulse energy of0.11 mJ was obtained,corresponding to a peak power of up to 2.8 kW at a repetition rate of 10 kHz.The simulated dynamics of a fast Q-switched Pr:YLF laser is in agreement with the experiment.The laser's ability to generate stable pulses with high peak power and short pulse width makes it highly desirable for various practical applications,such as laser machining and material processing.展开更多
A Q-switched Nd:YAG laser has been actively mode-locked at a subharmonic frequency for the first time,to the authors’knowledge.The laser operation mode is provided by a combination of a traveling wave acousto-optic m...A Q-switched Nd:YAG laser has been actively mode-locked at a subharmonic frequency for the first time,to the authors’knowledge.The laser operation mode is provided by a combination of a traveling wave acousto-optic modulator and a spherical cavity mirror.The dynamics of laser generation is investigated.Pulses with a duration of 70 ps and a peak power of about 10 MW were obtained.Also presented are new results on obtaining high-power[~60 kW]picosecond tunable radiation in the~620 nm region based on frequency conversion of a superluminescent parametric generator pumped by such a laser.展开更多
基金Fundfor Research on Doctoral Programs in Institutions of Higher Learning
文摘Diode pumped monolithic nonplanar ring laser has been developed, yielding single frequency laser and has the advantages of compactness, reliability and high efficiency. Its principles are given in detail and a monolithic nonplanar ring laser is designed. As a result, a laser of hundreds milliwatts cw single frequency output was built up, placed in a magnetic field and pumped by LD. The optical conversion efficiency was more than 15% and the slope efficiency more than 30%. The laser beam had a good quality, with M 2 about 1 2.
基金Project supported by the National Major Scientific Instrument Development Project of China(Grant No.2012YQ120047)the National Natural Science Foundation of China(Grant No.61205130)the Fundamental Research Funds for the Central Universities,China(Grant No.JB140502)
文摘We experimentally demonstrated a diode-pumped Kerr-lens mode-locked femtosecond laser based on an Yb:YAG ceramic. Stable laser pulses with 97-fs duration, 2.8-nJ pulse energy, and 320-mW average power were obtained. The femtosecond oscillator operated at a central wavelength of 1049 nm and a repetition rate of 115 MHz. To the best of our knowledge, this is the first demonstration of a Kerr-lens mode-locked operation in a diode-pumped Yb:YAG ceramic laser with sub-100 fs pulse duration.%@ 1674-1056
基金Project supported by the National Natural Science Foundation of China(Grant No.61205130)the National Key Scientific Instruments Development Program of China(Grant No.2012YQ120047)the Fundamental Research Funds for the Central Universities of Ministry of Education of China(Grant No.K5051305008)
文摘A self-starting mode-locked femtosecond laser is accomplished with an oxoborate self-frequency doubling crystal Yb:YCa4O(BO3)3 (Yb:YCOB) as the gain medium and a semiconductor mirror as the saturable absorber. Pumped by a 976-nm fiber-coupled diode laser with 50-ktm core diameter, stable mode-locked laser pulses up to 430 mW were obtained at a repetition rate of 83.61 MHz under 5-W pump power. The autocorrelation measurement shows that the pulse duration is as short as 150 fs by assuming the sech2 pulse shape at a central wavelength of 1048 nm. This work has demonstrated a compact and reliable femtosecond laser source for prospective low-cost applications.
基金Supported by the National Basic Research Program of China under Grant No 2013CB922402the National Key Scientific Instrument and Equipment Development Project under Grant No 2012YQ120047+1 种基金the Fundamental Research Funds for the Central Universities under Grant No JB140502the National Natural Science Foundation of China under Grant Nos 11174361 and61205130
文摘A diode pumped Kerr-lens mode-locked femtosecond Yb:LSO laser is experimentally demonstrated for the first time. The 54fs laser pulses at central wavelength of 1052nm with a bandwidth of 22.5nm are obtained at the repetition rate of 113 MHz. To the best of our knowledge, this is the shortest pulse duration ever produced from the Yb-doped orthosilicates lasers family.
文摘Wuhan Sapo Laser Industry Ltd.has recently introduced HipoweTM series 1064 nm high power doide laser pumping modules,which not only fill the gaps in Chinese market and end the history of importing this kind products from abroad,but also have great influence on Chinese laser industry and medical laser market.
文摘Starting from the data obtained recently,that the crystal yttrium aluminum borat e(NAB)is an ideal material for LD pumped microchip laser is demonstrated.Coopera ting with Material Physics Department of Autonoma University of Madrid,Ti:sappir e laser was used to simulate laser diode to pump a NAB crystal sample of 0.3mm t hickness.For incident pump power of 375mW,laser output power at 1.064μm reach 1 57mW with optical to optical efficiency as high as 42%.The corresponding effici e ncy at 1.341μm is 25%.Output laser beams belong to TEM 00 mode.The thresho ld of laser oscillation at 1.064μm were 13,18,30,100 and 140mW for output mirr ors with transmittance of 0.36%,1%,2%,4% and 6% respectively.NAB crystal has a wide and flat absorption band with half high width of 45nm for pump light and so th e temperature shift of the laser diode wavelength will not affect the pumping effi ciency.All the advantages mentioned show the this crystal is obviously an ideal material for LD pumped microchip laser. Therefrom,the possible application of a series of self ativated laser crystal developed in the seventies years 20th century will be discussed in the case of L D lasers have been well developed.
文摘A passively Q-switched diode pumped Yb:YAG microchip laser with Cr4+:YAG saturable absorber mirror is reported. The TEMoo laser pulses are obtained with 1,7-uJ pulse energy, 15-ns pulse width, 0.11-kW peak power, and a repetition rate of 2.2 kHz at 1049 nm. The doped concentration and dimension of Yb:YAG microchip crystal are 10 at.-% and 5×0.6 mm2, respectively.
文摘We demonstrate an all-solid quasi-continuous-wave (QCW) narrow-band source tunable to sodium D2a line at 589.159 nm. The source is based on sum-frequency mixing between lasers at 1064 nm and 1319 nm in a LBO crystal. The 1064 nm and 1319 nm lasers are produced from two diode side-pumped Nd:YAG master oscillator power amplifier (MOPA) laser systems, respectively. A 33 W output of 589 nm laser is obtained with beam quality factor M^2 = 1.25, frequency stability better than ±0.2 GHz and linewidth less than 0.44 GHz. A prototype 589 nm laser system is assembled, and a sodium laser guided star has been successfully observed in the field test.
基金This work was supported by the project of Doppler lidar.
文摘Diode pumped, injection seeded single-longitudinal-mode (SLM) Nd:YAG laser is achieved through buildup time minimizing technique in Q-switching operation. Pulses with energy of 20 mJ are obtained at a repetition rate of 100 Hz. Mx^2 and My^2 are 1.41 and 1.38, respectively.
基金the National Key R&D Program of China(No.2018YFB110720)the National Natural Science Foundation of China(Nos.61575217 and 91850209)the Strategic Priority Research Program of CAS(No.XDB16030200).
文摘We demonstrate a diode-pumped femtosecond Yb:CaGdAlO_(4)(Yb:CALGO)laser with a semiconductor saturable absorber mirror(SESAM)for stable mode-locking operation.A perfect beam profile is measured under 10 W output power with M_(x)^(2)=1.017 and M_(y)^(2)=1.016 in the horizontal and vertical directions,respectively.At the repetition rate of 71.66 MHz,the optical pulse duration is 247 fs and the pulse energy is 140 nJ at the central wavelength of 1041 nm,corresponding to a peak power of 0.56 MW.In addition,we also generate continuous wave(CW)power of more than 15 W with TEM00 mode,corresponding to an optical-to-optical efficiency of 44.1%.
基金This work was partially supported by the National Natural Science Foundation of China(No.61621001)Qinglan Project of the Young and Middle-aged Academic Leader of Jjiangsu College and University.
文摘A good thermo-optic property of strontium dodeca-aluminum oxide[SrAl_(12)O_(12),SRA]host material is very advantageous to the development of high-performance lasers by doping rare-earth ions for gain medium.In this work,we report on diode-end-pumped high-performance continuous-wave and passively Q-switched Nd:SRA lasers.For continuous-wave operation,a maximum output power of 6.45 W is achieved at 1049 nm with a slope eficiency of about 41.6%.Using a Y_(3)Al_(12)O_(19)etalon,we have firstly achieved a 1066 nm laser with a maximum output power of 4.15 W and a slope efficiency of about 27%,to the best of our knowledge.For passively Q switched operation,with Cr^(4+):YAG as a saturable absorber,a maximum average output power of 1.82 W was achieved with the shortest pulse width of 18.2 ns at pulse repetition rate of 22.9 kHz.The single-pulse energy and pulse peak power were 79.4μJ and 4.3 kW.This work has further verified that the Nd:SRA crystal is very promising for high-performance laser generation.
基金supported by the National Natural Science Foundation of China(Grant Nos.61275142 12751426,1308042,31608042,and 51321091)the China Postdoctoral Science Foundation(Grant No.2014T70633)the Foundation for Outstanding Young Scientists in Shandong Province(Grant No.BS2012ZZ001)
文摘We demonstrate a high-pulse-energy, short-pulse-width passively Q-switched(PQS) Nd:YAG∕V3t:YAG laser at 1.3 μm, which is end-pumped by a pulsed laser diode. During the PQS regime, a maximum total output pulse energy of 3.3 m J is obtained under an absorbed pump pulse energy of 21.9 m J. Up to 400 μJ single-pulse energy is realized with the shortest pulse width of 6.16 ns and a pulse repetition frequency of 34.1 k Hz,corresponding to a peak power of 64.9 k W. The high-energy laser pulse is operated in the dual wavelengths of 1319 and 1338 nm, which is a potential laser source for THz generation.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61078032,61378024,60938001,and 61078053)the Science and Technology Development Projects of Shandong Province,China(Grant No.2013GGX10108)
文摘By using a reflective graphene oxide as saturable absorber, a diode-pumped passively mode-locked Yb^3+:Sc2Si O5(Yb:SSO) laser has been demonstrated for the first time. Without extra negative dispersion compensation, the minimum pulse duration of 1.7 ps with a repetition rate of 94 MHz was obtained at the central wavelength of 1062.6 nm. The average output power amounts to 355 m W under the absorbed pump power of 15 W. The maximum peak power of the mode-locking laser is up to 2.2 k W, and the single pulse energy is 3.8nJ.
基金supported by the National Key Technology R&D Program of the Ministry of Science and Technology,China(Grant No.2012BAC23B03)the National Basic Research Program of China(Grant No.2013CB922401)the National Natural Science Foundation of China(Grant No.11474002)
文摘A mode-locked ytterbium-doped rod-type fiber laser with 85 ~tm core diameter is developed based on the nonlinear polarization evolution in an all-normal-dispersion ring cavity, in which a uniaxial birefringent plate is used as the spectral filter. Average power up to 16 W is obtained at the repetition rate of 58 MHz, and the pulse duration is compressed to 182 fs with a grating-pair compressor. The output laser pulses show very good beam quality and power stability.
文摘Diode-pumped rare gas lasers are potential candidates for high-energy and high-beam quality laser systems.Currently,most investigations are focused on metastable Ar lasers.The Kr system has the unique advantages of higher quantum efficiency and lower discharge requirements for comparison.In this paper,a diode-pumped metastable Kr laser was demonstrated for the first time.Using a repetitively pulsed discharge at a Kr/He pressure of up to approximately1500 Torr,metastable Kr atoms of more than 10^(13)cm^(-3)were generated.Under diode pumping,the laser realized a dual-wavelength output with an average output power of approximately 100 mW and an optical conversion efficiency of approximately 10% with respect to the absorbed pump power.A kinetics study involving population distribution and evolution was conducted to analyze the laser performance.
基金Project supported by the National Natural Science Foundation of China.
文摘Nd:Sr<sub>5</sub>(VO<sub>4</sub>)<sub>3</sub>F (Nd:SVAP) is a new type of laser crystal reported in recent years. L. George declared the growth of Nd:SVAP crystal for the first time at MRS fall meeting in 1993. Soon after, the laser performance of Nd:SVAP pumped by a Ti:sapphire laser was reported. With the advantages of low pumping threshold and high conversion efficiency,Nd:SVAP is suitable for compact solid-state lasers pumped by laser diodes (LD) and has wide prospects in application. In this letter, we report the experimental results of an LD-pumped Nd:SVAP laser for the first time.
文摘The Australian first working sodium guide star laser system has been designed and developed for various astronomical and space-related applications. A completely diode-pumped pulsed system was developed initially followed by a largely fiber-based continuous wave (CW) system operating at 589 nm achieved through a unique wavelength conversion scheme by combining 1342 and 1050 nm through a sum frequency generation process. For the CW system, single-mode laser beams at both 1342 and 1050 nm are achieved from fiber-based seed oscillators and fiber amplifiers. The output power of ~25 W at 1342 nm is achieved from a single frequency fiber Raman amplifier. Output power up to 70 W at 1050 nm is achieved from a Yb-doped fiber pre-amplifier followed by a Yb-doped fiber power amplifier. For the sum frequency generation process, optimum focusing parameters are evaluated and determined. The CW system has generated more than 20 W output power at 589 nm, a circularly polarised beam with a good beam quality, spectral linewidth ≤ 2 MHz, and the laser output locked on the sodium D2 line at 589.159 nm. The system has been successfully demonstrated at EOS Space Research Centre, Mt Stromlo, Canberra, and become the Australian first working sodium guide star laser system.
基金supported by the National Natural Science Foundation of China(No.61975168)。
文摘We present a study on a watt-level acousto-optically Q-switched Pr:YLF laser at three different repetition rates(10 kHz,20 kHz,and 50 kHz)for the first time,to the best of our knowledge.The corresponding average output powers and pulse widths were measured to be 1.14 W,1.2 W,and 1.32 W,and 40 ns,52 ns,and 80 ns,respectively.A maximum pulse energy of0.11 mJ was obtained,corresponding to a peak power of up to 2.8 kW at a repetition rate of 10 kHz.The simulated dynamics of a fast Q-switched Pr:YLF laser is in agreement with the experiment.The laser's ability to generate stable pulses with high peak power and short pulse width makes it highly desirable for various practical applications,such as laser machining and material processing.
基金supported by the Russian Foundation for Basic Researchthe Government of the Novosibirsk Region(No.19-42-543002)。
文摘A Q-switched Nd:YAG laser has been actively mode-locked at a subharmonic frequency for the first time,to the authors’knowledge.The laser operation mode is provided by a combination of a traveling wave acousto-optic modulator and a spherical cavity mirror.The dynamics of laser generation is investigated.Pulses with a duration of 70 ps and a peak power of about 10 MW were obtained.Also presented are new results on obtaining high-power[~60 kW]picosecond tunable radiation in the~620 nm region based on frequency conversion of a superluminescent parametric generator pumped by such a laser.