Dip-pen nanolithography is a new scanning probe lithography (SPL) technique based on atomic force microscopy (AFM), and now has made a great progress. The process of dip-pen lithography involves the adsorption of ink ...Dip-pen nanolithography is a new scanning probe lithography (SPL) technique based on atomic force microscopy (AFM), and now has made a great progress. The process of dip-pen lithography involves the adsorption of ink molecules on AFM tip, the formation of water meniscus, the transport of ink molecules, and diffusion of ink molecules on the substrate. More factors such as temperature, humidity, tip, scanning speed and so on will influence the process of dip-pen lithography. The paper analyzes in detail the mechanism of this technique, introduces synthetically the latest development, including electrochemical DPN, more-mode DPN, multiple DPN, multi-probe array DPN and so on. Finally, the paper describes the characteristics and the application of DPN.展开更多
Dip-pen na.nolithography (DPN) is a useful method for directly printing materials on surfaces with sub-50nm resolution. Because it, involves the physical transport of materials from a scanning probe tip to a surface...Dip-pen na.nolithography (DPN) is a useful method for directly printing materials on surfaces with sub-50nm resolution. Because it, involves the physical transport of materials from a scanning probe tip to a surface and the subsequent chemical interaction of that material with the surface, there are many factors to consider when attempting to understand DPN. In this review, we overview the physical and chemical processes that are known to play a role in DPN, Through a detailed review of the literature, we classify inks into three general categories based on their transport properties, and highlight the myriad ways that. DPN can be used to perform chemistry at the tip of a scanning probe.展开更多
Dip-pen nanolithography is an emerging and attractive surface modification technique that has the capacity to directly and controllably write micro/nano-array patterns on diverse substrates.The superior throughput,res...Dip-pen nanolithography is an emerging and attractive surface modification technique that has the capacity to directly and controllably write micro/nano-array patterns on diverse substrates.The superior throughput,resolution,and registration enable DPN an outstanding candidate for biological detection from the molecular level to the cellular level.Herein,we overview the technological evolution of DPN in terms of its advanced derivatives and DPN-enabled versatile sensing patterns featuring multiple compositions and structures for biosensing.Benefitting from uniform,reproducible,and large-area array patterns,DPN-based biosensors have shown high sensitivity,excellent selectivity,and fast response in target analyte detection and specific cellular recognition.We anticipate that DPN-based technologies could offer great potential opportunities to fabricate multiplexed,programmable,and commercial array-based sensing biochips.展开更多
Dip-pen nanolithography(DPN) has been developed to pattern monolayer film of various molecules in submicrometer dimensions through the controlled movement of ink-coated atomic force microscopy(AFM) tip on a desired su...Dip-pen nanolithography(DPN) has been developed to pattern monolayer film of various molecules in submicrometer dimensions through the controlled movement of ink-coated atomic force microscopy(AFM) tip on a desired substrate, which makes DPN a potentially powerful tool for making the functional nanoscale devices. In this letter, using direct-write dip-pen nanolithography to generate nanoscale patterns of poly-L-lysine on mica was described. Poly-L-lysine molecules can anchor themselves to the mica surface through electrostatic interaction force, so stable poly-L-lysine patterns, such as square, line, circle and cross, could be obtained on freshly cleaved mica surface. From AFM image of the patterned poly-L-lysine nanostructures on mica, we know that poly-L-lysine was flatly bound to the mica surface. These oriented patterns of poly-L-lysine on mica can provide the prospect of building functional nanodevices and offer new options for this technique in a variety of other significant biomolecules.展开更多
This paper covers the first application of Dip Pen Nanolithography(DPN) to directly write protein patterns with submicrometer dimensions onto Au substrate. Using Bovine Serum Albumin(BSA) as the ink in the DPN procedu...This paper covers the first application of Dip Pen Nanolithography(DPN) to directly write protein patterns with submicrometer dimensions onto Au substrate. Using Bovine Serum Albumin(BSA) as the ink in the DPN procedure, we were able to utilize lateral force microscopy(LFM) images to differentiate between Au substrate and patterned area with deposited monolayers of BSA. Then the first evidence for Au_S bonding was reported between the gold substrate and the BSA surface thiol groups given by the angle resolved XPS measurements.展开更多
Ultrasensitive nanomechanical instruments,e.g.atomic force microscopy(AFM),can be used to perform delicate biomechanical measurements and reveal the complex mechanical environment of biological processes.However,these...Ultrasensitive nanomechanical instruments,e.g.atomic force microscopy(AFM),can be used to perform delicate biomechanical measurements and reveal the complex mechanical environment of biological processes.However,these instruments are limited because of their size and complex feedback system.In this study,we demonstrate a miniature fiber optical nanomechanical probe(FONP)that can be used to detect the mechanical properties of single cells and in vivo tissue measurements.A FONP that can operate in air and in liquids was developed by programming a microcantilever probe on the end face of a single-mode fiber using femtosecond laser two-photon polymerization nanolithography.To realize stiffness matching of the FONP and sample,a strategy of customizing the microcantilever’s spring constant according to the sample was proposed based on structure-correlated mechanics.As a proof-of concept,three FONPs with spring constants varying from 0.421 N m^(−1)to 52.6 N m^(−1)by more than two orders of magnitude were prepared.The highest microforce sensitivity was 54.5 nmμN^(−1)and the detection limit was 2.1 nN.The Young’s modulus of heterogeneous soft materials,such as polydimethylsiloxane,muscle tissue of living mice,onion cells,and MCF-7 cells,were successfully measured,which validating the broad applicability of this method.Our strategy provides a universal protocol for directly programming fiber-optic AFMs.Moreover,this method has no special requirements for the size and shape of living biological samples,which is infeasible when using commercial AFMs.FONP has made substantial progress in realizing basic biological discoveries,which may create new biomedical applications that cannot be realized by current AFMs.展开更多
基金Foundation of Education of Zhejiang Province, China ( No.20060470).
文摘Dip-pen nanolithography is a new scanning probe lithography (SPL) technique based on atomic force microscopy (AFM), and now has made a great progress. The process of dip-pen lithography involves the adsorption of ink molecules on AFM tip, the formation of water meniscus, the transport of ink molecules, and diffusion of ink molecules on the substrate. More factors such as temperature, humidity, tip, scanning speed and so on will influence the process of dip-pen lithography. The paper analyzes in detail the mechanism of this technique, introduces synthetically the latest development, including electrochemical DPN, more-mode DPN, multiple DPN, multi-probe array DPN and so on. Finally, the paper describes the characteristics and the application of DPN.
基金Acknowledgements C.A.M. acknowledges the U. S. Air Force Office of Scientific Research (AFOSR, Awards FA9550-12-1-0280 and FA9550-12-1-0141), the Defense Advanced Research Projects Agency (DARPA, Award N66001-08-1-2044) and the National Science Foundation (NSF, Awards DBI-1152139 and DMB-1124131) for support of this research. K. A. B. and X. L. gratefully acknowledges support from Northwestern University's International Institute for Nanotechnology. D. J. E. acknowledges the DoD and AFOSR for a National Defense Science and Engineering Graduate (NDSEG) Fellowship, 32 CFR 168a.
文摘Dip-pen na.nolithography (DPN) is a useful method for directly printing materials on surfaces with sub-50nm resolution. Because it, involves the physical transport of materials from a scanning probe tip to a surface and the subsequent chemical interaction of that material with the surface, there are many factors to consider when attempting to understand DPN. In this review, we overview the physical and chemical processes that are known to play a role in DPN, Through a detailed review of the literature, we classify inks into three general categories based on their transport properties, and highlight the myriad ways that. DPN can be used to perform chemistry at the tip of a scanning probe.
文摘Dip-pen nanolithography is an emerging and attractive surface modification technique that has the capacity to directly and controllably write micro/nano-array patterns on diverse substrates.The superior throughput,resolution,and registration enable DPN an outstanding candidate for biological detection from the molecular level to the cellular level.Herein,we overview the technological evolution of DPN in terms of its advanced derivatives and DPN-enabled versatile sensing patterns featuring multiple compositions and structures for biosensing.Benefitting from uniform,reproducible,and large-area array patterns,DPN-based biosensors have shown high sensitivity,excellent selectivity,and fast response in target analyte detection and specific cellular recognition.We anticipate that DPN-based technologies could offer great potential opportunities to fabricate multiplexed,programmable,and commercial array-based sensing biochips.
文摘Dip-pen nanolithography(DPN) has been developed to pattern monolayer film of various molecules in submicrometer dimensions through the controlled movement of ink-coated atomic force microscopy(AFM) tip on a desired substrate, which makes DPN a potentially powerful tool for making the functional nanoscale devices. In this letter, using direct-write dip-pen nanolithography to generate nanoscale patterns of poly-L-lysine on mica was described. Poly-L-lysine molecules can anchor themselves to the mica surface through electrostatic interaction force, so stable poly-L-lysine patterns, such as square, line, circle and cross, could be obtained on freshly cleaved mica surface. From AFM image of the patterned poly-L-lysine nanostructures on mica, we know that poly-L-lysine was flatly bound to the mica surface. These oriented patterns of poly-L-lysine on mica can provide the prospect of building functional nanodevices and offer new options for this technique in a variety of other significant biomolecules.
文摘This paper covers the first application of Dip Pen Nanolithography(DPN) to directly write protein patterns with submicrometer dimensions onto Au substrate. Using Bovine Serum Albumin(BSA) as the ink in the DPN procedure, we were able to utilize lateral force microscopy(LFM) images to differentiate between Au substrate and patterned area with deposited monolayers of BSA. Then the first evidence for Au_S bonding was reported between the gold substrate and the BSA surface thiol groups given by the angle resolved XPS measurements.
基金supported by the National Natural Science Foundation of China(NSFC)(62122057,62075136,62175165)Natural Science Foundation of Guangdong Province(2022B1515120061,2019B1515120042)Science and Technology Innovation Commission of Shenzhen(RCYX20200714114524139,JCYJ20200109114001806).
文摘Ultrasensitive nanomechanical instruments,e.g.atomic force microscopy(AFM),can be used to perform delicate biomechanical measurements and reveal the complex mechanical environment of biological processes.However,these instruments are limited because of their size and complex feedback system.In this study,we demonstrate a miniature fiber optical nanomechanical probe(FONP)that can be used to detect the mechanical properties of single cells and in vivo tissue measurements.A FONP that can operate in air and in liquids was developed by programming a microcantilever probe on the end face of a single-mode fiber using femtosecond laser two-photon polymerization nanolithography.To realize stiffness matching of the FONP and sample,a strategy of customizing the microcantilever’s spring constant according to the sample was proposed based on structure-correlated mechanics.As a proof-of concept,three FONPs with spring constants varying from 0.421 N m^(−1)to 52.6 N m^(−1)by more than two orders of magnitude were prepared.The highest microforce sensitivity was 54.5 nmμN^(−1)and the detection limit was 2.1 nN.The Young’s modulus of heterogeneous soft materials,such as polydimethylsiloxane,muscle tissue of living mice,onion cells,and MCF-7 cells,were successfully measured,which validating the broad applicability of this method.Our strategy provides a universal protocol for directly programming fiber-optic AFMs.Moreover,this method has no special requirements for the size and shape of living biological samples,which is infeasible when using commercial AFMs.FONP has made substantial progress in realizing basic biological discoveries,which may create new biomedical applications that cannot be realized by current AFMs.