We study quantum tunneling of a dipolar Bose-Einstein condensate in optical lattice when the spin system initially is prepared in a squeezed coherent state. It is found that there exists quantum tunneling between latt...We study quantum tunneling of a dipolar Bose-Einstein condensate in optical lattice when the spin system initially is prepared in a squeezed coherent state. It is found that there exists quantum tunneling between lattices l and l + 1, l and l - 1, respectively. In particular, when the optical lattice is infinitely long and the spin excitations are in the long-wavelength limit, quantum tunneling disappears between lattices l and l + 1, and that l and l - 1. Correspondingly, the magnetic soliton appears.展开更多
We numerically study the interaction dynamics of two bright solitons with zero initial velocities in the one-dimensional dipolar Bose-Einstein condensates.Under different dipolar strengths,the two bright solitons can ...We numerically study the interaction dynamics of two bright solitons with zero initial velocities in the one-dimensional dipolar Bose-Einstein condensates.Under different dipolar strengths,the two bright solitons can merge into a breathing wave,and then split or propagate constantly after several oscillating periods.We quantitatively study the breathing frequency of wave after merging and the asymmetry property of solitons after splitting,and analyze their formation mechanism by the system's energy evolution.Also,the change of initial phase difference brings distinct effects on the soliton interaction.Our results provide insight into the new dynamical phenomena in dipolar systems and enrich the understanding for interaction between dipolar solitons.展开更多
Manipulating nonlinear excitations,including solitons and vortices,is an essential topic in quantum many-body physics.A new progress in this direction is a protocol proposed in[Phys.Rev.Res.2043256(2020)]to produce da...Manipulating nonlinear excitations,including solitons and vortices,is an essential topic in quantum many-body physics.A new progress in this direction is a protocol proposed in[Phys.Rev.Res.2043256(2020)]to produce dark solitons in a one-dimensional atomic Bose–Einstein condensate(BEC)by quenching inter-atomic interaction.Motivated by this work,we generalize the protocol to a two-dimensional BEC and investigate the generic scenario of its post-quench dynamics.For an isotropic disk trap with a hard-wall boundary,we find that successive inward-moving ring dark solitons(RDSs)can be induced from the edge,and the number of RDSs can be controlled by tuning the ratio of the after-and before-quench interaction strength across different critical values.The role of the quench played on the profiles of the density,phase,and sound velocity is also investigated.Due to the snake instability,the RDSs then become vortex–antivortex pairs with peculiar dynamics managed by the initial density and the after-quench interaction.By tuning the geometry of the box traps,demonstrated as polygonal ones,more subtle dynamics of solitons and vortices are enabled.Our proposed protocol and the discovered rich dynamical effects on nonlinear excitations can be realized in near future cold-atom experiments.展开更多
Time-periodic driving has been an effective tool in the field of nonequilibrium quantum dynamics,which enables precise control of the particle interactions.We investigate the collective emission of particles from a Bo...Time-periodic driving has been an effective tool in the field of nonequilibrium quantum dynamics,which enables precise control of the particle interactions.We investigate the collective emission of particles from a Bose-Einstein condensate in a one-dimensional lattice with periodic drives that are separate in modulation amplitudes and relative phases.In addition to the enhancement of particle emission,we find that amplitude imbalances lead to energy shift and band broadening,while typical relative phases may give rise to similar gaps.These results offer insights into the specific manipulations of nonequilibrium quantum systems with tone-varying drives.展开更多
Emission of matter-wave jets from a parametrically driven condensate has attracted significant experimental and theoretical attention due to the appealing visual effects and potential metrological applications.In this...Emission of matter-wave jets from a parametrically driven condensate has attracted significant experimental and theoretical attention due to the appealing visual effects and potential metrological applications.In this work,we investigate the collective particle emission from a Bose-Einstein condensate confined in a one-dimensional lattice with periodically modulated interparticle interactions.We give the regimes for discrete modes,and find that the emission can be distinctly suppressed.The configuration induces a broad band,but few particles are ejected due to the interference of the matter waves.We further qualitatively model the emission process and demonstrate the short-time behaviors.This engineering provides a way to manipulate the propagation of particles and the corresponding dynamics of condensates in lattices,and may find application in the dynamical excitation control of other nonequilibrium problems with time-periodic driving.展开更多
Atomic interaction leads to dephasing and damping of Bloch oscillations(BOs)in optical lattices,which limits observation and applications of BOs.How to obtain persistent BOs is particularly important.Here,the nonlinea...Atomic interaction leads to dephasing and damping of Bloch oscillations(BOs)in optical lattices,which limits observation and applications of BOs.How to obtain persistent BOs is particularly important.Here,the nonlinear Bloch dynamics of the Bose-Einstein condensate with two-body and three-body interactions in deep optical lattices is studied.The damping rate induced by interactions is obtained.The damping induced by two-body interaction plays a dominant role,while the damping induced by three-body interaction is weak.However,when the two-body and three-body interactions satisfy a threshold,long-lived coherent BOs are observed.Furthermore,the Bloch dynamics with periodical modulation of linear force is studied.The frequencies of linear force corresponding to resonance and pseudoresonance are obtained,and rich dynamical phenomena,i.e.,stable and strong BOs,drifting and dispersion of wave packet,are predicted.The controllable Bloch dynamics is provided with the periodic modulation of the linear force.展开更多
We numerically investigate the breathing dynamics induced by collision between bright solitons in a binary dipolar Bose–Einstein condensates, whose dipole–dipole interaction and contact interaction are attractive. W...We numerically investigate the breathing dynamics induced by collision between bright solitons in a binary dipolar Bose–Einstein condensates, whose dipole–dipole interaction and contact interaction are attractive. We identify three special breathing structures, such as snakelike special breathing structure, mixed breathing structure, and divide breathing structure.The characteristics of these breathing structures can be described by breathing frequency ?, maximum breathing amplitude A and lifetime τ, which can be manipulated by atomic number Ni and interspecies scattering length a12. Meanwhile, the above breathing structures can realize the process of quasi-transition with a reasonable Ni and a12. Additionally, the collision of two special breathing structures also can bring more abundant breathing dynamics. Our results provide a reference for the study of soliton interactions and deepen the understanding of soliton properties in a binary dipolar Bose–Einstein condensates.展开更多
We study analytically and numerically the nonlinear collective dynamics of quasi-one-dimensional spin-orbit coupled spin-1 Bose-Einstein condensates trapped in harmonic potential.The ground state of the system is dete...We study analytically and numerically the nonlinear collective dynamics of quasi-one-dimensional spin-orbit coupled spin-1 Bose-Einstein condensates trapped in harmonic potential.The ground state of the system is determined by minimizing the Lagrange density,and the coupled equations of motions for the center-of-mass coordinate of the condensate and its width are derived.Then,two low energy excitation modes in breathing dynamics and dipole dynamics are obtained analytically,and the mechanism of exciting the anharmonic collective dynamics is revealed explicitly.The coupling among spin-orbit coupling,Raman coupling and spin-dependent interaction results in multiple external collective modes,which leads to the anharmonic collective dynamics.The cooperative effect of spin momentum locking and spin-dependent interaction results in coupling of dipolar and breathing dynamics,which strongly depends on spin-dependent interaction and behaves distinct characters in different phases.Interestingly,in the absence of spin-dependent interaction,the breathing dynamics is decoupled from spin dynamics and the breathing dynamics is harmonic.Our results provide theoretical evidence for deep understanding of the ground sate phase transition and the nonlinear collective dynamics of the system.展开更多
We model the universe as a white hole, and in the process we perform detailed analysis of the enthalpy equation of the modified white hole, and we get a much detailed picture of when and how did;quantum gravity (cosmo...We model the universe as a white hole, and in the process we perform detailed analysis of the enthalpy equation of the modified white hole, and we get a much detailed picture of when and how did;quantum gravity (cosmology) phase, inflationary phase, and the acceleration phase of the universe happened. We determine the field equations of the modified white hole and evolve the scale factor and compare the evolution to the thermodynamic properties of the universe. We also illustrate that the strong energy condition is violated, but both the null energy condition and the strong cosmic censorship are not violated. Lastly, we couple the enthalpy to the Bose-Einstein condensate at extremely low entropy at the quantum gravity (cosmology) regime. Thereafter, we determine the unstable condition of the Bose-Einstein quantum equation which we interpret as the moment when the big bang occurred.展开更多
We investigate the Landau damping of the collective mode in a quasi-two-dimension repulsive Bose-Einstein condensate by using the self-consistent time-dependent Hatree-Fock-Bogoliubov approximation and a complete and ...We investigate the Landau damping of the collective mode in a quasi-two-dimension repulsive Bose-Einstein condensate by using the self-consistent time-dependent Hatree-Fock-Bogoliubov approximation and a complete and orthogonal eigenfunction set for the elementary excitation of the system. We calculate the three-mode coupling matrix element between the collective mode and the thermal excited quasi-particles and the Landau damping rate of the collective mode. We discuss the dependence of the Landau damping on temperature, on atom number in the condensate, on transverse trapping frequency and on the length of the condensate. The energy width of the collective mode is taken into account in our calculation. With little approximation, our theoretic calculation results agree well with the experimental ones and are helpful for deducing the damping mechanics and the inter-particle interaction.展开更多
We study the formation of vortices in a dipolar Bose-Einstein condensate in a synthetic magnetic field by numerically solving the Gross-Pitaevskii equation. The formation process depends on the dipole strength, the ro...We study the formation of vortices in a dipolar Bose-Einstein condensate in a synthetic magnetic field by numerically solving the Gross-Pitaevskii equation. The formation process depends on the dipole strength, the rotating frequency, the potential geometry, and the orientation of the dipoles. We make an extensive comparison with vortices created by a rotating trap, especially focusing on the issues of the critical rotating frequency and the vortex number as a function of the rotating frequency. We observe that a higher rotating frequency is needed to generate a large number of vortices and the anisotropic interaction manifests itself as a perceptible difference in the vortex formation. Furthermore, a large dipole strength or aspect ratio also can increase the number of vortices effectively. In particular, we discuss the validity of the Feynman rule.展开更多
This paper proposes a method for calculating the Landau damping of a low-energy collective mode in a harmonically trapped Bose-Einstein condensate. Based on the divergence-free analytical solutions for ground-state wa...This paper proposes a method for calculating the Landau damping of a low-energy collective mode in a harmonically trapped Bose-Einstein condensate. Based on the divergence-free analytical solutions for ground-state wavefunction of the condensate and eigenvalues and eigenfunctions for thermally excited quasiparticles, obtained beyond Thomas-Fermi approximation, this paper calculates the coupling matrix elements describing the interaction between the collective mode and the quasiparticles. With these analytical results this paper evaluates the Landau damping rate of a monopole mode in a spherical trap and discusses its dependence on temperature, particle number and trapping frequency of the system.展开更多
The modulational instability of two-component Bose-Einstein condensates(BECs)under an external parabolic potential is discussed.Based on the trapped two-component Gross-Pitaevskill equations,a time-dependent dispersio...The modulational instability of two-component Bose-Einstein condensates(BECs)under an external parabolic potential is discussed.Based on the trapped two-component Gross-Pitaevskill equations,a time-dependent dispersion relation is obtained analytically by means of the modified lens-type transformation and linear stability analysis.It is shown that a modulational unstable time scale exists for trapped two-component BECs.The modulational properties-which are determined by the wave number,external trapping parameter,intraand inter-species atomic interactions-are modified significantly.The analytical results are confirmed by direct numerical simulation.Our results provide a criterion for judging the occurrence of instability of the trapped two-component BECs in experiment.展开更多
The stability of Bose Einstein condensates (BECs) loaded into a two-dimensional shallow harmonic potential well is studied. By using the variational method, the ground state properties for interacting BECs in the sh...The stability of Bose Einstein condensates (BECs) loaded into a two-dimensional shallow harmonic potential well is studied. By using the variational method, the ground state properties for interacting BECs in the shallow trap are discussed. It is shown that the possible stable bound state can exist. The depth of the shallow well plays an important role in stabilizing the BECs, The stability of BECs in the shallow trap with the periodic modulating of atom interaction by using the Feshbach resonance is also discussed. The results show that the collapse and diffusion of BECs in a shallow trap can be controlled by the temporal modulation of the scattering length.展开更多
The stable nonlinear transport of the Bose-Einstein condensates through a double barrier potential in a waveguide is studied. By using the direct perturbation method we have obtained a perturbed solution of Cross-Pita...The stable nonlinear transport of the Bose-Einstein condensates through a double barrier potential in a waveguide is studied. By using the direct perturbation method we have obtained a perturbed solution of Cross-Pitaevskii equation. Theoretical analysis reveals that this perturbed solution is a stable periodic solution, which shows that the transport of Bose-Einstein condensed atoms in this system is a stable nonlinear transport. The corresponding numerical results are in good agreement with the theoretical analytical results.展开更多
For a Bose-Einstein condensate (BEC) confined in a double lattice consisting of two weak laser standing waves we find the Melnikov chaotic solution and chaotic region of parameter space by using the direct perturbat...For a Bose-Einstein condensate (BEC) confined in a double lattice consisting of two weak laser standing waves we find the Melnikov chaotic solution and chaotic region of parameter space by using the direct perturbation method. In the chaotic region, spatial evolutions of the chaotic solution and the corresponding distribution of particle number density are bounded but unpredictable between their superior and inferior limits. It is illustrated that when the relation k1≈ k2 between the two laser wave vectors is kept, the adjustment from k2 〈 k1 to k2 ≥ k1 can transform the chaotic region into regular one or the other way round. This suggests a feasible scheme for generating and controlling chaos, which could lead to an experimental observation in the near future.展开更多
The spatial chaos of Bose-Einstein condensates in a cigar-shaped trap is studied.For a system with asteady current,we construct the general solution of the 1st-order equation.From the boundedness condition of thegener...The spatial chaos of Bose-Einstein condensates in a cigar-shaped trap is studied.For a system with asteady current,we construct the general solution of the 1st-order equation.From the boundedness condition of thegeneral solution, we obtain the Melnikov function predicting the onset of chaos.The unpredictability of the system's dis-tribution of atom density is also theoretically analyzed.For a ^(23)Na system meeting the perturbation oondition,numericalsimulations show the existence of chaos,which is in accordance with our analytical results.Numerical simulations of a^(87)Rb system dissatisfying the perturbation condition also demonstrate that there exists chaos in the system.The casewithout a current is also investigated.展开更多
The nonlinear Landau Zener tunneling and nonlinear Rabi oscillations of Bose-Einstein condensate (BEC) with higher-order atomic interaction between the Bloch bands in an accelerating optical lattice are discussed. W...The nonlinear Landau Zener tunneling and nonlinear Rabi oscillations of Bose-Einstein condensate (BEC) with higher-order atomic interaction between the Bloch bands in an accelerating optical lattice are discussed. Within the two-level model, the tunneling probability of BEC with higher-order atomic interaction between Bloch bands is obtained. We finds that the tunneling rate is closely related to the higher-order atomic interaction. Furthermore, the nonlinear Rabi oscillations of BEC with higher-order atomic interaction between the bands are discussed by imposing a periodic modulation on the level bias. Analytical expressions of the critical higher-order atomic interaction for suppressing/enhancing the Rabi oscillations are obtained. It is shown that the critical value strongly depends on the modulation parameters (i.e., the modulation amplitude and frequency) and the strength of periodic potential.展开更多
This paper investigates the collective excitation and stability of low-dimensional Bose-Einstein condensates with two- and three-body interactions by the variational analysis of the time-dependent Gross-Pitaevskii-Gin...This paper investigates the collective excitation and stability of low-dimensional Bose-Einstein condensates with two- and three-body interactions by the variational analysis of the time-dependent Gross-Pitaevskii-Ginsburg equation. The spectrum of the low-energy excitation and the effective potential for the width of the condensate axe obtained. The results show that: (i) the repulsive two-body interaction among atoms makes the frequency red-shifted for the internal excitation and the repulsive or attractive three-body interaction always makes it blue-shifted; (ii) the region for the existence of the stable bound states is obtained by identifying the critical value of the two- and three-body interactions.展开更多
The influence of decoherence on interference between two trapped Bose-Einstein condensates with arbitraryinitial states is studied. Analytic expressions of the intensity and visibility of the interference pattern are ...The influence of decoherence on interference between two trapped Bose-Einstein condensates with arbitraryinitial states is studied. Analytic expressions of the intensity and visibility of the interference pattern are found. It isshown that the decoherence weakens the interference intensity and decreases the visibility of the interference pattern.展开更多
基金The project partly supported by National Natural Science Foundation of China under Grant No.10574060the Natural Science Foundation of Beijing under Grant No.1072010.
文摘We study quantum tunneling of a dipolar Bose-Einstein condensate in optical lattice when the spin system initially is prepared in a squeezed coherent state. It is found that there exists quantum tunneling between lattices l and l + 1, l and l - 1, respectively. In particular, when the optical lattice is infinitely long and the spin excitations are in the long-wavelength limit, quantum tunneling disappears between lattices l and l + 1, and that l and l - 1. Correspondingly, the magnetic soliton appears.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11875220 and 12047502)。
文摘We numerically study the interaction dynamics of two bright solitons with zero initial velocities in the one-dimensional dipolar Bose-Einstein condensates.Under different dipolar strengths,the two bright solitons can merge into a breathing wave,and then split or propagate constantly after several oscillating periods.We quantitatively study the breathing frequency of wave after merging and the asymmetry property of solitons after splitting,and analyze their formation mechanism by the system's energy evolution.Also,the change of initial phase difference brings distinct effects on the soliton interaction.Our results provide insight into the new dynamical phenomena in dipolar systems and enrich the understanding for interaction between dipolar solitons.
基金Project supported by the Natural Science Foundation of Zhejiang Province of China(Grant Nos.LQ22A040006,LY21A040004,LR22A040001,and LZ21A040001)the National Natural Science Foundation of China(Grant Nos.11835011 and 12074342).
文摘Manipulating nonlinear excitations,including solitons and vortices,is an essential topic in quantum many-body physics.A new progress in this direction is a protocol proposed in[Phys.Rev.Res.2043256(2020)]to produce dark solitons in a one-dimensional atomic Bose–Einstein condensate(BEC)by quenching inter-atomic interaction.Motivated by this work,we generalize the protocol to a two-dimensional BEC and investigate the generic scenario of its post-quench dynamics.For an isotropic disk trap with a hard-wall boundary,we find that successive inward-moving ring dark solitons(RDSs)can be induced from the edge,and the number of RDSs can be controlled by tuning the ratio of the after-and before-quench interaction strength across different critical values.The role of the quench played on the profiles of the density,phase,and sound velocity is also investigated.Due to the snake instability,the RDSs then become vortex–antivortex pairs with peculiar dynamics managed by the initial density and the after-quench interaction.By tuning the geometry of the box traps,demonstrated as polygonal ones,more subtle dynamics of solitons and vortices are enabled.Our proposed protocol and the discovered rich dynamical effects on nonlinear excitations can be realized in near future cold-atom experiments.
基金Project supported by the China Scholarship Council(Grant No.201906130092)the Natural Science Research Start-up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications(Grant No.NY223065)the Natural Science Foundation of Sichuan Province(Grant No.2023NSFSC1330).
文摘Time-periodic driving has been an effective tool in the field of nonequilibrium quantum dynamics,which enables precise control of the particle interactions.We investigate the collective emission of particles from a Bose-Einstein condensate in a one-dimensional lattice with periodic drives that are separate in modulation amplitudes and relative phases.In addition to the enhancement of particle emission,we find that amplitude imbalances lead to energy shift and band broadening,while typical relative phases may give rise to similar gaps.These results offer insights into the specific manipulations of nonequilibrium quantum systems with tone-varying drives.
基金supported by the China Scholarship Council(Grant No.201906130092)the Natural Science Research Start-up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications(Grant No.NY223065)the Natural Science Foundation of Sichuan Province(Grant No.2023NSFSC1330).
文摘Emission of matter-wave jets from a parametrically driven condensate has attracted significant experimental and theoretical attention due to the appealing visual effects and potential metrological applications.In this work,we investigate the collective particle emission from a Bose-Einstein condensate confined in a one-dimensional lattice with periodically modulated interparticle interactions.We give the regimes for discrete modes,and find that the emission can be distinctly suppressed.The configuration induces a broad band,but few particles are ejected due to the interference of the matter waves.We further qualitatively model the emission process and demonstrate the short-time behaviors.This engineering provides a way to manipulate the propagation of particles and the corresponding dynamics of condensates in lattices,and may find application in the dynamical excitation control of other nonequilibrium problems with time-periodic driving.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12264045,12164042,11764039,11847304,and 11865014)the Natural Science Foundation of Gansu Province (Grant No.17JR5RA07620JR5RA526)+2 种基金the Scientific Research Project of Gansu Higher Education (Grant No.2016A-005)the Innovation Capability Enhancement Project of Gansu Higher Education (Grant Nos.2020A146 and 2019A-014)the Creation of Science and Technology of Northwest Normal University (Grant No.NWNULKQN-18-33)。
文摘Atomic interaction leads to dephasing and damping of Bloch oscillations(BOs)in optical lattices,which limits observation and applications of BOs.How to obtain persistent BOs is particularly important.Here,the nonlinear Bloch dynamics of the Bose-Einstein condensate with two-body and three-body interactions in deep optical lattices is studied.The damping rate induced by interactions is obtained.The damping induced by two-body interaction plays a dominant role,while the damping induced by three-body interaction is weak.However,when the two-body and three-body interactions satisfy a threshold,long-lived coherent BOs are observed.Furthermore,the Bloch dynamics with periodical modulation of linear force is studied.The frequencies of linear force corresponding to resonance and pseudoresonance are obtained,and rich dynamical phenomena,i.e.,stable and strong BOs,drifting and dispersion of wave packet,are predicted.The controllable Bloch dynamics is provided with the periodic modulation of the linear force.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 12247103, 12275213, and 12247110)。
文摘We numerically investigate the breathing dynamics induced by collision between bright solitons in a binary dipolar Bose–Einstein condensates, whose dipole–dipole interaction and contact interaction are attractive. We identify three special breathing structures, such as snakelike special breathing structure, mixed breathing structure, and divide breathing structure.The characteristics of these breathing structures can be described by breathing frequency ?, maximum breathing amplitude A and lifetime τ, which can be manipulated by atomic number Ni and interspecies scattering length a12. Meanwhile, the above breathing structures can realize the process of quasi-transition with a reasonable Ni and a12. Additionally, the collision of two special breathing structures also can bring more abundant breathing dynamics. Our results provide a reference for the study of soliton interactions and deepen the understanding of soliton properties in a binary dipolar Bose–Einstein condensates.
基金supported by the National Natural Science Foundation of China(Grant Nos.12164042,12264045,11764039,11475027,11865014,12104374,and 11847304)the Natural Science Foundation of Gansu Province(Grant Nos.17JR5RA076 and 20JR5RA526)+2 种基金the Scientific Research Project of Gansu Higher Education(Grant No.2016A-005)the Innovation Capability Enhancement Project of Gansu Higher Education(Grant Nos.2020A-146 and 2019A-014)the Creation of Science and Technology of Northwest Normal University(Grant No.NWNU-LKQN-18-33)。
文摘We study analytically and numerically the nonlinear collective dynamics of quasi-one-dimensional spin-orbit coupled spin-1 Bose-Einstein condensates trapped in harmonic potential.The ground state of the system is determined by minimizing the Lagrange density,and the coupled equations of motions for the center-of-mass coordinate of the condensate and its width are derived.Then,two low energy excitation modes in breathing dynamics and dipole dynamics are obtained analytically,and the mechanism of exciting the anharmonic collective dynamics is revealed explicitly.The coupling among spin-orbit coupling,Raman coupling and spin-dependent interaction results in multiple external collective modes,which leads to the anharmonic collective dynamics.The cooperative effect of spin momentum locking and spin-dependent interaction results in coupling of dipolar and breathing dynamics,which strongly depends on spin-dependent interaction and behaves distinct characters in different phases.Interestingly,in the absence of spin-dependent interaction,the breathing dynamics is decoupled from spin dynamics and the breathing dynamics is harmonic.Our results provide theoretical evidence for deep understanding of the ground sate phase transition and the nonlinear collective dynamics of the system.
文摘We model the universe as a white hole, and in the process we perform detailed analysis of the enthalpy equation of the modified white hole, and we get a much detailed picture of when and how did;quantum gravity (cosmology) phase, inflationary phase, and the acceleration phase of the universe happened. We determine the field equations of the modified white hole and evolve the scale factor and compare the evolution to the thermodynamic properties of the universe. We also illustrate that the strong energy condition is violated, but both the null energy condition and the strong cosmic censorship are not violated. Lastly, we couple the enthalpy to the Bose-Einstein condensate at extremely low entropy at the quantum gravity (cosmology) regime. Thereafter, we determine the unstable condition of the Bose-Einstein quantum equation which we interpret as the moment when the big bang occurred.
基金Project supported by National Natural Science Foundation of China (Grant No.10864006)the Key Research Project of Xinjiang Higher Education,China (Grant No.XJED2010141),the Key Discipline of Theoretical Physics of Xinjiang,China,and the Prior Development Subject of Theoretical Physics of Xinjiang Normal University,China
文摘We investigate the Landau damping of the collective mode in a quasi-two-dimension repulsive Bose-Einstein condensate by using the self-consistent time-dependent Hatree-Fock-Bogoliubov approximation and a complete and orthogonal eigenfunction set for the elementary excitation of the system. We calculate the three-mode coupling matrix element between the collective mode and the thermal excited quasi-particles and the Landau damping rate of the collective mode. We discuss the dependence of the Landau damping on temperature, on atom number in the condensate, on transverse trapping frequency and on the length of the condensate. The energy width of the collective mode is taken into account in our calculation. With little approximation, our theoretic calculation results agree well with the experimental ones and are helpful for deducing the damping mechanics and the inter-particle interaction.
基金supported by the National Natural Science Foundation of China(Grant No.11274039)the National Basic Research Program of China(Grant No.2013CB922002)the Fundamental Research Funds for the Central Universities of China
文摘We study the formation of vortices in a dipolar Bose-Einstein condensate in a synthetic magnetic field by numerically solving the Gross-Pitaevskii equation. The formation process depends on the dipole strength, the rotating frequency, the potential geometry, and the orientation of the dipoles. We make an extensive comparison with vortices created by a rotating trap, especially focusing on the issues of the critical rotating frequency and the vortex number as a function of the rotating frequency. We observe that a higher rotating frequency is needed to generate a large number of vortices and the anisotropic interaction manifests itself as a perceptible difference in the vortex formation. Furthermore, a large dipole strength or aspect ratio also can increase the number of vortices effectively. In particular, we discuss the validity of the Feynman rule.
基金Project supported by the National Nature Science Foundation of China (Grant Nos 90403008 and 10434060), and State Key Development Program for Basic Research of China (Grant No 2005CB724508).
文摘This paper proposes a method for calculating the Landau damping of a low-energy collective mode in a harmonically trapped Bose-Einstein condensate. Based on the divergence-free analytical solutions for ground-state wavefunction of the condensate and eigenvalues and eigenfunctions for thermally excited quasiparticles, obtained beyond Thomas-Fermi approximation, this paper calculates the coupling matrix elements describing the interaction between the collective mode and the quasiparticles. With these analytical results this paper evaluates the Landau damping rate of a monopole mode in a spherical trap and discusses its dependence on temperature, particle number and trapping frequency of the system.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11764039,11847304,11865014,11475027,11274255 and 11305132the Natural Science Foundation of Gansu Province under Grant No 17JR5RA076the Scientific Research Project of Gansu Higher Education under Grant No 2016A-005
文摘The modulational instability of two-component Bose-Einstein condensates(BECs)under an external parabolic potential is discussed.Based on the trapped two-component Gross-Pitaevskill equations,a time-dependent dispersion relation is obtained analytically by means of the modified lens-type transformation and linear stability analysis.It is shown that a modulational unstable time scale exists for trapped two-component BECs.The modulational properties-which are determined by the wave number,external trapping parameter,intraand inter-species atomic interactions-are modified significantly.The analytical results are confirmed by direct numerical simulation.Our results provide a criterion for judging the occurrence of instability of the trapped two-component BECs in experiment.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10475066 and 10774120), and by the Natural Science Foundation of Gansu Province, China (Grant No 3ZS051-A25-013) and by Creation of Science and Technology of Northwest Normal University, China (Grant No NWNU-KJCXGC-03-17).
文摘The stability of Bose Einstein condensates (BECs) loaded into a two-dimensional shallow harmonic potential well is studied. By using the variational method, the ground state properties for interacting BECs in the shallow trap are discussed. It is shown that the possible stable bound state can exist. The depth of the shallow well plays an important role in stabilizing the BECs, The stability of BECs in the shallow trap with the periodic modulating of atom interaction by using the Feshbach resonance is also discussed. The results show that the collapse and diffusion of BECs in a shallow trap can be controlled by the temporal modulation of the scattering length.
基金Project supported by the Key Research Foundation of Education Bureau of Hunan Province, China (Grant No 08A015)the Natural Science Foundation of Hunan Province, China (Grant No 06JJ2014)the National Natural Science Foundation of China (Grant No 10575034)
文摘The stable nonlinear transport of the Bose-Einstein condensates through a double barrier potential in a waveguide is studied. By using the direct perturbation method we have obtained a perturbed solution of Cross-Pitaevskii equation. Theoretical analysis reveals that this perturbed solution is a stable periodic solution, which shows that the transport of Bose-Einstein condensed atoms in this system is a stable nonlinear transport. The corresponding numerical results are in good agreement with the theoretical analytical results.
基金Project supported by the National Natural Science Foundation of China (Grant No 10575034), and the Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics of China (Grant No T152504).
文摘For a Bose-Einstein condensate (BEC) confined in a double lattice consisting of two weak laser standing waves we find the Melnikov chaotic solution and chaotic region of parameter space by using the direct perturbation method. In the chaotic region, spatial evolutions of the chaotic solution and the corresponding distribution of particle number density are bounded but unpredictable between their superior and inferior limits. It is illustrated that when the relation k1≈ k2 between the two laser wave vectors is kept, the adjustment from k2 〈 k1 to k2 ≥ k1 can transform the chaotic region into regular one or the other way round. This suggests a feasible scheme for generating and controlling chaos, which could lead to an experimental observation in the near future.
基金National Natural Science Foundation of China under Grant No. 10125521the 973 National Major State Basic Research and Development of China under Grant No. 62000077400+1 种基金the CAS Knowledge Innovation Project under Grant No. KJCX2-SW-N02the Fund of Education Ministry of China under Grant No. 20010284036
文摘The spatial chaos of Bose-Einstein condensates in a cigar-shaped trap is studied.For a system with asteady current,we construct the general solution of the 1st-order equation.From the boundedness condition of thegeneral solution, we obtain the Melnikov function predicting the onset of chaos.The unpredictability of the system's dis-tribution of atom density is also theoretically analyzed.For a ^(23)Na system meeting the perturbation oondition,numericalsimulations show the existence of chaos,which is in accordance with our analytical results.Numerical simulations of a^(87)Rb system dissatisfying the perturbation condition also demonstrate that there exists chaos in the system.The casewithout a current is also investigated.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10774120 and 10975114)the Natural Science Foundation of Gansu Province of China (Grant No. 1010RJZA012)the Science Foundation for Creation of Scienceand Technology of Northwest Normal University of China (Grant Nos. NWNU-KJCXGC-03-17 and NWNU-KJCXGC-03-48)
文摘The nonlinear Landau Zener tunneling and nonlinear Rabi oscillations of Bose-Einstein condensate (BEC) with higher-order atomic interaction between the Bloch bands in an accelerating optical lattice are discussed. Within the two-level model, the tunneling probability of BEC with higher-order atomic interaction between Bloch bands is obtained. We finds that the tunneling rate is closely related to the higher-order atomic interaction. Furthermore, the nonlinear Rabi oscillations of BEC with higher-order atomic interaction between the bands are discussed by imposing a periodic modulation on the level bias. Analytical expressions of the critical higher-order atomic interaction for suppressing/enhancing the Rabi oscillations are obtained. It is shown that the critical value strongly depends on the modulation parameters (i.e., the modulation amplitude and frequency) and the strength of periodic potential.
基金supported by the Natural Science Foundation of Shaanxi University of Science and Technology,China (Grant Nos SUST-ZX08-27 and SUST-ZX07-32)
文摘This paper investigates the collective excitation and stability of low-dimensional Bose-Einstein condensates with two- and three-body interactions by the variational analysis of the time-dependent Gross-Pitaevskii-Ginsburg equation. The spectrum of the low-energy excitation and the effective potential for the width of the condensate axe obtained. The results show that: (i) the repulsive two-body interaction among atoms makes the frequency red-shifted for the internal excitation and the repulsive or attractive three-body interaction always makes it blue-shifted; (ii) the region for the existence of the stable bound states is obtained by identifying the critical value of the two- and three-body interactions.
文摘The influence of decoherence on interference between two trapped Bose-Einstein condensates with arbitraryinitial states is studied. Analytic expressions of the intensity and visibility of the interference pattern are found. It isshown that the decoherence weakens the interference intensity and decreases the visibility of the interference pattern.