Based on the data of 1950 – 1999 monthly global SST from Hadley Center, NCAR/NCEP reanalysis data and rainfall over 160 weather stations in China, investigation is conducted into the difference of summer rainfall in ...Based on the data of 1950 – 1999 monthly global SST from Hadley Center, NCAR/NCEP reanalysis data and rainfall over 160 weather stations in China, investigation is conducted into the difference of summer rainfall in China (hereafter referred to as the "CS rainfall") between the years with the Indian Ocean Dipole (IOD) occurring independently and those with IOD occurring along with ENSO so as to study the effects of El Ni?o - Southern Oscillation (ENSO) on the relationship between IOD and the CS rainfall. It is shown that CS rainfall will be more than normal in South China (centered in Hunan province) in the years of positive IOD occurring independently; the CS rainfall will be less (more) than normal in North China (Southeast China) in the years of positive IOD occurring together with ENSO. The effect of ENSO is offsetting (enhancing) the relationship between IOD and summer rainfall in Southwest China, the region joining the Yangtze River basin with the Huaihe River basin (hereafter referred to as the "Yangtze-Huaihe basin") and North China (Southeast China). The circulation field is also examined for preliminary causes of such an influence.展开更多
It has been well acknowledged that molecular water structures at the interface play an important role in the surface properties, such as wetting behavior or surface frictions. Using molecular dynamics simulation, we s...It has been well acknowledged that molecular water structures at the interface play an important role in the surface properties, such as wetting behavior or surface frictions. Using molecular dynamics simulation, we show that the water self-diffusion on the top of the first ordered water layer can be enhanced near a super-hydrophilic solid surface. This is attributed to the fewer number of hydrogen bonds between the first ordered water layer and water molecules above this layer, where the ordered water structures induce much slower relaxation behavior of water dipole and longer lifetime of hydrogen bonds formed within the first layer.展开更多
基金National Science Foundation of China (40475028)a project from Key Laboratory of Meteorological Disaster of Jiangsu Province (KLME060210)
文摘Based on the data of 1950 – 1999 monthly global SST from Hadley Center, NCAR/NCEP reanalysis data and rainfall over 160 weather stations in China, investigation is conducted into the difference of summer rainfall in China (hereafter referred to as the "CS rainfall") between the years with the Indian Ocean Dipole (IOD) occurring independently and those with IOD occurring along with ENSO so as to study the effects of El Ni?o - Southern Oscillation (ENSO) on the relationship between IOD and the CS rainfall. It is shown that CS rainfall will be more than normal in South China (centered in Hunan province) in the years of positive IOD occurring independently; the CS rainfall will be less (more) than normal in North China (Southeast China) in the years of positive IOD occurring together with ENSO. The effect of ENSO is offsetting (enhancing) the relationship between IOD and summer rainfall in Southwest China, the region joining the Yangtze River basin with the Huaihe River basin (hereafter referred to as the "Yangtze-Huaihe basin") and North China (Southeast China). The circulation field is also examined for preliminary causes of such an influence.
基金supported by the National Natural Science Foundation of China(Grant Nos.11290164,11674345,and U1532260)the Key Research Program of Chinese Academy of Sciences(Grant Nos.KJZD-EW-M03 and QYZDJ-SSW-SLH019)+3 种基金the Youth Innovation Promotion Association,Chinese Academy of Sciences,the Shanghai Supercomputer Center of Chinathe Computer Network Information Center of Chinese Academy of Sciencesthe Special Program for Applied Research on Super Computation of the NSFC–Guangdong Joint Fund(the second phase)China
文摘It has been well acknowledged that molecular water structures at the interface play an important role in the surface properties, such as wetting behavior or surface frictions. Using molecular dynamics simulation, we show that the water self-diffusion on the top of the first ordered water layer can be enhanced near a super-hydrophilic solid surface. This is attributed to the fewer number of hydrogen bonds between the first ordered water layer and water molecules above this layer, where the ordered water structures induce much slower relaxation behavior of water dipole and longer lifetime of hydrogen bonds formed within the first layer.