Subwavelength arrays of dipole-bowtie antennas are designed and characterized using terahertz time-domain spectroscopy(THz-TDS) and finite element method(FEM) simulations. Two different substrates, silicon and myl...Subwavelength arrays of dipole-bowtie antennas are designed and characterized using terahertz time-domain spectroscopy(THz-TDS) and finite element method(FEM) simulations. Two different substrates, silicon and mylar with an order of magnitude difference between their thickness values are used to study the resonance properties of the antennas.The 640-μm thick silicon substrate supports a sharper fundamental mode resonance. We discover that higher-order Fabry–Perot resonances can be excited only in 24-μm thin mylar substrates and show much higher sensitivity to dielectric changes in the environment and the geometrical parameters of the antennas than the fundamental dipole resonance.展开更多
基金Project partly supported by the National Natural Science Foundation of China(Grant Nos.11104360,11204191,and 11374378)the National Special Fund for the Development of Major Research Equipment and Instruments,China(Grant No.2012YQ14000508)the Technology Foundation for Selected Overseas Chinese Scholar
文摘Subwavelength arrays of dipole-bowtie antennas are designed and characterized using terahertz time-domain spectroscopy(THz-TDS) and finite element method(FEM) simulations. Two different substrates, silicon and mylar with an order of magnitude difference between their thickness values are used to study the resonance properties of the antennas.The 640-μm thick silicon substrate supports a sharper fundamental mode resonance. We discover that higher-order Fabry–Perot resonances can be excited only in 24-μm thin mylar substrates and show much higher sensitivity to dielectric changes in the environment and the geometrical parameters of the antennas than the fundamental dipole resonance.