The deformation and fracture evolution mechanisms of the strata overlying mines mined using sublevel caving were studied via numerical simulations.Moreover,an expression for the normal force acting on the side face of...The deformation and fracture evolution mechanisms of the strata overlying mines mined using sublevel caving were studied via numerical simulations.Moreover,an expression for the normal force acting on the side face of a steeply dipping superimposed cantilever beam in the surrounding rock was deduced based on limit equilibrium theory.The results show the following:(1)surface displacement above metal mines with steeply dipping discontinuities shows significant step characteristics,and(2)the behavior of the strata as they fail exhibits superimposition characteristics.Generally,failure first occurs in certain superimposed strata slightly far from the goaf.Subsequently,with the constant downward excavation of the orebody,the superimposed strata become damaged both upwards away from and downwards toward the goaf.This process continues until the deep part of the steeply dipping superimposed strata forms a large-scale deep fracture plane that connects with the goaf.The deep fracture plane generally makes an angle of 12°-20°with the normal to the steeply dipping discontinuities.The effect of the constant outward transfer of strata movement due to the constant outward failure of the superimposed strata in the metal mines with steeply dipping discontinuities causes the scope of the strata movement in these mines to be larger than expected.The strata in the metal mines with steeply dipping discontinuities mainly show flexural toppling failure.However,the steeply dipping structural strata near the goaf mainly exhibit shear slipping failure,in which case the mechanical model used to describe them can be simplified by treating them as steeply dipping superimposed cantilever beams.By taking the steeply dipping superimposed cantilever beam that first experiences failure as the key stratum,the failure scope of the strata(and criteria for the stability of metal mines with steeply dipping discontinuities mined using sublevel caving)can be obtained via iterative computations from the key stratum,moving downward toward and upwards away from the goaf.展开更多
The dipping process was recorded firstly by high-speed camera system; acceleration time, speed, and dipping time were set by the control system of dipping bed, respectively. By image processing of dipping process base...The dipping process was recorded firstly by high-speed camera system; acceleration time, speed, and dipping time were set by the control system of dipping bed, respectively. By image processing of dipping process based on Otsu's method, it was found that low-viscosity flux glue eliminates the micelle effectively, very low speed also leads to small micelle hidden between the bumps, and this small micelle and hidden phenomenon disappeared when the speed is ≥0.2 cm s-1. Dipping flux quantity of the bump decreases by about 100 square pixels when flux viscosity is reduced from4,500 to 3,500 mpa s. For the 3,500 mpa s viscosity glue, dipping flux quantity increases with the increase of the speed and decreases with the increase of the speed after the speed is up to 0.8 cm s-1. The stable time of dipping glue can be obtained by real-time curve of dipping flux quantity and is only 80–90 ms when dipping speed is from 1.6 to 4.0 cm s-1. Dipping flux quantity has an increasing trend for acceleration time and has a decreasing trend for acceleration. Dipping flux quantity increases with the increase of dipping time, and is becoming saturated when the time is ≥55 ms.展开更多
Structure stability analysis of rock masses is essential for forecasting catastrophic structure failure in coal seam mining. Steeply dipping thick coal seams (SDTCS) are common in the Urumqi coalfield, and some dyna...Structure stability analysis of rock masses is essential for forecasting catastrophic structure failure in coal seam mining. Steeply dipping thick coal seams (SDTCS) are common in the Urumqi coalfield, and some dynamical hazards such as roof collapse and mining-induced seismicity occur frequently in the coal mines. The cause of these events is mainly structure instability in giant rock pillars sand- wiched between SDTCS. Developing methods to predict these events is important for safe mining in such a complex environment. This study focuses on understanding the structural mechanics model of a giant rock pillar and presents a viewpoint of the stability of a trend sphenoid fractured beam (TSFB). Some stability index parameters such as failure surface dips were measured, and most dips were observed to be between 46° and 51°. We used a digital panoramic borehole monitoring system to measure the TSFB's height (△H), which varied from 56.37 to 60.50 m. Next, FLAC^3D was used to model the distribution and evolution of vertical displacement in the giant rock pillars; the results confirmed the existence of a TSFB structure. Finally, we investigated the acoustic emission (AE) energy accumulation rate and observed that the rate commonly ranged from 20 to 40 kJ/min. The AE energy accumulation rate could be used to anticipate impeding seismic events related to structure failure. The results presented provide a useful approach for forecasting catastrophic events related to structure instability and for developing hazard prevention technology for mining in SDTCS.展开更多
For studying the strata behavior due to multi-slicing top coal caving longwall mining along-the-strike direction in steeply dipping extra thick coal seams,the shield support pressures of the upper and lower slices of ...For studying the strata behavior due to multi-slicing top coal caving longwall mining along-the-strike direction in steeply dipping extra thick coal seams,the shield support pressures of the upper and lower slices of panel 37220 in Dongxia Coal Mine were monitored using the KJ513 dynamic monitoring system.The set up rooms adopted the "horizontal line-arc segment-inclined line" form and used different types of shield supports.The results show that the strata pressure of upper slice panel 37220-1 changed slightly along the strike direction,while along the dip direction it exhibited strong to weak pressure from bottom to top.The first weighting interval of lower slice panel 37220-2 was about 60.8 m,and the average periodic weighting interval were about 22.6 m.The strata behavior of panel 37220-2 exhibited a spatiotemporal characteristic in that periodic weighting occurred first in the middle-upper part,followed by the middle and upper parts,arc segment,and finally the lower part.During the periodic weighting,the weighting interval and intensity also exhibited strong space characteristics.The average dynamic load coefficient was 1.48 and the maximum lateral load of the side shield was 20-25 MPa.展开更多
The flow of blasted ore during mining of moderately dipping medium-thick orebodies is a challenge.Selecting a suitable mining system for such ore bodies is difficult.This paper proposes a diamond layout sublevel open ...The flow of blasted ore during mining of moderately dipping medium-thick orebodies is a challenge.Selecting a suitable mining system for such ore bodies is difficult.This paper proposes a diamond layout sublevel open stoping system using fan blastholes with backfilling to mine such orebodies.To evaluate the performance of system the relationships between ore recovery and stope footwall dip angle,footwall surface roughness,drawpoint spacing and production blast ring burden were investigated.An ore recovery data set from 81 laboratory physical model experiments was established from combinations of the listed factors.Various modules in a back propagation neural network structure were compared,and an optimal network structure identified.An ore recovery backpropagation neural network(BPNN)forecast model was developed.Using the model and sensitivity analysis of the factors affecting the proposed open stope mining system,the significance of each factor on ore recovery was studied.The study results were applied to a case study at the Shandong Gold Group Jiaojia Gold Mine.The results showed that the application of a BPNN and sensitivity analysis models for ore recovery prediction in the proposed mining system and field experimental results confirm that the suggested mining method is feasible.展开更多
Steeply dipping seam group, which has complex occurrence conditions, belongs to the steeply dipping seam. The research on the strata movement around the coal face not only improves safe production technology in practi...Steeply dipping seam group, which has complex occurrence conditions, belongs to the steeply dipping seam. The research on the strata movement around the coal face not only improves safe production technology in practice, but also develops the mining theory. By using physical simulation experiments, numerical simulation and site test, the deformation, failure and movement of surrounding rock in Iongwall working face were analyzed. According to the analysis, characteristics of the seam group were formed which is different from the single seam. Asymmetry mechanics, sequential changes and imbalance of strata movement along the tendency working face were summarized. Furthermore the features of upper and lower seams were different. The mining of the lower seam induced more complex strata movement along the strike. Multi-section mining disturbed surrounding rocks in larger areas than the single section mining did, which had an impact on and dynamic loading function to the support when mining the lower seam, and produced a great influence on the stability of support-rock system.展开更多
The breaking features and stress distribution of overlying strata in a steeply dipping coal seam(SDCS)differ significantly from those in a near-horizontal one.In this study,the laws governing the evolution of vertical...The breaking features and stress distribution of overlying strata in a steeply dipping coal seam(SDCS)differ significantly from those in a near-horizontal one.In this study,the laws governing the evolution of vertical stress release and shear stress concentration in the overlying strata of coal seams with different dip angles are derived via numerical simulation,rock mechanics tests,acoustic emissions,and field measurements.Thus,the stress-driven dynamic evolution of the overlying strata structure,in which a shear stress arch forms,is determined.Upon breaking the lower pari of the overlying strata,the shear stress transfers rapidly to the upper part of the working face.The damaged zone of the overlying strata migrates upward along the dip direction of the working face.The gangue in the lower part of the working face is compacted,leading to an increase in vertical stress.As the dip angle of the coal seam increases,the overlying strata fail suddenly under the action of shear stresses.Finally,the behavioral response of the overlying strata driven by shear stresses in the longwall working face of an SDCS is identified and analyzed in detail.The present research findings reveal the laws governing the behavior of mine pressure in the working face of an SDCS,which in turn can be used to establish the respective on-site guidance.展开更多
Firstly, an aluminum coating was produced metallurgically on mild steel by hot-dipping, then an aluminum oxide coating was formed self-growingly from the aluminum coating by micro-arc oxidation treatment. The structur...Firstly, an aluminum coating was produced metallurgically on mild steel by hot-dipping, then an aluminum oxide coating was formed self-growingly from the aluminum coating by micro-arc oxidation treatment. The structures of the composite coatings were investigated by means of SEM, TEM and XRD. The results show that the composite coating consists of three layers which are Fe-Al alloy, aluminum coating and aluminum oxide orderly outward from the steel substrate. There are amorphous phases, k-Al2O3 and θ-Al2O3 mainly in the aluminum oxide.展开更多
Large and uniform tetrapod-like ZnO whiskers (T-ZnO) were prepared from waste hot dipping zinc by vapor oxidation and examined by means of X-ray diffraction and ICP-AES analysis and scanning electron microscope. The...Large and uniform tetrapod-like ZnO whiskers (T-ZnO) were prepared from waste hot dipping zinc by vapor oxidation and examined by means of X-ray diffraction and ICP-AES analysis and scanning electron microscope. The products are pure hexagonal wurtzite crystals with tetrapod shape and edge size of center body 56 μm and needle length of 100130 μm. The size and shape of ZnO particles are fully controlled by the growth conditions and T-ZnO can be obtained only at 8501 000 ℃ and total gas flow rate ranging from 40 to 250 L·h-1 in which the size of the T-ZnO particles varies slightly with temperature. The process of the formation of T-ZnO is that T-ZnO may nucleate at the initial stage with a complete tetrapod shape and develop to the large size, but not the process of (preferential) growth of octahedral nuclei and subsequent growth of the needles. The experiment presents a new method to prepare T-ZnO economically by using the waste hot dipping zinc.展开更多
Steeply dipping structural imaging is a significant challenge because surface geophones cannot obtain seismic primary reflection wave information from steeply dipping structures.Prismatic waves with a significant amou...Steeply dipping structural imaging is a significant challenge because surface geophones cannot obtain seismic primary reflection wave information from steeply dipping structures.Prismatic waves with a significant amount of steeply dipping information can be used to improve the imaging eff ect on steeply dipping structures.Subsurface attenuation leads to amplitude loss and phase distortion of seismic waves,and ignoring this attenuation during imaging can cause blurring of migration amplitudes.In this study,we proposed a steeply dipping structural target-oriented viscoacoustic least-squares reverse time migration(LSRTM)method with prismatic and primary waves as an objective function based on the viscous wave equation,while deriving Q-compensated wavefield propagation and joint operators of prismatic and primary waves and the Q-compensated demigration operator.Numerical examples on synthetic and field data verified the advantages of the proposed viscoacoustic LSRTM method of joint primary and prismatic waves over conventional viscoacoustic LSRTM and non-compensated LSRTM when using attenuating observed data.展开更多
The discovery that somatic mammalian cells can be epigeneti- cally reprogrammed to induced pluripotent stem cells (iPSCs) through the exogenous expression of the Oct4, Sox2, Klf4 and c-Myc (OSKM) has demonstrated ...The discovery that somatic mammalian cells can be epigeneti- cally reprogrammed to induced pluripotent stem cells (iPSCs) through the exogenous expression of the Oct4, Sox2, Klf4 and c-Myc (OSKM) has demonstrated a new way for cell-replace- ment therapy in regenerative medicine (Li et al., 2013; Nishimura and Takahashi, 2013; Takahashi and Yamanaka, 2013). This novel technology has opened new therapeutic opportunities to gener- ate stem cells in any tissue for cell replacement therapy in a num- ber of disorders (Yamanaka, 2012; Li et al., 2013; Nishimura and Takahashi, 2013; Takahashi and Yamanaka, 2013). Just last week, two papers published in Nature, describing a surprisingly sim- ple method to turn mature cells into embryonic-like stem ceils by culturing cells in a low pH medium (Obokata et al., 2014a, 2014b). This method by Obokata and colleagues is truly the sim- plest, cheapest, and fastest method ever achieved for reprogram- min~ somatic cells into multiootent stem cells.展开更多
Controllable drawing roof coal mining method is applied either to rently inclined seam or to big dipping seam. This paper sums up four corresponding methods according to conditions of our country, and analyses the coa...Controllable drawing roof coal mining method is applied either to rently inclined seam or to big dipping seam. This paper sums up four corresponding methods according to conditions of our country, and analyses the coal-recovering effects and proves applicated conditions and measures for improving by "drawing coal theory of the ellipsoid". Its conclusion basically consists with practice. This work is of guiding meaning for designing drawing coal technology.展开更多
基金Financial support for this work was provided by the Youth Fund Program of the National Natural Science Foundation of China (No. 42002292)the General Program of the National Natural Science Foundation of China (No. 42377175)the General Program of the Hubei Provincial Natural Science Foundation, China (No. 2023AFB631)
文摘The deformation and fracture evolution mechanisms of the strata overlying mines mined using sublevel caving were studied via numerical simulations.Moreover,an expression for the normal force acting on the side face of a steeply dipping superimposed cantilever beam in the surrounding rock was deduced based on limit equilibrium theory.The results show the following:(1)surface displacement above metal mines with steeply dipping discontinuities shows significant step characteristics,and(2)the behavior of the strata as they fail exhibits superimposition characteristics.Generally,failure first occurs in certain superimposed strata slightly far from the goaf.Subsequently,with the constant downward excavation of the orebody,the superimposed strata become damaged both upwards away from and downwards toward the goaf.This process continues until the deep part of the steeply dipping superimposed strata forms a large-scale deep fracture plane that connects with the goaf.The deep fracture plane generally makes an angle of 12°-20°with the normal to the steeply dipping discontinuities.The effect of the constant outward transfer of strata movement due to the constant outward failure of the superimposed strata in the metal mines with steeply dipping discontinuities causes the scope of the strata movement in these mines to be larger than expected.The strata in the metal mines with steeply dipping discontinuities mainly show flexural toppling failure.However,the steeply dipping structural strata near the goaf mainly exhibit shear slipping failure,in which case the mechanical model used to describe them can be simplified by treating them as steeply dipping superimposed cantilever beams.By taking the steeply dipping superimposed cantilever beam that first experiences failure as the key stratum,the failure scope of the strata(and criteria for the stability of metal mines with steeply dipping discontinuities mined using sublevel caving)can be obtained via iterative computations from the key stratum,moving downward toward and upwards away from the goaf.
基金supported by National Natural Science Foundation of China (No. 51275536)the China High Technology R&D Program 973 (No. 2015CB057206)
文摘The dipping process was recorded firstly by high-speed camera system; acceleration time, speed, and dipping time were set by the control system of dipping bed, respectively. By image processing of dipping process based on Otsu's method, it was found that low-viscosity flux glue eliminates the micelle effectively, very low speed also leads to small micelle hidden between the bumps, and this small micelle and hidden phenomenon disappeared when the speed is ≥0.2 cm s-1. Dipping flux quantity of the bump decreases by about 100 square pixels when flux viscosity is reduced from4,500 to 3,500 mpa s. For the 3,500 mpa s viscosity glue, dipping flux quantity increases with the increase of the speed and decreases with the increase of the speed after the speed is up to 0.8 cm s-1. The stable time of dipping glue can be obtained by real-time curve of dipping flux quantity and is only 80–90 ms when dipping speed is from 1.6 to 4.0 cm s-1. Dipping flux quantity has an increasing trend for acceleration time and has a decreasing trend for acceleration. Dipping flux quantity increases with the increase of dipping time, and is becoming saturated when the time is ≥55 ms.
基金financially supported by the Key National Basic Research Program of China (Nos.2014CB260404 and 2015CB251602)the Key National Natural Science Foundation of China (No.U13612030)+1 种基金Shaanxi Innovation Team Program (No.2013KCT-16)the High Technology Development Program of Xin Jiang Municipality (No.201432102)
文摘Structure stability analysis of rock masses is essential for forecasting catastrophic structure failure in coal seam mining. Steeply dipping thick coal seams (SDTCS) are common in the Urumqi coalfield, and some dynamical hazards such as roof collapse and mining-induced seismicity occur frequently in the coal mines. The cause of these events is mainly structure instability in giant rock pillars sand- wiched between SDTCS. Developing methods to predict these events is important for safe mining in such a complex environment. This study focuses on understanding the structural mechanics model of a giant rock pillar and presents a viewpoint of the stability of a trend sphenoid fractured beam (TSFB). Some stability index parameters such as failure surface dips were measured, and most dips were observed to be between 46° and 51°. We used a digital panoramic borehole monitoring system to measure the TSFB's height (△H), which varied from 56.37 to 60.50 m. Next, FLAC^3D was used to model the distribution and evolution of vertical displacement in the giant rock pillars; the results confirmed the existence of a TSFB structure. Finally, we investigated the acoustic emission (AE) energy accumulation rate and observed that the rate commonly ranged from 20 to 40 kJ/min. The AE energy accumulation rate could be used to anticipate impeding seismic events related to structure failure. The results presented provide a useful approach for forecasting catastrophic events related to structure instability and for developing hazard prevention technology for mining in SDTCS.
基金funds supported by the Key Program of National Natural Science Foundation of China(No.51634007)
文摘For studying the strata behavior due to multi-slicing top coal caving longwall mining along-the-strike direction in steeply dipping extra thick coal seams,the shield support pressures of the upper and lower slices of panel 37220 in Dongxia Coal Mine were monitored using the KJ513 dynamic monitoring system.The set up rooms adopted the "horizontal line-arc segment-inclined line" form and used different types of shield supports.The results show that the strata pressure of upper slice panel 37220-1 changed slightly along the strike direction,while along the dip direction it exhibited strong to weak pressure from bottom to top.The first weighting interval of lower slice panel 37220-2 was about 60.8 m,and the average periodic weighting interval were about 22.6 m.The strata behavior of panel 37220-2 exhibited a spatiotemporal characteristic in that periodic weighting occurred first in the middle-upper part,followed by the middle and upper parts,arc segment,and finally the lower part.During the periodic weighting,the weighting interval and intensity also exhibited strong space characteristics.The average dynamic load coefficient was 1.48 and the maximum lateral load of the side shield was 20-25 MPa.
基金funded by the State Key Research Development Program of China(2018YFC0604400)the National Science Foundation of China(No.51874068)+2 种基金the Fundamental Research Funds for the Central Universities(N160107001,N180701016)the 111 Project(B17009)Nazarbayev University for the Faculty Development Competitive Research Grant(240919FD3920)。
文摘The flow of blasted ore during mining of moderately dipping medium-thick orebodies is a challenge.Selecting a suitable mining system for such ore bodies is difficult.This paper proposes a diamond layout sublevel open stoping system using fan blastholes with backfilling to mine such orebodies.To evaluate the performance of system the relationships between ore recovery and stope footwall dip angle,footwall surface roughness,drawpoint spacing and production blast ring burden were investigated.An ore recovery data set from 81 laboratory physical model experiments was established from combinations of the listed factors.Various modules in a back propagation neural network structure were compared,and an optimal network structure identified.An ore recovery backpropagation neural network(BPNN)forecast model was developed.Using the model and sensitivity analysis of the factors affecting the proposed open stope mining system,the significance of each factor on ore recovery was studied.The study results were applied to a case study at the Shandong Gold Group Jiaojia Gold Mine.The results showed that the application of a BPNN and sensitivity analysis models for ore recovery prediction in the proposed mining system and field experimental results confirm that the suggested mining method is feasible.
基金the New Century Excellent Talents in University of China(NCET-04-972)
文摘Steeply dipping seam group, which has complex occurrence conditions, belongs to the steeply dipping seam. The research on the strata movement around the coal face not only improves safe production technology in practice, but also develops the mining theory. By using physical simulation experiments, numerical simulation and site test, the deformation, failure and movement of surrounding rock in Iongwall working face were analyzed. According to the analysis, characteristics of the seam group were formed which is different from the single seam. Asymmetry mechanics, sequential changes and imbalance of strata movement along the tendency working face were summarized. Furthermore the features of upper and lower seams were different. The mining of the lower seam induced more complex strata movement along the strike. Multi-section mining disturbed surrounding rocks in larger areas than the single section mining did, which had an impact on and dynamic loading function to the support when mining the lower seam, and produced a great influence on the stability of support-rock system.
基金the National Natural Science Foundation of China(Grant No.51634007)the Graduate Innovation Fund Project of Anhui University of Science and Technology of China(Grant No.2019CX1003).
文摘The breaking features and stress distribution of overlying strata in a steeply dipping coal seam(SDCS)differ significantly from those in a near-horizontal one.In this study,the laws governing the evolution of vertical stress release and shear stress concentration in the overlying strata of coal seams with different dip angles are derived via numerical simulation,rock mechanics tests,acoustic emissions,and field measurements.Thus,the stress-driven dynamic evolution of the overlying strata structure,in which a shear stress arch forms,is determined.Upon breaking the lower pari of the overlying strata,the shear stress transfers rapidly to the upper part of the working face.The damaged zone of the overlying strata migrates upward along the dip direction of the working face.The gangue in the lower part of the working face is compacted,leading to an increase in vertical stress.As the dip angle of the coal seam increases,the overlying strata fail suddenly under the action of shear stresses.Finally,the behavioral response of the overlying strata driven by shear stresses in the longwall working face of an SDCS is identified and analyzed in detail.The present research findings reveal the laws governing the behavior of mine pressure in the working face of an SDCS,which in turn can be used to establish the respective on-site guidance.
文摘Firstly, an aluminum coating was produced metallurgically on mild steel by hot-dipping, then an aluminum oxide coating was formed self-growingly from the aluminum coating by micro-arc oxidation treatment. The structures of the composite coatings were investigated by means of SEM, TEM and XRD. The results show that the composite coating consists of three layers which are Fe-Al alloy, aluminum coating and aluminum oxide orderly outward from the steel substrate. There are amorphous phases, k-Al2O3 and θ-Al2O3 mainly in the aluminum oxide.
文摘Large and uniform tetrapod-like ZnO whiskers (T-ZnO) were prepared from waste hot dipping zinc by vapor oxidation and examined by means of X-ray diffraction and ICP-AES analysis and scanning electron microscope. The products are pure hexagonal wurtzite crystals with tetrapod shape and edge size of center body 56 μm and needle length of 100130 μm. The size and shape of ZnO particles are fully controlled by the growth conditions and T-ZnO can be obtained only at 8501 000 ℃ and total gas flow rate ranging from 40 to 250 L·h-1 in which the size of the T-ZnO particles varies slightly with temperature. The process of the formation of T-ZnO is that T-ZnO may nucleate at the initial stage with a complete tetrapod shape and develop to the large size, but not the process of (preferential) growth of octahedral nuclei and subsequent growth of the needles. The experiment presents a new method to prepare T-ZnO economically by using the waste hot dipping zinc.
基金the Seismic Wave Propagation and Imaging Laboratory of China University of Petroleum (East China)for technical supportthe National Natural Science Foundation of China (42174138,42074133)+1 种基金the Young Elite Scientist Sponsorship Program by the China Association for Science and Technology (YESS20200237)Fundamental Research Funds for the Central Universities (22CX07007A,22CX01001A-1).
文摘Steeply dipping structural imaging is a significant challenge because surface geophones cannot obtain seismic primary reflection wave information from steeply dipping structures.Prismatic waves with a significant amount of steeply dipping information can be used to improve the imaging eff ect on steeply dipping structures.Subsurface attenuation leads to amplitude loss and phase distortion of seismic waves,and ignoring this attenuation during imaging can cause blurring of migration amplitudes.In this study,we proposed a steeply dipping structural target-oriented viscoacoustic least-squares reverse time migration(LSRTM)method with prismatic and primary waves as an objective function based on the viscous wave equation,while deriving Q-compensated wavefield propagation and joint operators of prismatic and primary waves and the Q-compensated demigration operator.Numerical examples on synthetic and field data verified the advantages of the proposed viscoacoustic LSRTM method of joint primary and prismatic waves over conventional viscoacoustic LSRTM and non-compensated LSRTM when using attenuating observed data.
文摘The discovery that somatic mammalian cells can be epigeneti- cally reprogrammed to induced pluripotent stem cells (iPSCs) through the exogenous expression of the Oct4, Sox2, Klf4 and c-Myc (OSKM) has demonstrated a new way for cell-replace- ment therapy in regenerative medicine (Li et al., 2013; Nishimura and Takahashi, 2013; Takahashi and Yamanaka, 2013). This novel technology has opened new therapeutic opportunities to gener- ate stem cells in any tissue for cell replacement therapy in a num- ber of disorders (Yamanaka, 2012; Li et al., 2013; Nishimura and Takahashi, 2013; Takahashi and Yamanaka, 2013). Just last week, two papers published in Nature, describing a surprisingly sim- ple method to turn mature cells into embryonic-like stem ceils by culturing cells in a low pH medium (Obokata et al., 2014a, 2014b). This method by Obokata and colleagues is truly the sim- plest, cheapest, and fastest method ever achieved for reprogram- min~ somatic cells into multiootent stem cells.
文摘Controllable drawing roof coal mining method is applied either to rently inclined seam or to big dipping seam. This paper sums up four corresponding methods according to conditions of our country, and analyses the coal-recovering effects and proves applicated conditions and measures for improving by "drawing coal theory of the ellipsoid". Its conclusion basically consists with practice. This work is of guiding meaning for designing drawing coal technology.