This paper investigates superconvergence properties of the direct discontinuous Galerkin(DDG)method with interface corrections and the symmetric DDG method for diffusion equations.We apply the Fourier analysis techniq...This paper investigates superconvergence properties of the direct discontinuous Galerkin(DDG)method with interface corrections and the symmetric DDG method for diffusion equations.We apply the Fourier analysis technique to symbolically compute eigenvalues and eigenvectors of the amplification matrices for both DDG methods with different coefficient settings in the numerical fluxes.Based on the eigen-structure analysis,we carry out error estimates of the DDG solutions,which can be decomposed into three parts:(i)dissipation errors of the physically relevant eigenvalue,which grow linearly with the time and are of order 2k for P^(k)(k=2,3)approximations;(ii)projection error from a special projection of the exact solution,which is decreasing over the time and is related to the eigenvector corresponding to the physically relevant eigenvalue;(iii)dissipative errors of non-physically relevant eigenvalues,which decay exponentially with respect to the spatial mesh sizeΔx.We observe that the errors are sensitive to the choice of the numerical flux coefficient for even degree P^(2)approximations,but are not for odd degree P^(3)approximations.Numerical experiments are provided to verify the theoretical results.展开更多
In practice,simultaneous impact localization and time history reconstruction can hardly be achieved,due to the illposed and under-determined problems induced by the constrained and harsh measuring conditions.Although ...In practice,simultaneous impact localization and time history reconstruction can hardly be achieved,due to the illposed and under-determined problems induced by the constrained and harsh measuring conditions.Although l_(1) regularization can be used to obtain sparse solutions,it tends to underestimate solution amplitudes as a biased estimator.To address this issue,a novel impact force identification method with l_(p) regularization is proposed in this paper,using the alternating direction method of multipliers(ADMM).By decomposing the complex primal problem into sub-problems solvable in parallel via proximal operators,ADMM can address the challenge effectively.To mitigate the sensitivity to regularization parameters,an adaptive regularization parameter is derived based on the K-sparsity strategy.Then,an ADMM-based sparse regularization method is developed,which is capable of handling l_(p) regularization with arbitrary p values using adaptively-updated parameters.The effectiveness and performance of the proposed method are validated on an aircraft skin-like composite structure.Additionally,an investigation into the optimal p value for achieving high-accuracy solutions via l_(p) regularization is conducted.It turns out that l_(0.6)regularization consistently yields sparser and more accurate solutions for impact force identification compared to the classic l_(1) regularization method.The impact force identification method proposed in this paper can simultaneously reconstruct impact time history with high accuracy and accurately localize the impact using an under-determined sensor configuration.展开更多
Machine learning has been widely used for solving partial differential equations(PDEs)in recent years,among which the random feature method(RFM)exhibits spectral accuracy and can compete with traditional solvers in te...Machine learning has been widely used for solving partial differential equations(PDEs)in recent years,among which the random feature method(RFM)exhibits spectral accuracy and can compete with traditional solvers in terms of both accuracy and efficiency.Potentially,the optimization problem in the RFM is more difficult to solve than those that arise in traditional methods.Unlike the broader machine-learning research,which frequently targets tasks within the low-precision regime,our study focuses on the high-precision regime crucial for solving PDEs.In this work,we study this problem from the following aspects:(i)we analyze the coeffcient matrix that arises in the RFM by studying the distribution of singular values;(ii)we investigate whether the continuous training causes the overfitting issue;(ii)we test direct and iterative methods as well as randomized methods for solving the optimization problem.Based on these results,we find that direct methods are superior to other methods if memory is not an issue,while iterative methods typically have low accuracy and can be improved by preconditioning to some extent.展开更多
For the linear least squares problem with coefficient matrix columns being highly correlated, we develop a greedy randomized Gauss-Seidel method with oblique direction. Then the corresponding convergence result is ded...For the linear least squares problem with coefficient matrix columns being highly correlated, we develop a greedy randomized Gauss-Seidel method with oblique direction. Then the corresponding convergence result is deduced. Numerical examples demonstrate that our proposed method is superior to the greedy randomized Gauss-Seidel method and the randomized Gauss-Seidel method with oblique direction.展开更多
To deal with the problem of low computational precision at the nodes near the source and satisfy the requirements for computational efficiency in inversion imaging and finite-element numerical simulations of the direc...To deal with the problem of low computational precision at the nodes near the source and satisfy the requirements for computational efficiency in inversion imaging and finite-element numerical simulations of the direct current method, we propose a new mesh refinement and recoarsement method for a two-dimensional point source. We introduce the mesh refinement and mesh recoarsement into the traditional structured mesh subdivision. By refining the horizontal grids, the singularity owing to the point source is minimized and the topography is simulated. By recoarsening the horizontal grids, the number of grid cells is reduced significantly and computational efficiency is improved. Model tests show that the proposed method solves the singularity problem and reduces the number of grid cells by 80% compared to the uniform grid refinement.展开更多
The principle of direct method used in optimal control problem is introduced. Details of applying this method to flight trajectory generation are presented including calculation of velocity and controls histories. And...The principle of direct method used in optimal control problem is introduced. Details of applying this method to flight trajectory generation are presented including calculation of velocity and controls histories. And capabilities of flight and propulsion systems are considered also. Combined with digital terrain map technique, the direct method is applied to the three dimensional trajectory optimization for low altitude penetration, and simplex algorithm is used to solve the parameters in optimization. For the small number of parameters, the trajectory can be optimized in real time on board.展开更多
A novel algorithm, i.e. the fast alternating direction method of multipliers (ADMM), is applied to solve the classical total-variation ( TV )-based model for image reconstruction. First, the TV-based model is refo...A novel algorithm, i.e. the fast alternating direction method of multipliers (ADMM), is applied to solve the classical total-variation ( TV )-based model for image reconstruction. First, the TV-based model is reformulated as a linear equality constrained problem where the objective function is separable. Then, by introducing the augmented Lagrangian function, the two variables are alternatively minimized by the Gauss-Seidel idea. Finally, the dual variable is updated. Because the approach makes full use of the special structure of the problem and decomposes the original problem into several low-dimensional sub-problems, the per iteration computational complexity of the approach is dominated by two fast Fourier transforms. Elementary experimental results indicate that the proposed approach is more stable and efficient compared with some state-of-the-art algorithms.展开更多
Two methods based on a slight modification of the regular traffic assignmentalgorithms are proposed to directly compute turn flows instead of estimating them from link flows orobtaining them by expanding the networks....Two methods based on a slight modification of the regular traffic assignmentalgorithms are proposed to directly compute turn flows instead of estimating them from link flows orobtaining them by expanding the networks. The first one is designed on the path-turn incidencerelationship, and it is similar to the computational procedure of link flows. It applies to thetraffic assignment algorithms that can provide detailed path structures. The second utilizes thelink-turn incidence relationship and the conservation of flow on links, a law deriving from thisrelationship. It is actually an improved version of Dial's logit assignment algorithm. The proposedapproaches can avoid the shortcomings both of the estimation methods, e. g. Furness's model andFrator's model, and of the network-expanding method in precision, stability and computation scale.Finally, they are validated by numerical examples.展开更多
A new branch of hypergraph theory-directed hyperaph theory and a kind of new methods-dicomposition contraction(DCP, PDCP and GDC) methods are presented for solving hypernetwork problems.lts computing time is lower tha...A new branch of hypergraph theory-directed hyperaph theory and a kind of new methods-dicomposition contraction(DCP, PDCP and GDC) methods are presented for solving hypernetwork problems.lts computing time is lower than that of ECP method in several order of magnitude.展开更多
Linear scan computed tomography (LCT) is of great benefit to online industrial scanning and security inspection due to its characteristics of straight-line source trajectory and high scanning speed. However, in prac...Linear scan computed tomography (LCT) is of great benefit to online industrial scanning and security inspection due to its characteristics of straight-line source trajectory and high scanning speed. However, in practical applications of LCT, there are challenges to image reconstruction due to limited-angle and insufficient data. In this paper, a new reconstruction algorithm based on total-variation (TV) minimization is developed to reconstruct images from limited-angle and insufficient data in LCT. The main idea of our approach is to reformulate a TV problem as a linear equality constrained problem where the objective function is separable, and then minimize its augmented Lagrangian function by using alternating direction method (ADM) to solve subproblems. The proposed method is robust and efficient in the task of reconstruction by showing the convergence of ADM. The numerical simulations and real data reconstructions show that the proposed reconstruction method brings reasonable performance and outperforms some previous ones when applied to an LCT imaging problem.展开更多
Al-Al3Ti composites were prepared by a direct reaction method, in which Al3Ti was formed by the reaction of Ti and Al in aluminum alloy melt. The morphology of Al3Ti changes apparently from the fine particle, needle-l...Al-Al3Ti composites were prepared by a direct reaction method, in which Al3Ti was formed by the reaction of Ti and Al in aluminum alloy melt. The morphology of Al3Ti changes apparently from the fine particle, needle-like to large block with the increase of Al3Ti content. The addition of magnesium can markedly change the morphology of Al3Ti and reduce their size. Short rod-like Al3Ti was formed and homogeneous distribution was obtained with the addition of 3 wt.% Mg. The effect of Al3Ti and Mg on the microstructure of Al-Al3Ti composites and the mechanism were also discussed.展开更多
Electrical capacitance tomography(ECT)has been applied to two-phase flow measurement in recent years.Image reconstruction algorithms play an important role in the successful applications of ECT.To solve the ill-posed ...Electrical capacitance tomography(ECT)has been applied to two-phase flow measurement in recent years.Image reconstruction algorithms play an important role in the successful applications of ECT.To solve the ill-posed and nonlinear inverse problem of ECT image reconstruction,a new ECT image reconstruction method based on fast linearized alternating direction method of multipliers(FLADMM)is proposed in this paper.On the basis of theoretical analysis of compressed sensing(CS),the data acquisition of ECT is regarded as a linear measurement process of permittivity distribution signal of pipe section.A new measurement matrix is designed and L1 regularization method is used to convert ECT inverse problem to a convex relaxation problem which contains prior knowledge.A new fast alternating direction method of multipliers which contained linearized idea is employed to minimize the objective function.Simulation data and experimental results indicate that compared with other methods,the quality and speed of reconstructed images are markedly improved.Also,the dynamic experimental results indicate that the proposed algorithm can ful fill the real-time requirement of ECT systems in the application.展开更多
Using the (2+1)-dimensional Broer-Kaup equation as an simple example, a new direct method is developed to find symmetry groups and symmetry algebras and then exact solutions of nonlinear mathematical physical equations.
The task of dividing corrupted-data into their respective subspaces can be well illustrated,both theoretically and numerically,by recovering low-rank and sparse-column components of a given matrix.Generally,it can be ...The task of dividing corrupted-data into their respective subspaces can be well illustrated,both theoretically and numerically,by recovering low-rank and sparse-column components of a given matrix.Generally,it can be characterized as a matrix and a 2,1-norm involved convex minimization problem.However,solving the resulting problem is full of challenges due to the non-smoothness of the objective function.One of the earliest solvers is an 3-block alternating direction method of multipliers(ADMM)which updates each variable in a Gauss-Seidel manner.In this paper,we present three variants of ADMM for the 3-block separable minimization problem.More preciously,whenever one variable is derived,the resulting problems can be regarded as a convex minimization with 2 blocks,and can be solved immediately using the standard ADMM.If the inner iteration loops only once,the iterative scheme reduces to the ADMM with updates in a Gauss-Seidel manner.If the solution from the inner iteration is assumed to be exact,the convergence can be deduced easily in the literature.The performance comparisons with a couple of recently designed solvers illustrate that the proposed methods are effective and competitive.展开更多
A novel control method for a general class of nonlinear systems using fuzzy logic systems (FLSs) is presertted. Indirect and direct methods are combined to design the adaptive fuzzy output feedback controller and a ...A novel control method for a general class of nonlinear systems using fuzzy logic systems (FLSs) is presertted. Indirect and direct methods are combined to design the adaptive fuzzy output feedback controller and a high-gain observer is used to estimate the derivatives of the system output. The closed-loop system is proven to be semiglobally uniformly ultimately bounded. In addition, it is shown that if the approximation accuracy of the fuzzy logic system is high enough and the observer gain is chosen sufficiently large, an arbitrarily small tracking error can be achieved. Simulation results verify the effectiveness of the newly designed scheme and the theoretical discussion.展开更多
This paper determines the exact error order on optimization of adaptive direct methods of approximate solution of the class of Fredholm integral equations of the second kind with kernel belonging to the anisotropic So...This paper determines the exact error order on optimization of adaptive direct methods of approximate solution of the class of Fredholm integral equations of the second kind with kernel belonging to the anisotropic Sobolev classes, and also gives an optimal algorithm.展开更多
A direct method to find the first integral for two-dimensional autonomous system in polar coordinates is suggested. It is shown that if the equation of motion expressed by differential 1-forms for a given autonomous H...A direct method to find the first integral for two-dimensional autonomous system in polar coordinates is suggested. It is shown that if the equation of motion expressed by differential 1-forms for a given autonomous Hamiltonian system is multiplied by a set of multiplicative functions, then the general expression of the first integral can be obtained, An example is given to illustrate the application of the results.展开更多
In this study, we use the direct discontinuous Galerkin method to solve the generalized Burgers-Fisher equation. The method is based on the direct weak formulation of the Burgers-Fisher equation. The two adjacent cell...In this study, we use the direct discontinuous Galerkin method to solve the generalized Burgers-Fisher equation. The method is based on the direct weak formulation of the Burgers-Fisher equation. The two adjacent cells are jointed by a numerical flux that includes the convection numerical flux and the diffusion numerical flux. We solve the ordinary differential equations arising in the direct Galerkin method by using the strong stability preserving Runge^Kutta method. Numerical results are compared with the exact solution and the other results to show the accuracy and reliability of the method.展开更多
This paper studies the generalized Kawahara equation in terms of the approximate homotopy symmetry method and the approximate homotopy direct method. Using both methods it obtains the similarity reduction solutions an...This paper studies the generalized Kawahara equation in terms of the approximate homotopy symmetry method and the approximate homotopy direct method. Using both methods it obtains the similarity reduction solutions and similarity reduction equations of different orders, showing that the approximate homotopy direct method yields more general approximate similarity reductions than the approximate homotopy symmetry method. The homotopy series solutions to the generalized Kawahara equation are consequently derived.展开更多
This paper presents alternating direction finite volume element methods for three-dimensional parabolic partial differential equations and gives four computational schemes, one is analogous to Douglas finite differenc...This paper presents alternating direction finite volume element methods for three-dimensional parabolic partial differential equations and gives four computational schemes, one is analogous to Douglas finite difference scheme with second-order splitting error, the other two schemes have third-order splitting error, and the last one is an extended LOD scheme. The L2 norm and H1 semi-norm error estimates are obtained for the first scheme and second one, respectively. Finally, two numerical examples are provided to illustrate the efficiency and accuracy of the methods.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.11871428 and 12071214)the Natural Science Foundation for Colleges and Universities of Jiangsu Province of China(Grant No.20KJB110011)+1 种基金supported by the National Science Foundation(Grant No.DMS-1620335)and the Simons Foundation(Grant No.637716)supported by the National Natural Science Foundation of China(Grant Nos.11871428 and 12272347).
文摘This paper investigates superconvergence properties of the direct discontinuous Galerkin(DDG)method with interface corrections and the symmetric DDG method for diffusion equations.We apply the Fourier analysis technique to symbolically compute eigenvalues and eigenvectors of the amplification matrices for both DDG methods with different coefficient settings in the numerical fluxes.Based on the eigen-structure analysis,we carry out error estimates of the DDG solutions,which can be decomposed into three parts:(i)dissipation errors of the physically relevant eigenvalue,which grow linearly with the time and are of order 2k for P^(k)(k=2,3)approximations;(ii)projection error from a special projection of the exact solution,which is decreasing over the time and is related to the eigenvector corresponding to the physically relevant eigenvalue;(iii)dissipative errors of non-physically relevant eigenvalues,which decay exponentially with respect to the spatial mesh sizeΔx.We observe that the errors are sensitive to the choice of the numerical flux coefficient for even degree P^(2)approximations,but are not for odd degree P^(3)approximations.Numerical experiments are provided to verify the theoretical results.
基金Supported by National Natural Science Foundation of China (Grant Nos.52305127,52075414)China Postdoctoral Science Foundation (Grant No.2021M702595)。
文摘In practice,simultaneous impact localization and time history reconstruction can hardly be achieved,due to the illposed and under-determined problems induced by the constrained and harsh measuring conditions.Although l_(1) regularization can be used to obtain sparse solutions,it tends to underestimate solution amplitudes as a biased estimator.To address this issue,a novel impact force identification method with l_(p) regularization is proposed in this paper,using the alternating direction method of multipliers(ADMM).By decomposing the complex primal problem into sub-problems solvable in parallel via proximal operators,ADMM can address the challenge effectively.To mitigate the sensitivity to regularization parameters,an adaptive regularization parameter is derived based on the K-sparsity strategy.Then,an ADMM-based sparse regularization method is developed,which is capable of handling l_(p) regularization with arbitrary p values using adaptively-updated parameters.The effectiveness and performance of the proposed method are validated on an aircraft skin-like composite structure.Additionally,an investigation into the optimal p value for achieving high-accuracy solutions via l_(p) regularization is conducted.It turns out that l_(0.6)regularization consistently yields sparser and more accurate solutions for impact force identification compared to the classic l_(1) regularization method.The impact force identification method proposed in this paper can simultaneously reconstruct impact time history with high accuracy and accurately localize the impact using an under-determined sensor configuration.
基金supported by the NSFC Major Research Plan--Interpretable and Generalpurpose Next-generation Artificial Intelligence(No.92370205).
文摘Machine learning has been widely used for solving partial differential equations(PDEs)in recent years,among which the random feature method(RFM)exhibits spectral accuracy and can compete with traditional solvers in terms of both accuracy and efficiency.Potentially,the optimization problem in the RFM is more difficult to solve than those that arise in traditional methods.Unlike the broader machine-learning research,which frequently targets tasks within the low-precision regime,our study focuses on the high-precision regime crucial for solving PDEs.In this work,we study this problem from the following aspects:(i)we analyze the coeffcient matrix that arises in the RFM by studying the distribution of singular values;(ii)we investigate whether the continuous training causes the overfitting issue;(ii)we test direct and iterative methods as well as randomized methods for solving the optimization problem.Based on these results,we find that direct methods are superior to other methods if memory is not an issue,while iterative methods typically have low accuracy and can be improved by preconditioning to some extent.
文摘For the linear least squares problem with coefficient matrix columns being highly correlated, we develop a greedy randomized Gauss-Seidel method with oblique direction. Then the corresponding convergence result is deduced. Numerical examples demonstrate that our proposed method is superior to the greedy randomized Gauss-Seidel method and the randomized Gauss-Seidel method with oblique direction.
基金financially supported by the National Natural Science Foundation of China(No.41574127 and 41174104)the National Key Technology R&D Program for the 13th five-year plan(No.2016ZX05018006-006)
文摘To deal with the problem of low computational precision at the nodes near the source and satisfy the requirements for computational efficiency in inversion imaging and finite-element numerical simulations of the direct current method, we propose a new mesh refinement and recoarsement method for a two-dimensional point source. We introduce the mesh refinement and mesh recoarsement into the traditional structured mesh subdivision. By refining the horizontal grids, the singularity owing to the point source is minimized and the topography is simulated. By recoarsening the horizontal grids, the number of grid cells is reduced significantly and computational efficiency is improved. Model tests show that the proposed method solves the singularity problem and reduces the number of grid cells by 80% compared to the uniform grid refinement.
文摘The principle of direct method used in optimal control problem is introduced. Details of applying this method to flight trajectory generation are presented including calculation of velocity and controls histories. And capabilities of flight and propulsion systems are considered also. Combined with digital terrain map technique, the direct method is applied to the three dimensional trajectory optimization for low altitude penetration, and simplex algorithm is used to solve the parameters in optimization. For the small number of parameters, the trajectory can be optimized in real time on board.
基金The Scientific Research Foundation of Nanjing University of Posts and Telecommunications(No.NY210049)
文摘A novel algorithm, i.e. the fast alternating direction method of multipliers (ADMM), is applied to solve the classical total-variation ( TV )-based model for image reconstruction. First, the TV-based model is reformulated as a linear equality constrained problem where the objective function is separable. Then, by introducing the augmented Lagrangian function, the two variables are alternatively minimized by the Gauss-Seidel idea. Finally, the dual variable is updated. Because the approach makes full use of the special structure of the problem and decomposes the original problem into several low-dimensional sub-problems, the per iteration computational complexity of the approach is dominated by two fast Fourier transforms. Elementary experimental results indicate that the proposed approach is more stable and efficient compared with some state-of-the-art algorithms.
文摘Two methods based on a slight modification of the regular traffic assignmentalgorithms are proposed to directly compute turn flows instead of estimating them from link flows orobtaining them by expanding the networks. The first one is designed on the path-turn incidencerelationship, and it is similar to the computational procedure of link flows. It applies to thetraffic assignment algorithms that can provide detailed path structures. The second utilizes thelink-turn incidence relationship and the conservation of flow on links, a law deriving from thisrelationship. It is actually an improved version of Dial's logit assignment algorithm. The proposedapproaches can avoid the shortcomings both of the estimation methods, e. g. Furness's model andFrator's model, and of the network-expanding method in precision, stability and computation scale.Finally, they are validated by numerical examples.
文摘A new branch of hypergraph theory-directed hyperaph theory and a kind of new methods-dicomposition contraction(DCP, PDCP and GDC) methods are presented for solving hypernetwork problems.lts computing time is lower than that of ECP method in several order of magnitude.
基金the National High Technology Research and Development Program of China(Grant No.2012AA011603)
文摘Linear scan computed tomography (LCT) is of great benefit to online industrial scanning and security inspection due to its characteristics of straight-line source trajectory and high scanning speed. However, in practical applications of LCT, there are challenges to image reconstruction due to limited-angle and insufficient data. In this paper, a new reconstruction algorithm based on total-variation (TV) minimization is developed to reconstruct images from limited-angle and insufficient data in LCT. The main idea of our approach is to reformulate a TV problem as a linear equality constrained problem where the objective function is separable, and then minimize its augmented Lagrangian function by using alternating direction method (ADM) to solve subproblems. The proposed method is robust and efficient in the task of reconstruction by showing the convergence of ADM. The numerical simulations and real data reconstructions show that the proposed reconstruction method brings reasonable performance and outperforms some previous ones when applied to an LCT imaging problem.
文摘Al-Al3Ti composites were prepared by a direct reaction method, in which Al3Ti was formed by the reaction of Ti and Al in aluminum alloy melt. The morphology of Al3Ti changes apparently from the fine particle, needle-like to large block with the increase of Al3Ti content. The addition of magnesium can markedly change the morphology of Al3Ti and reduce their size. Short rod-like Al3Ti was formed and homogeneous distribution was obtained with the addition of 3 wt.% Mg. The effect of Al3Ti and Mg on the microstructure of Al-Al3Ti composites and the mechanism were also discussed.
基金Supported by the National Natural Science Foundation of China(61203021)the Key Science and Technology Program of Liaoning Province(2011216011)+1 种基金the Natural Science Foundation of Liaoning Province(2013020024)the Program for Liaoning Excellent Talents in Universities(LJQ2015061)
文摘Electrical capacitance tomography(ECT)has been applied to two-phase flow measurement in recent years.Image reconstruction algorithms play an important role in the successful applications of ECT.To solve the ill-posed and nonlinear inverse problem of ECT image reconstruction,a new ECT image reconstruction method based on fast linearized alternating direction method of multipliers(FLADMM)is proposed in this paper.On the basis of theoretical analysis of compressed sensing(CS),the data acquisition of ECT is regarded as a linear measurement process of permittivity distribution signal of pipe section.A new measurement matrix is designed and L1 regularization method is used to convert ECT inverse problem to a convex relaxation problem which contains prior knowledge.A new fast alternating direction method of multipliers which contained linearized idea is employed to minimize the objective function.Simulation data and experimental results indicate that compared with other methods,the quality and speed of reconstructed images are markedly improved.Also,the dynamic experimental results indicate that the proposed algorithm can ful fill the real-time requirement of ECT systems in the application.
文摘Using the (2+1)-dimensional Broer-Kaup equation as an simple example, a new direct method is developed to find symmetry groups and symmetry algebras and then exact solutions of nonlinear mathematical physical equations.
基金Supported by the National Natural Science Foundation of China(Grant No.11971149,11871381)Natural Science Foundation of Henan Province for Youth(Grant No.202300410146)。
文摘The task of dividing corrupted-data into their respective subspaces can be well illustrated,both theoretically and numerically,by recovering low-rank and sparse-column components of a given matrix.Generally,it can be characterized as a matrix and a 2,1-norm involved convex minimization problem.However,solving the resulting problem is full of challenges due to the non-smoothness of the objective function.One of the earliest solvers is an 3-block alternating direction method of multipliers(ADMM)which updates each variable in a Gauss-Seidel manner.In this paper,we present three variants of ADMM for the 3-block separable minimization problem.More preciously,whenever one variable is derived,the resulting problems can be regarded as a convex minimization with 2 blocks,and can be solved immediately using the standard ADMM.If the inner iteration loops only once,the iterative scheme reduces to the ADMM with updates in a Gauss-Seidel manner.If the solution from the inner iteration is assumed to be exact,the convergence can be deduced easily in the literature.The performance comparisons with a couple of recently designed solvers illustrate that the proposed methods are effective and competitive.
基金This project was supported by the National Natural Science Foundation of China (90405011).
文摘A novel control method for a general class of nonlinear systems using fuzzy logic systems (FLSs) is presertted. Indirect and direct methods are combined to design the adaptive fuzzy output feedback controller and a high-gain observer is used to estimate the derivatives of the system output. The closed-loop system is proven to be semiglobally uniformly ultimately bounded. In addition, it is shown that if the approximation accuracy of the fuzzy logic system is high enough and the observer gain is chosen sufficiently large, an arbitrarily small tracking error can be achieved. Simulation results verify the effectiveness of the newly designed scheme and the theoretical discussion.
基金Project supported by the Natural Science Foundation of China(10371009)Research Fund for the Doctoral Program Higher Education
文摘This paper determines the exact error order on optimization of adaptive direct methods of approximate solution of the class of Fredholm integral equations of the second kind with kernel belonging to the anisotropic Sobolev classes, and also gives an optimal algorithm.
文摘A direct method to find the first integral for two-dimensional autonomous system in polar coordinates is suggested. It is shown that if the equation of motion expressed by differential 1-forms for a given autonomous Hamiltonian system is multiplied by a set of multiplicative functions, then the general expression of the first integral can be obtained, An example is given to illustrate the application of the results.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61105130 and 61175124)
文摘In this study, we use the direct discontinuous Galerkin method to solve the generalized Burgers-Fisher equation. The method is based on the direct weak formulation of the Burgers-Fisher equation. The two adjacent cells are jointed by a numerical flux that includes the convection numerical flux and the diffusion numerical flux. We solve the ordinary differential equations arising in the direct Galerkin method by using the strong stability preserving Runge^Kutta method. Numerical results are compared with the exact solution and the other results to show the accuracy and reliability of the method.
基金Project supported by the National Natural Science Foundations of China(Grant Nos.10735030,10475055,10675065 and 90503006)the National Basic Research Program of China(Grant No.2007CB814800)
文摘This paper studies the generalized Kawahara equation in terms of the approximate homotopy symmetry method and the approximate homotopy direct method. Using both methods it obtains the similarity reduction solutions and similarity reduction equations of different orders, showing that the approximate homotopy direct method yields more general approximate similarity reductions than the approximate homotopy symmetry method. The homotopy series solutions to the generalized Kawahara equation are consequently derived.
文摘This paper presents alternating direction finite volume element methods for three-dimensional parabolic partial differential equations and gives four computational schemes, one is analogous to Douglas finite difference scheme with second-order splitting error, the other two schemes have third-order splitting error, and the last one is an extended LOD scheme. The L2 norm and H1 semi-norm error estimates are obtained for the first scheme and second one, respectively. Finally, two numerical examples are provided to illustrate the efficiency and accuracy of the methods.