Potassium carbonate-based sorbents are prospective materials for direct air capture(DAC).In the present study,we examined and revealed the influence of the temperature swing adsorption(TSA)cycle conditions on the CO_(...Potassium carbonate-based sorbents are prospective materials for direct air capture(DAC).In the present study,we examined and revealed the influence of the temperature swing adsorption(TSA)cycle conditions on the CO_(2) sorption properties of a novel aerogel-based K_(2)CO_(3)/ZrO_(2) sorbent in a DAC process.It was shown that the humidity and temperature drastically affect the sorption dynamic and sorption capacity of the sorbent.When a temperature at the sorption stage was 29℃ and a water vapor pressure P_(H2O) in the feed air was 5.2 mbar(1 bar=105 Pa),the composite material demonstrated a stable CO_(2) sorption capacity of 3.4%(mass).An increase in sorption temperature leads to a continuous decrease in the CO_(2) absorption capacity reaching a value of 0.7%(mass)at T=80℃.The material showed the retention of a stable CO_(2) sorption capacity for many cycles at each temperature in the range.Increasing PH2O in the inlet air from 5.2 to 6.8 mbar leads to instability of CO_(2) sorption capacity which decreases in the course of 3 consecutive TSA cycles from 1.7%to 0.8%(mass)at T=29℃.A further increase in air humidity only facilitates the deterioration of the CO_(2) sorption capacity of the material.A possible explanation for this phenomenon could be the filling of the porous system of the sorbent with solid reaction products and an aqueous solution of potassium salts,which leads to a significant slowdown in the CO_(2) diffusion in the composite sorbent grain.To investigate the regeneration step of the TSA cycle in situ,the macro ATRFTIR(attenuated total reflection Fourier-transform infrared)spectroscopic imaging was applied for the first time.It was shown that the migration of carbonate-containing species over the surface of sorbent occurs during the thermal regeneration stage of the TSA cycle.The movement of the active component in the porous matrix of the sorbent can affect the sorption characteristics of the composite material.The revealed features make it possible to formulate the requirements and limitations that need to be taken into account for the practical implementation of the DAC process using the K_(2)CO_(3)/ZrO_(2) composite sorbent.展开更多
常规的碳捕集与封存技术和碳捕集、利用与封存技术多针对固定源排放CO_(2),直接空气捕集CO_(2)(Direct Air Capture,DAC)技术作为一种新兴的负碳排放技术可对分布源排放的CO_(2)进行捕集,进一步降低全球大气CO_(2)体积分数。介绍了DAC...常规的碳捕集与封存技术和碳捕集、利用与封存技术多针对固定源排放CO_(2),直接空气捕集CO_(2)(Direct Air Capture,DAC)技术作为一种新兴的负碳排放技术可对分布源排放的CO_(2)进行捕集,进一步降低全球大气CO_(2)体积分数。介绍了DAC典型液体吸收工艺、固体吸附工艺的发展过程及相关示范项目建设情况,分析了新兴DAC工艺的技术特点,探讨了现有DAC工艺关键装置方案和未来发展趋势。DAC液体吸收工艺具有吸收剂原料成本较低、选择性较高的特点,可实现大规模连续化捕集,但再生过程中能耗较高。DAC固体吸附工艺具有模块化、投资成本较低的特点,且再生过程能耗相对较低,但需要定期对吸附材料更换和吸附设备维护,适用于较小规模的DAC应用场景。对2种典型DAC工艺吸收/吸附材料进行了概述。DAC电振荡吸附工艺中CO_(2)在固体电极中发生化学反应被捕集,并通过外加电场改变固体电极极性实现CO_(2)脱附,该工艺具有比基于热量或压力的分离过程更高的效率。空气中CO_(2)选择透过DAC分离膜从而实现了高效碳捕集。DAC变湿吸附工艺通过湿度的改变实现CO_(2)的吸脱附,突破了常规变温/变压吸附的高能耗限制等问题。DAC生物吸收工艺通过藻类生物的光合作用将CO_(2)吸收固定。基于双功能催化剂的DAC工艺可以在一个综合过程中实现CO_(2)的捕集与催化,节省了CO_(2)捕集后的运输与存储成本。DAC液体吸收工艺的关键装置为空气接触器、颗粒反应器、煅烧炉和熟化器,其中空气接触器开发的核心在于提高气液接触效率,减少喷淋过程中的水分损失和减轻设备腐蚀,颗粒反应器和熟化器开发的关键在于提高固液两相物料的接触效率以及反应后的固液分离效率。DAC固体吸附工艺由引风模块、吸附/再生模块、供能再生模块和CO_(2)压缩模块组成的模块化装置组成,其中优化吸附模块的核心在于提高气固传质速率、调谐CO_(2)捕集效率、降低压降;并基于不同应用场景工艺需求选择合适的再生系统或利用清洁能源,优化DAC工艺过程和开发高性能的DAC核心装置至关重要。展开更多
[目的]旨在探讨面向碳中和背景下直接空气捕碳(Direct Air Capture,DAC)技术的发展现状、应用案例及其经济性评估,以期为我国实现碳减排目标提供参考。[方法]文章综述了DAC技术的工作原理、类型、运用案例,并分析了其在国内外的发展情...[目的]旨在探讨面向碳中和背景下直接空气捕碳(Direct Air Capture,DAC)技术的发展现状、应用案例及其经济性评估,以期为我国实现碳减排目标提供参考。[方法]文章综述了DAC技术的工作原理、类型、运用案例,并分析了其在国内外的发展情况。通过比较不同研究中的成本数据,评估了DAC技术的经济性,并讨论了当前面临的挑战与可能的解决措施。[结果]研究发现,DAC技术能有效从空气中捕集CO_(2),具有布置灵活、可与可再生能源结合等优点。但其商业化应用仍受到高成本、高能耗和大规模部署的技术挑战的限制。国内外的案例分析揭示DAC技术在实际应用中的效率和成本问题亟待解决,同时也显示了通过技术改进和政策支持可能实现的优化潜力。[结论]尽管存在挑战,DAC技术仍是实现碳中和目标的潜在储备技术,尤其对中国等面临严峻碳减排压力的国家具有重要意义。需要集中研究力量开发更高效、低成本的吸收/吸附剂,改进系统设计,降低能源消耗,并积极探索与可再生能源的结合使用。政府的政策支持和社会的广泛认可也是实现DAC技术商业化的关键因素。通过这些措施可以推动DAC技术的发展和应用,助力实现碳减排和环境保护的双重目标。展开更多
1.Introduction Man-made perturbations over emissions of greenhouse gas(GHG)bring tremendous negative impacts on the survival environment[1].CO_(2)accounts for~75%of global GHG impacts with others mainly composed of N_...1.Introduction Man-made perturbations over emissions of greenhouse gas(GHG)bring tremendous negative impacts on the survival environment[1].CO_(2)accounts for~75%of global GHG impacts with others mainly composed of N_(2)O,CH_(4),and small fluorinated gas molecules[2].Deployment of“negative emission”technologies via direct air capture(DAC)of CO_(2)by engineered chemical reactions represents one of the most promising and distinct pathways to limit and alleviate the global warming trend[3].展开更多
为促进社会发展与绿色转型,早日实现碳达峰与碳中和,直接空气捕集(Direct Air Capture,DAC)作为一种负碳排放技术愈发受到学术界和产业界关注。DAC技术聚焦于大气及交通工具等分布源CO_(2)的捕集回收,可有效降低大气中CO_(2)浓度。目前...为促进社会发展与绿色转型,早日实现碳达峰与碳中和,直接空气捕集(Direct Air Capture,DAC)作为一种负碳排放技术愈发受到学术界和产业界关注。DAC技术聚焦于大气及交通工具等分布源CO_(2)的捕集回收,可有效降低大气中CO_(2)浓度。目前DAC技术发展的挑战主要在于设备及运行成本高。因此,从DAC工艺概况、工艺关键模块及技术经济性分析3个方面开展研究。着重介绍了基于碱性溶液及固体吸附剂的2种DAC技术工艺流程和吸附材料,概述了电力/热能供应、CO_(2)吸收/解吸、CO_(2)压缩存储/输运等关键模块,对比了2种DAC工艺技术能耗与经济成本。基于碱性溶液吸收和固体吸附剂吸收的DAC技术每吨CO_(2)捕获能耗分别在2118~2790 kW·h及1400~2777 kW·h,每吨CO_(2)捕获成本分别为$200~600和$100~400。总体而言,基于固体吸附剂的DAC技术经济效益好、捕获成本低、应用潜力大。未来需进一步从吸附材料性能提升、关键核心过程强化、系统能量集成优化等3个方面进行研究,可望进一步降低DAC技术成本,从而为碳达峰与碳中和提供重要技术支撑。展开更多
碳达峰、碳中和背景下,针对绿色低碳智慧小区微能网优化调度难题,提出一种考虑直接空气碳捕(direct air capture,DAC)与电转气(power to gas,P2G)协同效益的微能网优化调度方法。首先,提出小区空气碳捕应用场景新思路,基于CO_(2)化学吸...碳达峰、碳中和背景下,针对绿色低碳智慧小区微能网优化调度难题,提出一种考虑直接空气碳捕(direct air capture,DAC)与电转气(power to gas,P2G)协同效益的微能网优化调度方法。首先,提出小区空气碳捕应用场景新思路,基于CO_(2)化学吸附原理建立智慧小区DAC碳捕量、碳捕能耗耦合关系的数学模型;进而,在研究P2G-DAC特性的基础上,建立P2G-DAC协同运行模型;然后,在考虑小区微能网系统约束及DAC装置变温吸附循环特性的基础上,以系统综合运行成本最小为目标,构建协同调度模型;最后,利用Yalmip工具箱调用Gurobi求解器对模型进行求解,并基于西南某别墅小区开展仿真验证工作。仿真结果表明,所提智慧小区微能网P2G-DAC协同调度策略能够促使系统综合运行成本下降6.77%、系统碳排量下降75%,在提升微能网运行经济性的同时,能够降低碳排放,产生环境、社会效益。展开更多
As humanity has been polluting the atmosphere with greenhouse gases,the planet is getting warmed up which is triggering the frequency and the intensity of extreme events like heat waves,dry conditions,wildfires,cyclon...As humanity has been polluting the atmosphere with greenhouse gases,the planet is getting warmed up which is triggering the frequency and the intensity of extreme events like heat waves,dry conditions,wildfires,cyclones,tornadoes,lightning,and massive flooding all over the planet Earth.There is considerable evidence that the concentration of greenhouse gases,especially that of CO_(2) has steadily increased in the atmosphere as a result of the indiscriminate use of fossil fuels around the world particularly during the last 70 years.The glaciers in the high mountain and polar regions are diminishing fast,sea levels are rising,and food production is being affected severely in certain parts of the world.In fact,the changing climate has currently become one of the major threats to the survival of civilization.The world scientific communities are warning of a climate emergency and requesting the decision makers to promptly respond and act to sustain life on planet Earth.To deliver net zero emissions by the year 2050,the whole world must phase out the technologies such as coal-powered thermal plants and diesel/petrol/gasoline-powered vehicles which release abundant amounts of CO_(2) and other greenhouse gases into the atmosphere and invest in the development of clean energies such as hydel,wind,solar,space-solar,and nuclear energies.This transition to a low-carbon economy with the help of these technologies together with other technologies such as hydrogen fuel,fuel cells,electric vehicles,and massive plantations is expected to take our planet Earth to a safe zone in the coming 20-30 years.展开更多
基金This work was supported by Russian Science Foundation(19-73-00079).The authors also thank Leonova A.A.for performing N2 adsorption measurements.
文摘Potassium carbonate-based sorbents are prospective materials for direct air capture(DAC).In the present study,we examined and revealed the influence of the temperature swing adsorption(TSA)cycle conditions on the CO_(2) sorption properties of a novel aerogel-based K_(2)CO_(3)/ZrO_(2) sorbent in a DAC process.It was shown that the humidity and temperature drastically affect the sorption dynamic and sorption capacity of the sorbent.When a temperature at the sorption stage was 29℃ and a water vapor pressure P_(H2O) in the feed air was 5.2 mbar(1 bar=105 Pa),the composite material demonstrated a stable CO_(2) sorption capacity of 3.4%(mass).An increase in sorption temperature leads to a continuous decrease in the CO_(2) absorption capacity reaching a value of 0.7%(mass)at T=80℃.The material showed the retention of a stable CO_(2) sorption capacity for many cycles at each temperature in the range.Increasing PH2O in the inlet air from 5.2 to 6.8 mbar leads to instability of CO_(2) sorption capacity which decreases in the course of 3 consecutive TSA cycles from 1.7%to 0.8%(mass)at T=29℃.A further increase in air humidity only facilitates the deterioration of the CO_(2) sorption capacity of the material.A possible explanation for this phenomenon could be the filling of the porous system of the sorbent with solid reaction products and an aqueous solution of potassium salts,which leads to a significant slowdown in the CO_(2) diffusion in the composite sorbent grain.To investigate the regeneration step of the TSA cycle in situ,the macro ATRFTIR(attenuated total reflection Fourier-transform infrared)spectroscopic imaging was applied for the first time.It was shown that the migration of carbonate-containing species over the surface of sorbent occurs during the thermal regeneration stage of the TSA cycle.The movement of the active component in the porous matrix of the sorbent can affect the sorption characteristics of the composite material.The revealed features make it possible to formulate the requirements and limitations that need to be taken into account for the practical implementation of the DAC process using the K_(2)CO_(3)/ZrO_(2) composite sorbent.
文摘常规的碳捕集与封存技术和碳捕集、利用与封存技术多针对固定源排放CO_(2),直接空气捕集CO_(2)(Direct Air Capture,DAC)技术作为一种新兴的负碳排放技术可对分布源排放的CO_(2)进行捕集,进一步降低全球大气CO_(2)体积分数。介绍了DAC典型液体吸收工艺、固体吸附工艺的发展过程及相关示范项目建设情况,分析了新兴DAC工艺的技术特点,探讨了现有DAC工艺关键装置方案和未来发展趋势。DAC液体吸收工艺具有吸收剂原料成本较低、选择性较高的特点,可实现大规模连续化捕集,但再生过程中能耗较高。DAC固体吸附工艺具有模块化、投资成本较低的特点,且再生过程能耗相对较低,但需要定期对吸附材料更换和吸附设备维护,适用于较小规模的DAC应用场景。对2种典型DAC工艺吸收/吸附材料进行了概述。DAC电振荡吸附工艺中CO_(2)在固体电极中发生化学反应被捕集,并通过外加电场改变固体电极极性实现CO_(2)脱附,该工艺具有比基于热量或压力的分离过程更高的效率。空气中CO_(2)选择透过DAC分离膜从而实现了高效碳捕集。DAC变湿吸附工艺通过湿度的改变实现CO_(2)的吸脱附,突破了常规变温/变压吸附的高能耗限制等问题。DAC生物吸收工艺通过藻类生物的光合作用将CO_(2)吸收固定。基于双功能催化剂的DAC工艺可以在一个综合过程中实现CO_(2)的捕集与催化,节省了CO_(2)捕集后的运输与存储成本。DAC液体吸收工艺的关键装置为空气接触器、颗粒反应器、煅烧炉和熟化器,其中空气接触器开发的核心在于提高气液接触效率,减少喷淋过程中的水分损失和减轻设备腐蚀,颗粒反应器和熟化器开发的关键在于提高固液两相物料的接触效率以及反应后的固液分离效率。DAC固体吸附工艺由引风模块、吸附/再生模块、供能再生模块和CO_(2)压缩模块组成的模块化装置组成,其中优化吸附模块的核心在于提高气固传质速率、调谐CO_(2)捕集效率、降低压降;并基于不同应用场景工艺需求选择合适的再生系统或利用清洁能源,优化DAC工艺过程和开发高性能的DAC核心装置至关重要。
文摘[目的]旨在探讨面向碳中和背景下直接空气捕碳(Direct Air Capture,DAC)技术的发展现状、应用案例及其经济性评估,以期为我国实现碳减排目标提供参考。[方法]文章综述了DAC技术的工作原理、类型、运用案例,并分析了其在国内外的发展情况。通过比较不同研究中的成本数据,评估了DAC技术的经济性,并讨论了当前面临的挑战与可能的解决措施。[结果]研究发现,DAC技术能有效从空气中捕集CO_(2),具有布置灵活、可与可再生能源结合等优点。但其商业化应用仍受到高成本、高能耗和大规模部署的技术挑战的限制。国内外的案例分析揭示DAC技术在实际应用中的效率和成本问题亟待解决,同时也显示了通过技术改进和政策支持可能实现的优化潜力。[结论]尽管存在挑战,DAC技术仍是实现碳中和目标的潜在储备技术,尤其对中国等面临严峻碳减排压力的国家具有重要意义。需要集中研究力量开发更高效、低成本的吸收/吸附剂,改进系统设计,降低能源消耗,并积极探索与可再生能源的结合使用。政府的政策支持和社会的广泛认可也是实现DAC技术商业化的关键因素。通过这些措施可以推动DAC技术的发展和应用,助力实现碳减排和环境保护的双重目标。
文摘1.Introduction Man-made perturbations over emissions of greenhouse gas(GHG)bring tremendous negative impacts on the survival environment[1].CO_(2)accounts for~75%of global GHG impacts with others mainly composed of N_(2)O,CH_(4),and small fluorinated gas molecules[2].Deployment of“negative emission”technologies via direct air capture(DAC)of CO_(2)by engineered chemical reactions represents one of the most promising and distinct pathways to limit and alleviate the global warming trend[3].
文摘为促进社会发展与绿色转型,早日实现碳达峰与碳中和,直接空气捕集(Direct Air Capture,DAC)作为一种负碳排放技术愈发受到学术界和产业界关注。DAC技术聚焦于大气及交通工具等分布源CO_(2)的捕集回收,可有效降低大气中CO_(2)浓度。目前DAC技术发展的挑战主要在于设备及运行成本高。因此,从DAC工艺概况、工艺关键模块及技术经济性分析3个方面开展研究。着重介绍了基于碱性溶液及固体吸附剂的2种DAC技术工艺流程和吸附材料,概述了电力/热能供应、CO_(2)吸收/解吸、CO_(2)压缩存储/输运等关键模块,对比了2种DAC工艺技术能耗与经济成本。基于碱性溶液吸收和固体吸附剂吸收的DAC技术每吨CO_(2)捕获能耗分别在2118~2790 kW·h及1400~2777 kW·h,每吨CO_(2)捕获成本分别为$200~600和$100~400。总体而言,基于固体吸附剂的DAC技术经济效益好、捕获成本低、应用潜力大。未来需进一步从吸附材料性能提升、关键核心过程强化、系统能量集成优化等3个方面进行研究,可望进一步降低DAC技术成本,从而为碳达峰与碳中和提供重要技术支撑。
文摘碳达峰、碳中和背景下,针对绿色低碳智慧小区微能网优化调度难题,提出一种考虑直接空气碳捕(direct air capture,DAC)与电转气(power to gas,P2G)协同效益的微能网优化调度方法。首先,提出小区空气碳捕应用场景新思路,基于CO_(2)化学吸附原理建立智慧小区DAC碳捕量、碳捕能耗耦合关系的数学模型;进而,在研究P2G-DAC特性的基础上,建立P2G-DAC协同运行模型;然后,在考虑小区微能网系统约束及DAC装置变温吸附循环特性的基础上,以系统综合运行成本最小为目标,构建协同调度模型;最后,利用Yalmip工具箱调用Gurobi求解器对模型进行求解,并基于西南某别墅小区开展仿真验证工作。仿真结果表明,所提智慧小区微能网P2G-DAC协同调度策略能够促使系统综合运行成本下降6.77%、系统碳排量下降75%,在提升微能网运行经济性的同时,能够降低碳排放,产生环境、社会效益。
文摘As humanity has been polluting the atmosphere with greenhouse gases,the planet is getting warmed up which is triggering the frequency and the intensity of extreme events like heat waves,dry conditions,wildfires,cyclones,tornadoes,lightning,and massive flooding all over the planet Earth.There is considerable evidence that the concentration of greenhouse gases,especially that of CO_(2) has steadily increased in the atmosphere as a result of the indiscriminate use of fossil fuels around the world particularly during the last 70 years.The glaciers in the high mountain and polar regions are diminishing fast,sea levels are rising,and food production is being affected severely in certain parts of the world.In fact,the changing climate has currently become one of the major threats to the survival of civilization.The world scientific communities are warning of a climate emergency and requesting the decision makers to promptly respond and act to sustain life on planet Earth.To deliver net zero emissions by the year 2050,the whole world must phase out the technologies such as coal-powered thermal plants and diesel/petrol/gasoline-powered vehicles which release abundant amounts of CO_(2) and other greenhouse gases into the atmosphere and invest in the development of clean energies such as hydel,wind,solar,space-solar,and nuclear energies.This transition to a low-carbon economy with the help of these technologies together with other technologies such as hydrogen fuel,fuel cells,electric vehicles,and massive plantations is expected to take our planet Earth to a safe zone in the coming 20-30 years.