It was established that application of bipolar membrane in a direct borohydride fuel cell (DBFC) with H2O2 co-generation enabled to keep constant pH in catholyte within 2.5 - 3.2 limits, which allowed us to carry out ...It was established that application of bipolar membrane in a direct borohydride fuel cell (DBFC) with H2O2 co-generation enabled to keep constant pH in catholyte within 2.5 - 3.2 limits, which allowed us to carry out treatment of water polluted by organic compounds in fuel cell catholyte. Treatment of water was carried out by electro-Fenton and photo-electro-Fenton methods. With the view of efficiency, photo-electro-Fenton method of treatment was the most efficient, which enabled to decrease COD of catholytes containing (in each case) phenol, valsaren, 400 g/L dymethoate (BI-58) and valsaciper from 500 ppm to 30, 11, 9 and 3 ppm, respectively after 180 min treatment. By increasing the catholyte temperature from 20℃?to 40℃?in the same period, phenol COD fell to 5 ppm.展开更多
In this study, carbon nanotubes (CNTs) were mixed with ABs-type hydrogen storage alloy (HSA), as catalyst for an anode in a direct borohydride fuel cell (DBFC). As comparision, a series of traditional carbon mat...In this study, carbon nanotubes (CNTs) were mixed with ABs-type hydrogen storage alloy (HSA), as catalyst for an anode in a direct borohydride fuel cell (DBFC). As comparision, a series of traditional carbon materials, such as acetylene black, Vulcan XC-72R, and super activated carbon (SAC) were also employed. Electrochemical measurements showed that the electrocatalytic activity of HSA was improved greatly by CNTs. The current density of the DI3FC employing the HSA/CNTs catalytic anode could reach 1550 mA.cm-2 (at -0.6 V vs the EIg/HgO electrode) and the maximum power density of 65 mW.cm-2 for this cell could be achieved at room temperature. Furthermore, the life time test lasting for 60 h showed that the cell displayed a good stability.展开更多
Rare earth metal oxides(REMO) as cathode electrocatalysts in direct borohydride fuel cell(DBFC) were investigated.The REMO electrocatalysts tested showed favorable activity to the oxygen electro-reduction reaction...Rare earth metal oxides(REMO) as cathode electrocatalysts in direct borohydride fuel cell(DBFC) were investigated.The REMO electrocatalysts tested showed favorable activity to the oxygen electro-reduction reaction and strong tolerance to the attack of BH 4-in alkaline electrolytes.The simple membraneless DBFCs using REMO as cathode electrocatalyst and using hydrogen storage alloy as anodic electrocatalyst exhibited an open circuit of about 1 V and peak power of above 60 mW/cm 2.The DBFC using Sm 2 O 3 as cathode electrocatalyst showed a relatively better performance.The maximal power density of 76.2 mW/cm 2 was obtained at the cell voltage of 0.52 V.展开更多
A novel titanium-supported silver catalyst(Ag/Ti)with a 3D network structure was prepared by the hydrothermal process using polyethylene glycol as a reduction agent.Electrocatalytic activity of the Ag/Ti electrode tow...A novel titanium-supported silver catalyst(Ag/Ti)with a 3D network structure was prepared by the hydrothermal process using polyethylene glycol as a reduction agent.Electrocatalytic activity of the Ag/Ti electrode towards borohydride oxidation was evaluated by cyclic voltammograms(CVs).A direct oxidation process of borohydride on the Ag/Ti electrode was observed.The results showed that the Ag/Ti electrode presented a high anodic current density for borohydride oxidation,and the onset potential for borohydride oxidation was ca-0.64 V vs SCE at BH-4 concentration of 0.1 mol·L-1.This indicated that the Ag/Ti electrode exhibited high electrocatalytic activity for borohydride oxidation and it would be a promising anode used in direct borohydride fuel cells.展开更多
文摘It was established that application of bipolar membrane in a direct borohydride fuel cell (DBFC) with H2O2 co-generation enabled to keep constant pH in catholyte within 2.5 - 3.2 limits, which allowed us to carry out treatment of water polluted by organic compounds in fuel cell catholyte. Treatment of water was carried out by electro-Fenton and photo-electro-Fenton methods. With the view of efficiency, photo-electro-Fenton method of treatment was the most efficient, which enabled to decrease COD of catholytes containing (in each case) phenol, valsaren, 400 g/L dymethoate (BI-58) and valsaciper from 500 ppm to 30, 11, 9 and 3 ppm, respectively after 180 min treatment. By increasing the catholyte temperature from 20℃?to 40℃?in the same period, phenol COD fell to 5 ppm.
文摘In this study, carbon nanotubes (CNTs) were mixed with ABs-type hydrogen storage alloy (HSA), as catalyst for an anode in a direct borohydride fuel cell (DBFC). As comparision, a series of traditional carbon materials, such as acetylene black, Vulcan XC-72R, and super activated carbon (SAC) were also employed. Electrochemical measurements showed that the electrocatalytic activity of HSA was improved greatly by CNTs. The current density of the DI3FC employing the HSA/CNTs catalytic anode could reach 1550 mA.cm-2 (at -0.6 V vs the EIg/HgO electrode) and the maximum power density of 65 mW.cm-2 for this cell could be achieved at room temperature. Furthermore, the life time test lasting for 60 h showed that the cell displayed a good stability.
基金supported by Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry and National Natural Science Foundation of China (20803057)support by the National Self-determined and Innovative Research Funds of WUT
文摘Rare earth metal oxides(REMO) as cathode electrocatalysts in direct borohydride fuel cell(DBFC) were investigated.The REMO electrocatalysts tested showed favorable activity to the oxygen electro-reduction reaction and strong tolerance to the attack of BH 4-in alkaline electrolytes.The simple membraneless DBFCs using REMO as cathode electrocatalyst and using hydrogen storage alloy as anodic electrocatalyst exhibited an open circuit of about 1 V and peak power of above 60 mW/cm 2.The DBFC using Sm 2 O 3 as cathode electrocatalyst showed a relatively better performance.The maximal power density of 76.2 mW/cm 2 was obtained at the cell voltage of 0.52 V.
文摘A novel titanium-supported silver catalyst(Ag/Ti)with a 3D network structure was prepared by the hydrothermal process using polyethylene glycol as a reduction agent.Electrocatalytic activity of the Ag/Ti electrode towards borohydride oxidation was evaluated by cyclic voltammograms(CVs).A direct oxidation process of borohydride on the Ag/Ti electrode was observed.The results showed that the Ag/Ti electrode presented a high anodic current density for borohydride oxidation,and the onset potential for borohydride oxidation was ca-0.64 V vs SCE at BH-4 concentration of 0.1 mol·L-1.This indicated that the Ag/Ti electrode exhibited high electrocatalytic activity for borohydride oxidation and it would be a promising anode used in direct borohydride fuel cells.