Parameter optimization integrating operation parameters and structure parameters for the purpose of high permeate flux,high productivity and low exergy consumption of direct contact membrane distillation (DCMD) proces...Parameter optimization integrating operation parameters and structure parameters for the purpose of high permeate flux,high productivity and low exergy consumption of direct contact membrane distillation (DCMD) process was conducted based on Taguchi experimental design. L16(45) orthogonal experiments were carried out with feed inlet temperature,permeate stream inlet temperature,flow rate,module packing density and length-diameter ratio as optimization parameters and with permeate flux,water productivity per unit volume of module and water production per unit exergy loss separately as optimization objectives. By using range analysis method,the dominance degree of the various influencing factors for the three objectives was analyzed and the optimum condition was obtained for the three objectives separately. Furthermore,the multi-objectives optimization was performed based on a weight grade method. The combined optimum conditions are feed inlet temperature 75℃,packing density 30% ,length-diameter ratio 10,permeate stream inlet temperature 30 ℃ and flow rate 25 L/h,which is in order of their dominance degree,and the validity of the optimization scheme was confirmed.展开更多
Although PVDF flat sheet membranes have been widely tested in MD,their synthesis and modifications currently require increased use of green and inexpensive materials.In this study,flat sheet PVDF membranes were synthe...Although PVDF flat sheet membranes have been widely tested in MD,their synthesis and modifications currently require increased use of green and inexpensive materials.In this study,flat sheet PVDF membranes were synthesized using phase inversion and water as the pore former.Remarkably,the water added in the casting solution improved the membrane pore sizes;where the maximum pore size was 0.58μm.Also,the incorporation of f-SiO2NPs in the membrane matrix considerably enhanced the membrane hydrophobicity.Specifically,the membrane contact angles increased from 96°to 153°.Additionally,other parameters investigated were mechanical strength and liquid entry pressure(LEP).The maximum recorded values were 2.26 MPa and 239 kPa,respectively.The modified membranes(i.e.,using water as the pore former and f-SiO2NPs)were the most efficient,showing maximum salt rejection of 99.9%and water flux of 11.6 LMH;thus,indicating their capability to be used as efficient materials for the recovery of high purity water in MD.展开更多
In this study,direct contact membrane distillation(DCMD)was used for treating fermentation wastewater with high organic concentrations.DCMD performance characteristics including permeate flux,permeate water quality ...In this study,direct contact membrane distillation(DCMD)was used for treating fermentation wastewater with high organic concentrations.DCMD performance characteristics including permeate flux,permeate water quality as well as membrane fouling were investigated systematically.Experimental results showed that,after 12 hr DCMD,the feed wastewater was concentrated by about a factor of 3.7 on a volumetric basis,with the permeate flux decreasing from the initial 8.7 L/m^2/hr to the final 4.3 L/m^2/hr due to membrane fouling;the protein concentration in the feed wastewater was increased by about 3.5 times and achieved a value of 6178 mg/L,which is suitable for reutilization.Although COD and TOC in permeate water increased continuously due to the transfer of volatile components from wastewater,organic rejection of over 95%was achieved in wastewater.GC–MS results suggested that the fermentation wastewater contained 128kinds of organics,in which 14 organics dominated.After 12 hr DCMD,not only volatile organics including trimethyl pyrazine,2-acetyl pyrrole,phenethyl alcohol and phenylacetic acid,but also non-volatile dibutyl phthalate was detected in permeate water due to membrane wetting.FT-IR and SEM–EDS results indicated that the deposits formed on the membrane inner surface mainly consisted of Ca,Mg,and amine,carboxylic acid and aromatic groups.The fouled membrane could be recovered,as most of the deposits could be removed using a HCl/Na OH chemical cleaning method.展开更多
A non-toxic and environmentally safe diluent,acetyl tributyl citrate,was employed to prepare poly(vinylidene fluoride)-co-hexafluoropropylene membranes via thermally induced phase separation.Effects of the polymer con...A non-toxic and environmentally safe diluent,acetyl tributyl citrate,was employed to prepare poly(vinylidene fluoride)-co-hexafluoropropylene membranes via thermally induced phase separation.Effects of the polymer concentration on the phase diagram,membrane morphology,hydrophobicity,pore size,porosity and mechanical properties(tensile stress and elongation at break)were investigated.The results showed that the pore size and porosity tended to decrease with increasing polymer concentration,whereas the contact angle,liquid entry pressure and mechanical properties showed the opposite trend.In direct contact membrane distillation operation with 3.5 wt-%sodium chloride solution as the feed solution,the prepared membranes performed high salt rejection(>99.9%).Furthermore,the prepared membranes retained excellent performance in long-term stability tests regarding the permeate flux and salt rejection. ne distillation.展开更多
文摘Parameter optimization integrating operation parameters and structure parameters for the purpose of high permeate flux,high productivity and low exergy consumption of direct contact membrane distillation (DCMD) process was conducted based on Taguchi experimental design. L16(45) orthogonal experiments were carried out with feed inlet temperature,permeate stream inlet temperature,flow rate,module packing density and length-diameter ratio as optimization parameters and with permeate flux,water productivity per unit volume of module and water production per unit exergy loss separately as optimization objectives. By using range analysis method,the dominance degree of the various influencing factors for the three objectives was analyzed and the optimum condition was obtained for the three objectives separately. Furthermore,the multi-objectives optimization was performed based on a weight grade method. The combined optimum conditions are feed inlet temperature 75℃,packing density 30% ,length-diameter ratio 10,permeate stream inlet temperature 30 ℃ and flow rate 25 L/h,which is in order of their dominance degree,and the validity of the optimization scheme was confirmed.
基金The authors would like to acknowledge the South African National Research Foundation for funding this work.
文摘Although PVDF flat sheet membranes have been widely tested in MD,their synthesis and modifications currently require increased use of green and inexpensive materials.In this study,flat sheet PVDF membranes were synthesized using phase inversion and water as the pore former.Remarkably,the water added in the casting solution improved the membrane pore sizes;where the maximum pore size was 0.58μm.Also,the incorporation of f-SiO2NPs in the membrane matrix considerably enhanced the membrane hydrophobicity.Specifically,the membrane contact angles increased from 96°to 153°.Additionally,other parameters investigated were mechanical strength and liquid entry pressure(LEP).The maximum recorded values were 2.26 MPa and 239 kPa,respectively.The modified membranes(i.e.,using water as the pore former and f-SiO2NPs)were the most efficient,showing maximum salt rejection of 99.9%and water flux of 11.6 LMH;thus,indicating their capability to be used as efficient materials for the recovery of high purity water in MD.
基金supported by the Special S&T Project on Treatment and Control of Water Pollution (No. 2013ZX07201007-003)
文摘In this study,direct contact membrane distillation(DCMD)was used for treating fermentation wastewater with high organic concentrations.DCMD performance characteristics including permeate flux,permeate water quality as well as membrane fouling were investigated systematically.Experimental results showed that,after 12 hr DCMD,the feed wastewater was concentrated by about a factor of 3.7 on a volumetric basis,with the permeate flux decreasing from the initial 8.7 L/m^2/hr to the final 4.3 L/m^2/hr due to membrane fouling;the protein concentration in the feed wastewater was increased by about 3.5 times and achieved a value of 6178 mg/L,which is suitable for reutilization.Although COD and TOC in permeate water increased continuously due to the transfer of volatile components from wastewater,organic rejection of over 95%was achieved in wastewater.GC–MS results suggested that the fermentation wastewater contained 128kinds of organics,in which 14 organics dominated.After 12 hr DCMD,not only volatile organics including trimethyl pyrazine,2-acetyl pyrrole,phenethyl alcohol and phenylacetic acid,but also non-volatile dibutyl phthalate was detected in permeate water due to membrane wetting.FT-IR and SEM–EDS results indicated that the deposits formed on the membrane inner surface mainly consisted of Ca,Mg,and amine,carboxylic acid and aromatic groups.The fouled membrane could be recovered,as most of the deposits could be removed using a HCl/Na OH chemical cleaning method.
基金supported by the National Natural Science Foundation of China(Grant No.22078146)the National Key R&D Program of China(Grant No.2020YFC0862903)+4 种基金the Natural Science Foundation of Jiangsu Province(Grant No.BK20200091)the Jiangsu Province Department of Human Resources and Social Security(Grant No.JNHB-036)the Materials-Oriented Chemical Engineering State Key Laboratory Program(Grant No.KL19-04)the Priority Academic Program Development of Jiangsu Higher Education Institution(PAPD).N.Tavajohi is grateful for financial support by the Kempe Foundation(Grant No.SMK-1850)Bio4energy program(Grant No.B4E3-TM-1-01).
文摘A non-toxic and environmentally safe diluent,acetyl tributyl citrate,was employed to prepare poly(vinylidene fluoride)-co-hexafluoropropylene membranes via thermally induced phase separation.Effects of the polymer concentration on the phase diagram,membrane morphology,hydrophobicity,pore size,porosity and mechanical properties(tensile stress and elongation at break)were investigated.The results showed that the pore size and porosity tended to decrease with increasing polymer concentration,whereas the contact angle,liquid entry pressure and mechanical properties showed the opposite trend.In direct contact membrane distillation operation with 3.5 wt-%sodium chloride solution as the feed solution,the prepared membranes performed high salt rejection(>99.9%).Furthermore,the prepared membranes retained excellent performance in long-term stability tests regarding the permeate flux and salt rejection. ne distillation.