This paper introduces a joint nonlinearity and chromatic dispersion pre-compensation method for coherent optical orthogonal frequency-division multiplexing systems. The research results show that this method can reduc...This paper introduces a joint nonlinearity and chromatic dispersion pre-compensation method for coherent optical orthogonal frequency-division multiplexing systems. The research results show that this method can reduce the walk- off effect and can therefore equalize the nonlinear impairments effectively. Compared with the only other existing nonlinearity pre-compensation method, the joint nonlinearity and chromatic dispersion pre-compensation method is not only suitable for low-dispersion optical orthogonal frequency-division multiplexing system, but also effective for high- dispersion optical orthogonal frequency-division multiplexing transmission system with higher input power but without optical dispersion compensation. The suggested solution does not increase computation complexity compared with only nonlinearity pre-compensation method. For 40 Gbit/s coherent optical orthogonal frequency-division multiplexing 20 × 80 km standard single-mode fibre system, the suggested method can improve the nonlinear threshold (for Q 〉 10 dB) about 2.7, 1.2 and 1.0 dB, and the maximum Q factor about 1.2, 0.4 and 0.3 dB, for 2, 8 and 16 ps/(nm.km) dispersion coefficients.展开更多
Contrary to the other multi-carrier modulation systems, the coherent optical orthogonal frequency division multiplexing communication system with an offset quadrature amplitude modulation (CO-OFDM-OQAM) possesses inhe...Contrary to the other multi-carrier modulation systems, the coherent optical orthogonal frequency division multiplexing communication system with an offset quadrature amplitude modulation (CO-OFDM-OQAM) possesses inherent imaginary interference (IMI). This has an important impact on the channel estimation process. Currently, a variety of frequency-domain channel estimation methods have been proposed. However, there are various problems that still exist. For instance, in order to reduce the influence of IMI, it is necessary to insert more guard intervals between the training sequence and the payload, leading to the occupation of excessive spectrum resources. In order to address this problem, this work designs a high spectral efficient frequency-domain channel estimation method for the polarization-division-multiplexing CO-OFDM-OQAM systems. First, the working principle of the proposed method is described in detail. Then, its spectral efficiency, power peak-to-average ratio, and channel estimation performance are studied based on simulations. The simulation results show that the proposed method improves the spectral efficiency without worsening the power peak-to-average ratio. The channel estimation capability of this method is verified in three scenarios of long-distance transmissions, including back-to-back, 100 km, and 200 km transmissions. .展开更多
As one solution to implement the largecapacity space division multiplexing(SDM)transmission systems,the mode division multiplexing(MDM)has gained much attention recently.The vector mode(VM),which is the eigenmode of t...As one solution to implement the largecapacity space division multiplexing(SDM)transmission systems,the mode division multiplexing(MDM)has gained much attention recently.The vector mode(VM),which is the eigenmode of the optical fiber,has also been adopted to realize the optical communications including the transmission over free-space optical(FSO)and optical fiber links.Considering the concerns on the short-reach optical interconnects,the low cost and high integration technologies should be developed.Direct detection(DD)with higher-order modulation formats in combination of MDM technologies could offer an available trade-off in system performance and complexity.We review demonstrations of FSO and fiber high-speed data transmission based on the VM MDM(VMDM)technologies.The special VMs,cylindrical vector beams(CVB),have been generated by the q-plate(QP)and characterized accordingly.And then they were used to implement the VMDM transmission with direct-detection orthogonal frequency division multiplexing(DD-OFDM).These demonstrations show the potential of VMDM-DD-OFDM technology in the large-capacity short-reach transmission links.展开更多
The in-phase and quadrature-phase imbalance (IQI) is one of the major radio frequency impairments existing in orthogonal frequency division multiplexing (OFDM) systems with direct-conversion transceivers. During the t...The in-phase and quadrature-phase imbalance (IQI) is one of the major radio frequency impairments existing in orthogonal frequency division multiplexing (OFDM) systems with direct-conversion transceivers. During the transmission of the communication signal, the impact of IQI is coupled with channel impulse responses (CIR), which makes the traditional channel estimation schemes ineffective. A decoupled estimation scheme is proposed to separately estimate the frequency-dependent IQI and wireless channel. Firstly, the generalized channel model is built to separate the parameters of IQI and wireless channel. Then an iterative estimation scheme of frequency-dependent IQI is designed at the initial stage of communication. Finally, based on the estimation result of IQI, the least square algorithm is utilized to estimate the channel-related parameters at each time of channel variation. Compared with the joint estimation schemes of IQI and channel, the proposed decoupled estimation scheme requires much lower training overhead at each time of channel variation. Simulation results demonstrate the good estimation performance of the proposed scheme.展开更多
In this paper, we propose directdetection optical orthogonal frequency division multiplexing superchannel (DDOOFDMS) and optical multiband receiving method (OMBR) to support a greater than 200 Gb/s data rate and l...In this paper, we propose directdetection optical orthogonal frequency division multiplexing superchannel (DDOOFDMS) and optical multiband receiving method (OMBR) to support a greater than 200 Gb/s data rate and longer distance for direct-detection systems. For the new OMBR, we discuss the optimum carriertosideband power ratio (CSPR) in the cases of backtoback and post transmission. We derive the analytical form for CSPR and theoretically verify it. A low overhead training method for estimating I/Q imbalance is also introduced in order to improve performance and maintain high system throughput. The experiment results show that these proposals enable an unprecedented data rate of 214 Gb/s (190 Gb/s without overhead) per wavelength over an unprecedented distance of 720 km SSMF in greater than 100 Gb/s DDOFDM systems.展开更多
In this paper, we describe a novel technique based on the flipped-exponential (FE) Nyquist pulse method for reducing peak-to-average power ratio (PAPR) in an optical direct-detection orthogonal frequency-division ...In this paper, we describe a novel technique based on the flipped-exponential (FE) Nyquist pulse method for reducing peak-to-average power ratio (PAPR) in an optical direct-detection orthogonal frequency-division multiplexing (DD-QFDM) system, The technique involves proper selection of the FE Nyquist pulses for shaping the different subcarriers of the OFDM. We apply this technique to a DD-OFDM transmission system to significantly reduce PAPR. We also investigate the sensitivity of a received OFDM signal with strong nonlinearity in a standard single-mode fiber (SMF).展开更多
Pilot data aided feed forward (PAFF) carrier recovery is essential for phase noise tracking in coherent optical receivers. This paper describes a new PAFF system based on new pilot arrangement and maximum likelihood...Pilot data aided feed forward (PAFF) carrier recovery is essential for phase noise tracking in coherent optical receivers. This paper describes a new PAFF system based on new pilot arrangement and maximum likelihood (ML) to estimate the phase jitter in coherent receiver- induced by local oscillator's lasers and sampling clock errors. Square M-ary quadrature amplitude modulation (M-QAM) (4, 16, 64, and 256) schemes were used. A detailed mathematical description of the method was presented. The system performance was evaluated through numerical simulations and compared to those with noisefree receiver (ideal receiver) and feed forward without ML. The simulation results show that PAFF performs near the expected ideal phase recovery. Results clearly suggest that ML significantly improves the tolerance of phase error variance. From bit error rate (BER) sensibility evaluation, it was clearly observed that the new estimation method performs better with a 4-QAM (or quadrature phase shift keying (QPSK)) format compared to three others square QAM schemes. Analog to digital converter (ADC) resolution effect on the system performance was analyzed in terms of Q-factor. Finite resolution effect on 4-QAM is negligible while it negatively affects the system performance when M increases.展开更多
Visible light communications(VLC)is considered as an effective supplement technology for next-generation(6G)communications due to its abundant spectrum,high power efficiency and easy deployment.Optical orthogonal freq...Visible light communications(VLC)is considered as an effective supplement technology for next-generation(6G)communications due to its abundant spectrum,high power efficiency and easy deployment.Optical orthogonal frequency division multiplexing(O-OFDM)is a common technology to obtain further promotion.In this paper,two typical O-OFDM schemes direct current biased O-OFDM(DCO-OFDM)and asymmetrically clipped O-OFDM(ACO-OFDM)are analyzed in terms of signal clipping at both transmitter and receiver under the constraints of maximum optical power and non-negative optical power.And effective electrical SNR models after signal clipping are proposed and verified by link simulation.Then a noise cancellation scheme is proposed based on received signal clipping and is proved to bring a significant gain for ACO-OFDM.By system simulation,we find that under a certain optical power limitation,most users can achieve above 4 Gbps in indoor scenario when modulation bandwidth of the light emit diode(LED)or laser diode(LD)is 1 GHz.Therefore,it can be expected that the throughput could reach tens Gbps when the LED/LD modulation bandwidth is increased and multiple LEDs/LDs are deployed.展开更多
Traditional orthogonal frequency division multiplexing(OFDM) transmitter is implemented by exploiting inverse fast Fourier transform(IFFT), up-sampling, and low pass shaping filter(LPSF) modules, which occupy a large ...Traditional orthogonal frequency division multiplexing(OFDM) transmitter is implemented by exploiting inverse fast Fourier transform(IFFT), up-sampling, and low pass shaping filter(LPSF) modules, which occupy a large number of hardware resources and severely lower down the operation speed. To address these limitations, we propose a novel OFDM transmitter architecture, by which the aforementioned modules can be discarded and replaced with some simple switches. In the proposed architecture, direct digital synthesis(DDS) method is employed to generate digital sub-carriers and to transform OFDM data from frequency domain to time domain. Through some sophisticated simplifications, the proposed architecture can avoid using multipliers and remarkably save hardware resources. Finally, comparative experiments are carried out on field programmable gate array(FPGA) platform which demonstrates that our DDS-based architecture saves more than half of the hardware resources and doubles the achievable maximum frequency compared with traditional structure.展开更多
100 G Ethernet is considered to become the next generation Ethernet standard for IP networks.Typical 100 Gb/s transmission systems and their performance are presented.Comparision and analysis for 100 Gb/s transmission...100 G Ethernet is considered to become the next generation Ethernet standard for IP networks.Typical 100 Gb/s transmission systems and their performance are presented.Comparision and analysis for 100 Gb/s transmission systems have been discussed.It is demonstrated that optical OFDM can be used in future 100 Gb/s/ch and long-haul system.展开更多
With the increasing requirements of the multicast services in the whole data traffic service, the optical multicast technology becomes a key technology supporting wide bandwidth and high speed multicasting communicati...With the increasing requirements of the multicast services in the whole data traffic service, the optical multicast technology becomes a key technology supporting wide bandwidth and high speed multicasting communication. The transmission efficiency, capacity and robustness of optical multicast network can be further improved by introducing network coding technology into optical multicast networks. Meanwhile, facing to demand of emerging rate-variable multi-granularity multicast service, a multi-path transmission scheme based on network coding for routing and spectrum allocation (RSA) is proposed. It can not only allocate spectrum resources effectively and flexibly for various-rate multicast traffic, but also balance the network load, improve network throughput and reduce transmission blocking rate. In this paper, RSA problem is decomposed into two subproblems, namely routing allocation based on network coding and spectrum allocation based on maximum spectrum first (MSF) strategy, which are solved sequentially. Simulation experiments are carried out to analyze transmission performance with proposed RSA scheme. The simulation results show that the proposed RSA mechanism can allocate spectrum resources efficiently and flexibly for multi-granularity multicast traffic. Compared with RSA schemes based on shortest path tree (SPT) and minimal spanning tree (MST), the proposed RSA scheme is more efficient for spectrum resource utilization and load balancing, and spectrum resource is saved more than 20%.展开更多
自适应光正交频分复用符号分解串行传输(Adaptive Optical Orthogonal Frequency Division Multiplexing Symbol Decomposition with Serial Transmission,O-OFDM-ASDST)可以抑制O-OFDM系统非线性失真,但在接收端将分解符号合并时会增...自适应光正交频分复用符号分解串行传输(Adaptive Optical Orthogonal Frequency Division Multiplexing Symbol Decomposition with Serial Transmission,O-OFDM-ASDST)可以抑制O-OFDM系统非线性失真,但在接收端将分解符号合并时会增大加性高斯白噪声(Additive White Gaussian Noise,AWGN),因此设计一种能够抑制AWGN的新型接收机.分析了O-OFDM分解符号的结构特征和可观测到的AWGN的最大偏移分量,基于此对接收分解符号进行预处理,尽可能恢复出原本等于限幅门限和零值的时域抽样值,再根据O-OFDM分解符号特征,重构接收分解符号.最后采用蒙特卡洛(Monte Carlo)误码率仿真方法,验证了接收机的有效性.展开更多
基金supported by the National High Technology Research and Development Program of China(Grant No.2009AA01A345)the National Basic Research Program of China(Grant No.2011CB302702)the National Natural Science Foundation of China(Grant No.60932004)
文摘This paper introduces a joint nonlinearity and chromatic dispersion pre-compensation method for coherent optical orthogonal frequency-division multiplexing systems. The research results show that this method can reduce the walk- off effect and can therefore equalize the nonlinear impairments effectively. Compared with the only other existing nonlinearity pre-compensation method, the joint nonlinearity and chromatic dispersion pre-compensation method is not only suitable for low-dispersion optical orthogonal frequency-division multiplexing system, but also effective for high- dispersion optical orthogonal frequency-division multiplexing transmission system with higher input power but without optical dispersion compensation. The suggested solution does not increase computation complexity compared with only nonlinearity pre-compensation method. For 40 Gbit/s coherent optical orthogonal frequency-division multiplexing 20 × 80 km standard single-mode fibre system, the suggested method can improve the nonlinear threshold (for Q 〉 10 dB) about 2.7, 1.2 and 1.0 dB, and the maximum Q factor about 1.2, 0.4 and 0.3 dB, for 2, 8 and 16 ps/(nm.km) dispersion coefficients.
文摘Contrary to the other multi-carrier modulation systems, the coherent optical orthogonal frequency division multiplexing communication system with an offset quadrature amplitude modulation (CO-OFDM-OQAM) possesses inherent imaginary interference (IMI). This has an important impact on the channel estimation process. Currently, a variety of frequency-domain channel estimation methods have been proposed. However, there are various problems that still exist. For instance, in order to reduce the influence of IMI, it is necessary to insert more guard intervals between the training sequence and the payload, leading to the occupation of excessive spectrum resources. In order to address this problem, this work designs a high spectral efficient frequency-domain channel estimation method for the polarization-division-multiplexing CO-OFDM-OQAM systems. First, the working principle of the proposed method is described in detail. Then, its spectral efficiency, power peak-to-average ratio, and channel estimation performance are studied based on simulations. The simulation results show that the proposed method improves the spectral efficiency without worsening the power peak-to-average ratio. The channel estimation capability of this method is verified in three scenarios of long-distance transmissions, including back-to-back, 100 km, and 200 km transmissions. .
基金the National High Technology 863 Research and Development of China(No.2015AA017102)the National Natural Science Foundation of China(NSFC)(Grant Nos.61575082,61435006,61525502,and 61490715)+2 种基金the Youth Science and Technology Innovation Talents of Guangdong(No.2015TQ01X606)Guangdong Provincial Natural Science Foundation(GDSF)(No.2015A030313328)Pearl River S&T Nova Program of Guangzhou(No.201710010051).
文摘As one solution to implement the largecapacity space division multiplexing(SDM)transmission systems,the mode division multiplexing(MDM)has gained much attention recently.The vector mode(VM),which is the eigenmode of the optical fiber,has also been adopted to realize the optical communications including the transmission over free-space optical(FSO)and optical fiber links.Considering the concerns on the short-reach optical interconnects,the low cost and high integration technologies should be developed.Direct detection(DD)with higher-order modulation formats in combination of MDM technologies could offer an available trade-off in system performance and complexity.We review demonstrations of FSO and fiber high-speed data transmission based on the VM MDM(VMDM)technologies.The special VMs,cylindrical vector beams(CVB),have been generated by the q-plate(QP)and characterized accordingly.And then they were used to implement the VMDM transmission with direct-detection orthogonal frequency division multiplexing(DD-OFDM).These demonstrations show the potential of VMDM-DD-OFDM technology in the large-capacity short-reach transmission links.
基金supported by the National Natural Science Foundation of China(6140123261471200+4 种基金6150124861501254)the China Postdoctoral Science Foundation(2014M561692)the Jiangsu Province Postdoctoral Science Foundation(1402087C)the NUPTSF(NY213063)
文摘The in-phase and quadrature-phase imbalance (IQI) is one of the major radio frequency impairments existing in orthogonal frequency division multiplexing (OFDM) systems with direct-conversion transceivers. During the transmission of the communication signal, the impact of IQI is coupled with channel impulse responses (CIR), which makes the traditional channel estimation schemes ineffective. A decoupled estimation scheme is proposed to separately estimate the frequency-dependent IQI and wireless channel. Firstly, the generalized channel model is built to separate the parameters of IQI and wireless channel. Then an iterative estimation scheme of frequency-dependent IQI is designed at the initial stage of communication. Finally, based on the estimation result of IQI, the least square algorithm is utilized to estimate the channel-related parameters at each time of channel variation. Compared with the joint estimation schemes of IQI and channel, the proposed decoupled estimation scheme requires much lower training overhead at each time of channel variation. Simulation results demonstrate the good estimation performance of the proposed scheme.
文摘In this paper, we propose directdetection optical orthogonal frequency division multiplexing superchannel (DDOOFDMS) and optical multiband receiving method (OMBR) to support a greater than 200 Gb/s data rate and longer distance for direct-detection systems. For the new OMBR, we discuss the optimum carriertosideband power ratio (CSPR) in the cases of backtoback and post transmission. We derive the analytical form for CSPR and theoretically verify it. A low overhead training method for estimating I/Q imbalance is also introduced in order to improve performance and maintain high system throughput. The experiment results show that these proposals enable an unprecedented data rate of 214 Gb/s (190 Gb/s without overhead) per wavelength over an unprecedented distance of 720 km SSMF in greater than 100 Gb/s DDOFDM systems.
基金supported by the National Science Foundation of China(Grant Nos.60977049)the National 863 High Tech Research and Development Program of china(Grant No.2009AA01Z220,2009AA01Z222)Program for Hunan Provincial Science and technology
文摘In this paper, we describe a novel technique based on the flipped-exponential (FE) Nyquist pulse method for reducing peak-to-average power ratio (PAPR) in an optical direct-detection orthogonal frequency-division multiplexing (DD-QFDM) system, The technique involves proper selection of the FE Nyquist pulses for shaping the different subcarriers of the OFDM. We apply this technique to a DD-OFDM transmission system to significantly reduce PAPR. We also investigate the sensitivity of a received OFDM signal with strong nonlinearity in a standard single-mode fiber (SMF).
文摘Pilot data aided feed forward (PAFF) carrier recovery is essential for phase noise tracking in coherent optical receivers. This paper describes a new PAFF system based on new pilot arrangement and maximum likelihood (ML) to estimate the phase jitter in coherent receiver- induced by local oscillator's lasers and sampling clock errors. Square M-ary quadrature amplitude modulation (M-QAM) (4, 16, 64, and 256) schemes were used. A detailed mathematical description of the method was presented. The system performance was evaluated through numerical simulations and compared to those with noisefree receiver (ideal receiver) and feed forward without ML. The simulation results show that PAFF performs near the expected ideal phase recovery. Results clearly suggest that ML significantly improves the tolerance of phase error variance. From bit error rate (BER) sensibility evaluation, it was clearly observed that the new estimation method performs better with a 4-QAM (or quadrature phase shift keying (QPSK)) format compared to three others square QAM schemes. Analog to digital converter (ADC) resolution effect on the system performance was analyzed in terms of Q-factor. Finite resolution effect on 4-QAM is negligible while it negatively affects the system performance when M increases.
文摘Visible light communications(VLC)is considered as an effective supplement technology for next-generation(6G)communications due to its abundant spectrum,high power efficiency and easy deployment.Optical orthogonal frequency division multiplexing(O-OFDM)is a common technology to obtain further promotion.In this paper,two typical O-OFDM schemes direct current biased O-OFDM(DCO-OFDM)and asymmetrically clipped O-OFDM(ACO-OFDM)are analyzed in terms of signal clipping at both transmitter and receiver under the constraints of maximum optical power and non-negative optical power.And effective electrical SNR models after signal clipping are proposed and verified by link simulation.Then a noise cancellation scheme is proposed based on received signal clipping and is proved to bring a significant gain for ACO-OFDM.By system simulation,we find that under a certain optical power limitation,most users can achieve above 4 Gbps in indoor scenario when modulation bandwidth of the light emit diode(LED)or laser diode(LD)is 1 GHz.Therefore,it can be expected that the throughput could reach tens Gbps when the LED/LD modulation bandwidth is increased and multiple LEDs/LDs are deployed.
基金Supported by the Educational Science Research Project of Hubei Province(B2014243)
文摘Traditional orthogonal frequency division multiplexing(OFDM) transmitter is implemented by exploiting inverse fast Fourier transform(IFFT), up-sampling, and low pass shaping filter(LPSF) modules, which occupy a large number of hardware resources and severely lower down the operation speed. To address these limitations, we propose a novel OFDM transmitter architecture, by which the aforementioned modules can be discarded and replaced with some simple switches. In the proposed architecture, direct digital synthesis(DDS) method is employed to generate digital sub-carriers and to transform OFDM data from frequency domain to time domain. Through some sophisticated simplifications, the proposed architecture can avoid using multipliers and remarkably save hardware resources. Finally, comparative experiments are carried out on field programmable gate array(FPGA) platform which demonstrates that our DDS-based architecture saves more than half of the hardware resources and doubles the achievable maximum frequency compared with traditional structure.
基金supported by NSFC(no60872035)Youthful foundation of UESTC JX0707Key Youthful foundation of UESTC JX0801
文摘100 G Ethernet is considered to become the next generation Ethernet standard for IP networks.Typical 100 Gb/s transmission systems and their performance are presented.Comparision and analysis for 100 Gb/s transmission systems have been discussed.It is demonstrated that optical OFDM can be used in future 100 Gb/s/ch and long-haul system.
文摘With the increasing requirements of the multicast services in the whole data traffic service, the optical multicast technology becomes a key technology supporting wide bandwidth and high speed multicasting communication. The transmission efficiency, capacity and robustness of optical multicast network can be further improved by introducing network coding technology into optical multicast networks. Meanwhile, facing to demand of emerging rate-variable multi-granularity multicast service, a multi-path transmission scheme based on network coding for routing and spectrum allocation (RSA) is proposed. It can not only allocate spectrum resources effectively and flexibly for various-rate multicast traffic, but also balance the network load, improve network throughput and reduce transmission blocking rate. In this paper, RSA problem is decomposed into two subproblems, namely routing allocation based on network coding and spectrum allocation based on maximum spectrum first (MSF) strategy, which are solved sequentially. Simulation experiments are carried out to analyze transmission performance with proposed RSA scheme. The simulation results show that the proposed RSA mechanism can allocate spectrum resources efficiently and flexibly for multi-granularity multicast traffic. Compared with RSA schemes based on shortest path tree (SPT) and minimal spanning tree (MST), the proposed RSA scheme is more efficient for spectrum resource utilization and load balancing, and spectrum resource is saved more than 20%.
文摘自适应光正交频分复用符号分解串行传输(Adaptive Optical Orthogonal Frequency Division Multiplexing Symbol Decomposition with Serial Transmission,O-OFDM-ASDST)可以抑制O-OFDM系统非线性失真,但在接收端将分解符号合并时会增大加性高斯白噪声(Additive White Gaussian Noise,AWGN),因此设计一种能够抑制AWGN的新型接收机.分析了O-OFDM分解符号的结构特征和可观测到的AWGN的最大偏移分量,基于此对接收分解符号进行预处理,尽可能恢复出原本等于限幅门限和零值的时域抽样值,再根据O-OFDM分解符号特征,重构接收分解符号.最后采用蒙特卡洛(Monte Carlo)误码率仿真方法,验证了接收机的有效性.