Co-ordination of directional over current relays(DOCR) requires the selection and setting of relays so as to sequentially isolate only that portion of the power system where an abnormality has occurred.The problem of ...Co-ordination of directional over current relays(DOCR) requires the selection and setting of relays so as to sequentially isolate only that portion of the power system where an abnormality has occurred.The problem of coordinating protective relays in electrical power systems consists of selecting suitable settings such that their fundamental protective function is met,given operational requirements of sensitivity,selectivity,reliability and speed.Directional over current relays are best suited for protection of an interconnected sub-station transmission system.One of the major problems associated with this type of protection is the difficulty in coordinating relays.To insure proper coordination,all the main/back up relay pairs must be determined.This paper presents an effective algorithm to determine the minimum number of break points and main/back up relay pairs using relative sequence matrix(RSM).A novel optimization technique based on evolutionary programming was developed using these main/back up relay pairs for directional over current relay coordination in multi-loop networks.Since the problem has multi-optimum points,conventional mathematics based optimization techniques may sometimes fail.Hence evolutionary programming(EP) was used,as it is a stochastic multi-point search optimization algorithm capable of escaping from the local optimum problem,giving a better chance of reaching a global optimum.The method developed was tested on an existing 6 bus,7 line system and better results were obtained than with conventional methods.展开更多
In order to effectively imitate the dynamic operation characteristics of the HVDC (high voltage direct current) power transmission system at a real ±500kV HVDC transmission project, the electromechanical-electr...In order to effectively imitate the dynamic operation characteristics of the HVDC (high voltage direct current) power transmission system at a real ±500kV HVDC transmission project, the electromechanical-electromagnetic transient hybrid simulation was carried out based on advanced digital power system simulator (ADPSS). In the simulation analysis, the built hybrid model's dynamic response outputs under three different fault conditions are considered, and by comparing with the selected fault recording waveforms, the validities of the simulation waveforms are estimated qualitatively. It can be ascertained that the hybrid simulation model has the ability to describe the HVDC system's dynamic change trends well under some special fault conditions.展开更多
随着中国经济的持续增长,对能源的需求也在不断上升。然而,由于一次能源与负荷中心的逆向分布,采用新能源进行大规模远距离输电已成为行业内的迫切需求。在众多输电技术中,基于换相换流器的高压直流输电技术(line commutated converter ...随着中国经济的持续增长,对能源的需求也在不断上升。然而,由于一次能源与负荷中心的逆向分布,采用新能源进行大规模远距离输电已成为行业内的迫切需求。在众多输电技术中,基于换相换流器的高压直流输电技术(line commutated converter high voltage direct current,LCC-HVDC)具有无功消耗特性,可能加剧电网的电压波动与无功平衡的问题。针对这一挑战,重点研究交直流混联电网,并构建了一个旨在优化无功功率的数学模型。为克服遗传算法在初始种群选取困难和易早熟的问题,对传统遗传算法进行了创新性改进。在改进后的IEEE 14节点系统和IEEE 39节点系统上进行系列实验验证,所提改进遗传算法展现出显著的实用性和有效性。该算法能够有效优化电网的无功功率,显著提升电网运行的稳定性和效率,为电网无功优化提供了一种新的解决方案。展开更多
Recently, introduction of renewable energy sources like wind power generation and photovoltaic power generation has been increasing from the viewpoint of environmental problems. However, renewable energy power supplie...Recently, introduction of renewable energy sources like wind power generation and photovoltaic power generation has been increasing from the viewpoint of environmental problems. However, renewable energy power supplies have unstable output due to the influence of weather conditions such as wind speed variations, which may cause fluctuations of voltage and frequency in the power system. This paper proposes fuzzy PD based virtual inertia control system to decrease frequency fluctuations in power system caused by fluctuating output of renewable energy sources. The proposed new method is based on the coordinated control of HVDC interconnection line and battery, and energy balancing control is also incorporated in it. Finally, it is concluded that the proposed system is very effective for suppressing the frequency fluctuations of the power system due to the large-scale wind power generation and solar power generation and also for keeping the energy balancing in the HVDC transmission line.展开更多
In recent years, environmental problems are becoming serious and renewable energy has attracted attention as their solutions. However, the electricity generation using the renewable energy has a demerit that the outpu...In recent years, environmental problems are becoming serious and renewable energy has attracted attention as their solutions. However, the electricity generation using the renewable energy has a demerit that the output becomes unstable because of intermittent characteristics, such as variations of wind speed or solar radiation intensity. Frequency fluctuations due to the installation of large scale wind farm (WF) and photovoltaics (PV) into the power system is a major concern. In order to solve the problem, this paper proposes two control methods using High Voltage Direct Current (HVDC) interconnection line to suppress the frequency fluctuations due to large scale of WF and PV. Comparative analysis between these two control methods is presented in this paper. One proposed method is a frequency control using a notch filter, and the other is using a deadband. Validity of the proposed methods is verified through simulation analyses, which is performed on a multi-machine power system model.展开更多
In recent years, injection of renewable energy such as solar power into the power grid is increasing. However, inclusion of large-scale intermittent-type renewable energy requires better management in proper understan...In recent years, injection of renewable energy such as solar power into the power grid is increasing. However, inclusion of large-scale intermittent-type renewable energy requires better management in proper understanding of grid’s variable characteristics and its protection systems. In this paper, the investigation on overvoltage issue is illustrated. Overvoltage in distribution feeder occurs when large amount of solar power is injected at low power demand. Another investigation is on false operation of overcurrent relays due to reverse power to the 33 kV loads. The potential solutions to the two issues are illustrated in the small-sized power grid system using bi-directional inverters on AC buses in charging battery banks and adjusting the relay current settings. The benefits of solar power injection are illustrated whereby output power from generators is decreased and transmission losses are reduced. Electrical Transient Analysis Program (ETAP) was used for investigations.展开更多
高压直流(high voltage direct current,HVDC)换流器具有一定的动态无功调节能力,充分利用换流站的无功调节能力,可显著改善HVDC系统的稳定性能。文中研究了HVDC系统稳态运行时的无功功率可调节能力,分析了有功功率和无功功率相互耦合...高压直流(high voltage direct current,HVDC)换流器具有一定的动态无功调节能力,充分利用换流站的无功调节能力,可显著改善HVDC系统的稳定性能。文中研究了HVDC系统稳态运行时的无功功率可调节能力,分析了有功功率和无功功率相互耦合的特性,以国际大电网(conference International des grands reseaux electriques,CIGRE)的HVDC标准测试模型和贵广Ⅱ直流输电工程模型为算例,对稳态工况的直流电流可运行范围进行了解析,进而求出整流、逆变两侧的无功功率可调节能力,并将其应用在无功控制中。研究发现,CIGRE的HVDC标准测试模型对于容性的无功功率和感性的无功功率调节能力相近,而贵广Ⅱ直流输电工程模型对感性无功的调节能力远大于对容性无功的调节能力。在电磁暂态仿真程序PSCAD/EMTDC中验证了无功功率可调节能力的正确性和应用价值。展开更多
为解决船舶中压直流(medium voltage direct current,MVDC)电力系统直流电流开断困难,以及发生短路时故障电流上升率高且峰值大的问题,提出一种基于耦合电抗器的阻容限流型固态直流断路器拓扑。以晶闸管(silicon controlled rectifier,S...为解决船舶中压直流(medium voltage direct current,MVDC)电力系统直流电流开断困难,以及发生短路时故障电流上升率高且峰值大的问题,提出一种基于耦合电抗器的阻容限流型固态直流断路器拓扑。以晶闸管(silicon controlled rectifier,SCR)作为主开断器件,通过耦合电抗器来辅助晶闸管开断,并在直流系统发生故障时,通过换流过程将阻容限流元件接入,有效限制故障电流上升率和峰值,减少故障开断所需时间。基于所提拓扑设计了6 kV/4.2 kA的直流断路器模型,在PSCAD/EMTDC中进行仿真,并与现有拓扑进行对比分析。仿真结果表明:所设计断路器可针对直流系统不同的运行状态,按照不同的控制策略顺利完成对直流电流的开断,并且在开断速度、限流能力和金属氧化物避雷器(metal oxide arrester,MOA)耗能方面均具有一定优势。展开更多
文摘Co-ordination of directional over current relays(DOCR) requires the selection and setting of relays so as to sequentially isolate only that portion of the power system where an abnormality has occurred.The problem of coordinating protective relays in electrical power systems consists of selecting suitable settings such that their fundamental protective function is met,given operational requirements of sensitivity,selectivity,reliability and speed.Directional over current relays are best suited for protection of an interconnected sub-station transmission system.One of the major problems associated with this type of protection is the difficulty in coordinating relays.To insure proper coordination,all the main/back up relay pairs must be determined.This paper presents an effective algorithm to determine the minimum number of break points and main/back up relay pairs using relative sequence matrix(RSM).A novel optimization technique based on evolutionary programming was developed using these main/back up relay pairs for directional over current relay coordination in multi-loop networks.Since the problem has multi-optimum points,conventional mathematics based optimization techniques may sometimes fail.Hence evolutionary programming(EP) was used,as it is a stochastic multi-point search optimization algorithm capable of escaping from the local optimum problem,giving a better chance of reaching a global optimum.The method developed was tested on an existing 6 bus,7 line system and better results were obtained than with conventional methods.
基金supported by the General Program of Chinese Postdoctoral Science Foundation under Grant No.2012M511595
文摘In order to effectively imitate the dynamic operation characteristics of the HVDC (high voltage direct current) power transmission system at a real ±500kV HVDC transmission project, the electromechanical-electromagnetic transient hybrid simulation was carried out based on advanced digital power system simulator (ADPSS). In the simulation analysis, the built hybrid model's dynamic response outputs under three different fault conditions are considered, and by comparing with the selected fault recording waveforms, the validities of the simulation waveforms are estimated qualitatively. It can be ascertained that the hybrid simulation model has the ability to describe the HVDC system's dynamic change trends well under some special fault conditions.
文摘随着中国经济的持续增长,对能源的需求也在不断上升。然而,由于一次能源与负荷中心的逆向分布,采用新能源进行大规模远距离输电已成为行业内的迫切需求。在众多输电技术中,基于换相换流器的高压直流输电技术(line commutated converter high voltage direct current,LCC-HVDC)具有无功消耗特性,可能加剧电网的电压波动与无功平衡的问题。针对这一挑战,重点研究交直流混联电网,并构建了一个旨在优化无功功率的数学模型。为克服遗传算法在初始种群选取困难和易早熟的问题,对传统遗传算法进行了创新性改进。在改进后的IEEE 14节点系统和IEEE 39节点系统上进行系列实验验证,所提改进遗传算法展现出显著的实用性和有效性。该算法能够有效优化电网的无功功率,显著提升电网运行的稳定性和效率,为电网无功优化提供了一种新的解决方案。
文摘Recently, introduction of renewable energy sources like wind power generation and photovoltaic power generation has been increasing from the viewpoint of environmental problems. However, renewable energy power supplies have unstable output due to the influence of weather conditions such as wind speed variations, which may cause fluctuations of voltage and frequency in the power system. This paper proposes fuzzy PD based virtual inertia control system to decrease frequency fluctuations in power system caused by fluctuating output of renewable energy sources. The proposed new method is based on the coordinated control of HVDC interconnection line and battery, and energy balancing control is also incorporated in it. Finally, it is concluded that the proposed system is very effective for suppressing the frequency fluctuations of the power system due to the large-scale wind power generation and solar power generation and also for keeping the energy balancing in the HVDC transmission line.
文摘In recent years, environmental problems are becoming serious and renewable energy has attracted attention as their solutions. However, the electricity generation using the renewable energy has a demerit that the output becomes unstable because of intermittent characteristics, such as variations of wind speed or solar radiation intensity. Frequency fluctuations due to the installation of large scale wind farm (WF) and photovoltaics (PV) into the power system is a major concern. In order to solve the problem, this paper proposes two control methods using High Voltage Direct Current (HVDC) interconnection line to suppress the frequency fluctuations due to large scale of WF and PV. Comparative analysis between these two control methods is presented in this paper. One proposed method is a frequency control using a notch filter, and the other is using a deadband. Validity of the proposed methods is verified through simulation analyses, which is performed on a multi-machine power system model.
文摘In recent years, injection of renewable energy such as solar power into the power grid is increasing. However, inclusion of large-scale intermittent-type renewable energy requires better management in proper understanding of grid’s variable characteristics and its protection systems. In this paper, the investigation on overvoltage issue is illustrated. Overvoltage in distribution feeder occurs when large amount of solar power is injected at low power demand. Another investigation is on false operation of overcurrent relays due to reverse power to the 33 kV loads. The potential solutions to the two issues are illustrated in the small-sized power grid system using bi-directional inverters on AC buses in charging battery banks and adjusting the relay current settings. The benefits of solar power injection are illustrated whereby output power from generators is decreased and transmission losses are reduced. Electrical Transient Analysis Program (ETAP) was used for investigations.
文摘高压直流(high voltage direct current,HVDC)换流器具有一定的动态无功调节能力,充分利用换流站的无功调节能力,可显著改善HVDC系统的稳定性能。文中研究了HVDC系统稳态运行时的无功功率可调节能力,分析了有功功率和无功功率相互耦合的特性,以国际大电网(conference International des grands reseaux electriques,CIGRE)的HVDC标准测试模型和贵广Ⅱ直流输电工程模型为算例,对稳态工况的直流电流可运行范围进行了解析,进而求出整流、逆变两侧的无功功率可调节能力,并将其应用在无功控制中。研究发现,CIGRE的HVDC标准测试模型对于容性的无功功率和感性的无功功率调节能力相近,而贵广Ⅱ直流输电工程模型对感性无功的调节能力远大于对容性无功的调节能力。在电磁暂态仿真程序PSCAD/EMTDC中验证了无功功率可调节能力的正确性和应用价值。
文摘为解决船舶中压直流(medium voltage direct current,MVDC)电力系统直流电流开断困难,以及发生短路时故障电流上升率高且峰值大的问题,提出一种基于耦合电抗器的阻容限流型固态直流断路器拓扑。以晶闸管(silicon controlled rectifier,SCR)作为主开断器件,通过耦合电抗器来辅助晶闸管开断,并在直流系统发生故障时,通过换流过程将阻容限流元件接入,有效限制故障电流上升率和峰值,减少故障开断所需时间。基于所提拓扑设计了6 kV/4.2 kA的直流断路器模型,在PSCAD/EMTDC中进行仿真,并与现有拓扑进行对比分析。仿真结果表明:所设计断路器可针对直流系统不同的运行状态,按照不同的控制策略顺利完成对直流电流的开断,并且在开断速度、限流能力和金属氧化物避雷器(metal oxide arrester,MOA)耗能方面均具有一定优势。