When the contacts of a medium-voltage DC air circuit breaker(DCCB) are separated, the energy distribution of the arc is determined by the formation process of the near-electrode sheath. Therefore, the voltage drop thr...When the contacts of a medium-voltage DC air circuit breaker(DCCB) are separated, the energy distribution of the arc is determined by the formation process of the near-electrode sheath. Therefore, the voltage drop through the near-electrode sheath is an important means to build up the arc voltage, which directly determines the current-limiting performance of the DCCB. A numerical model to describe the near-electrode sheath formation process can provide insight into the physical mechanism of the arc formation, and thus provide a method for arc energy regulation. In this work, we establish a two-dimensional axisymmetric time-varying model of a medium-voltage DCCB arc when interrupted by high current based on a fluid-chemical model involving 16 kinds of species and 46 collision reactions. The transient distributions of electron number density, positive and negative ion number density, net space charge density, axial electric field, axial potential between electrodes, and near-cathode sheath are obtained from the numerical model. The computational results show that the electron density in the arc column increases, then decreases, and then stabilizes during the near-cathode sheath formation process, and the arc column's diameter gradually becomes wider. The 11.14 V–12.33 V drops along the17 μm space charge layer away from the cathode(65.5 k V/m–72.5 k V/m) when the current varies from 20 k A–80 k A.The homogeneous external magnetic field has little effect on the distribution of particles in the near-cathode sheath core,but the electron number density at the near-cathode sheath periphery can increase as the magnetic field increases and the homogeneous external magnetic field will lead to arc diffusion. The validity of the numerical model can be proven by comparison with the experiment.展开更多
The nitrided layers mainly containing TiN dendrites were fabricated by direct current nitrogen arc melting method. The test results show that the layers are harder and more resistant to wear than the titanium substrat...The nitrided layers mainly containing TiN dendrites were fabricated by direct current nitrogen arc melting method. The test results show that the layers are harder and more resistant to wear than the titanium substrate. Arc traveling speeds and arc currents have an effect on both the microstructures and the properties of the layers. Decreasing the arc traveling speed or increasing the arc current can obviously enhance the hardness and the wear resistance of the nitrided layers.展开更多
The characteristics of nitrided layers prepared on commercially pure titanium substrates by direct current nitrogen arc are presented by scanning electron microscopy (SEM) and transmission electron microscopy (TEM...The characteristics of nitrided layers prepared on commercially pure titanium substrates by direct current nitrogen arc are presented by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) micrographs as well as X-ray diffraction ( XRD ). The titanium nitride ( TiN ) dendrites were fully developed with interconnected cellular morphologies at the top surface but grew almost perpendicular to the integrace with coarser arms in the middle area. Also less TiN was found near the interface. The energy inputs had an obvious effect on the microstructures and the hardness of the nitrided layers. The maximum micro-hardness was 2 500 HV at the top surface which was over 9 times higher than that of the substrate.展开更多
Based on the analysis of three-dimensional power conductor for DC arcfurnace, the electric arc deflection model was set up and the control system of the arc directionwas configured. According to the bus bar distributi...Based on the analysis of three-dimensional power conductor for DC arcfurnace, the electric arc deflection model was set up and the control system of the arc directionwas configured. According to the bus bar distribution at the bottom electrodes cooled by water, thearc direction control principle and its configuration were described. The simulation results showthat the control system can restrain the electric arc deflection and control the arc direction.展开更多
Detecting, real-time monitoring and early warning of underground water-bearing structures are critically important issues in prevention and mitigation of water inrush hazards in underground engineering. Direct current...Detecting, real-time monitoring and early warning of underground water-bearing structures are critically important issues in prevention and mitigation of water inrush hazards in underground engineering. Direct current (DC) resistivity method is a widely used method for routine detection, advanced detection and real-time monitoring of water-bearing structures, due to its high sensitivity to groundwater. In this study, the DC resistivity method applied to underground engineering is reviewed and discussed, including the observation mode, multiple inversions, and real-time monitoring. It is shown that a priori information constrained inversion is desirable to reduce the non-uniqueness of inversion, with which the accuracy of detection can be significantly improved. The focused resistivity method is prospective for advanced detection;with this method, the flanking interference can be reduced and the detection dis-tance is increased subsequently. The time-lapse resistivity inversion method is suitable for the regions with continuous conductivity changes, and it can be used to monitor water inrush in those regions. Based on above-mentioned features of various methods in terms of benefits and limitations, we propose a three-dimensional (3D) induced polarization method characterized with multi-electrode array, and introduce it into tunnels and mines combining with real-time monitoring with time-lapse inversion and cross-hole resistivity method. At last, the prospective applications of DC resistivity method are discussed as follows: (1) available advanced detection technology and instrument in tunnel excavated by tunnel boring machine (TBM), (2) high-resolution detection method in holes, (3) four-dimensional (4D) monitoring technology for water inrush sources, and (4) estimation of water volume in water-bearing structures.展开更多
The self-excited DC air circuit breaker(SE-DCCB)has been widely used in urban rail transit due to its excellent stability.It can realize forward and reverse interruption,but has difficulty interrupting small currents ...The self-excited DC air circuit breaker(SE-DCCB)has been widely used in urban rail transit due to its excellent stability.It can realize forward and reverse interruption,but has difficulty interrupting small currents due to the phenomenon of arc root sticking at the entrance of the arc chamber in the splitting process,which is known as arc root stagnation.A coupling model of the self-excited magnetic field and magnetohydrodynamics is established for the SE-DCCB with the traditional structure.The magnetic field,temperature and airflow distribution in the arc chamber are investigated with an interrupting current of 150 A.The simulation results show that the direction and magnitude of the magnetic blowout force are the dominant factors in the arc root stagnation.The local high temperature of the arc chamber due to arc root stagnation increases the obstruction effect of the airflow vortex on the arc root movement,which significantly increases the arc duration time of small current interruption.Based on the research,the structure of the magnetic conductance plate of the actual product is improved,which can improve the direction and magnitude of the magnetic blowout force at the arc root so as to restrain the development of the airflow vortex effectively and solve the problem of arc root stagnation when the small current is interrupted.The simulation results show that the circuit breaker with improved structure has a better performance for a small current interruption range from 100 A to 350 A.展开更多
It is difficult to detect and extinguish direct current(DC)arc in power electronics systems,and the arc could easily lead to a fire and cause great damage to surrounding equipment.A DC arc generation simulation unit i...It is difficult to detect and extinguish direct current(DC)arc in power electronics systems,and the arc could easily lead to a fire and cause great damage to surrounding equipment.A DC arc generation simulation unit is established,in which DC series arcs are generated by dragging the moving electrode away from the fixed one with the help of the stepper motor.In addition,a ferrite rod antenna is used to receive the electromagnetic radiation signals induced by the arcs.Based on experiments using the unit,the general characteristics of DC arc,including the pulse characteristics of arc current and source output in corresponding time window,and the frequency-domain characteristics of arc current,are studied.With discussion on three detection methods,it is concluded that the variation of current and voltage of arc,the spectrum of the arc current during the discontinuous intervals and the radiating electromagnetic signal are all features that can be adopted for detecting DC series arc.Therefore,a synthetic judgment method is suggested for further study.展开更多
Due to the low impedance characteristic of the high voltage direct current(HVDC)grid,the fault current rises extremely fast after a DC-side fault occurs,and this phenomenon seriously endangers the safety of the HVDC g...Due to the low impedance characteristic of the high voltage direct current(HVDC)grid,the fault current rises extremely fast after a DC-side fault occurs,and this phenomenon seriously endangers the safety of the HVDC grid.In order to suppress the rising speed of the fault current and reduce the current interruption requirements of the main breaker(MB),a fault current limiting hybrid DC circuit breaker(FCL-HCB)has been proposed in this paper,and it has the capability of bidirectional fault current limiting and fault current interruption.After the occurrence of the overcurrent in the HVDC grid,the current limiting circuit(CLC)of FCL-HCB is put into operation immediately,and whether the protected line is cut off or resumed to normal operation is decided according to the fault detection result.Compared with the traditional hybrid DC circuit breaker(HCB),the required number of semiconductor switches and the peak value of fault current after fault occurs are greatly reduced by adopting the proposed device.Extensive simulations also verify the effectiveness of the proposed FCL-HCB.展开更多
Optical centers of single-crystal diamond grown by DC arc plasma jet chemical vapor deposition(CVD) were examined using a low-temperature photoluminescence(PL) technique. The results show that most of the nitrogen-vac...Optical centers of single-crystal diamond grown by DC arc plasma jet chemical vapor deposition(CVD) were examined using a low-temperature photoluminescence(PL) technique. The results show that most of the nitrogen-vacancy(NV) complexes are present as NV-centers, although some H2 and H3 centers and B-aggregates are also present in the single-crystal diamond because of nitrogen aggregation resulting from high N_2 incorporation and the high mobility of vacancies under growth temperatures of 950–1000°C. Furthermore, emissions of radiation-induced defects were also detected at 389, 467.5, 550, and 588.6 nm in the PL spectra. The reason for the formation of these radiation-induced defects is not clear. Although a Ni-based alloy was used during the diamond growth, Ni-related emissions were not detected in the PL spectra. In addition, the silicon-vacancy(Si-V)-related emission line at 737 nm, which has been observed in the spectra of many previously reported microwave plasma chemical vapor deposition(MPCVD) synthetic diamonds, was absent in the PL spectra of the single-crystal diamond prepared in this work. The high density of NV-centers, along with the absence of Ni-related defects and Si-V centers, makes the single-crystal diamond grown by DC arc plasma jet CVD a promising material for applications in quantum computing.展开更多
Photovoltaics,energy storage,direct current and flexibility(PEDF)are important pillars of achievement on the path to manufacturing nearly zero energy buildings(NZEBs).HVAC systems,which are an important part of public...Photovoltaics,energy storage,direct current and flexibility(PEDF)are important pillars of achievement on the path to manufacturing nearly zero energy buildings(NZEBs).HVAC systems,which are an important part of public buildings,play a key role in adapting to PDEF systems.This research studied the basic principles and operational control strategies of a DC inverter heat pump using a DC distribution network with the aim of contributing to the development and application of small DC distribution systems.Along with the characteristics of a DC distribution network and different operating conditions,a DC inverter heat pump has the ability to adapt to changes in the DC bus voltage and adds flexibility to the system.Theoretical models of the DC inverter heat pump integrated with an ice storage unit were developed.The control strategies of the DC inverter heat pump system considered the influence of both room temperature and varied bus voltage.A simulation study was conducted using MATLAB&Simulink software with simulation results validated by experimental data.The results showed that:(1)The bus fluctuation under the rated working voltage had little effect on the operation of the unit;(2)When the bus voltage was fluctuating from 80%-90%or 105%-107%,the heat pump could still operate normally by reducing the frequency;(3)When the bus voltage was less than 80%or more than 107%,the unit needed to be shut down for the sake of equipment safety,so that the energy storage device could adjust to the sharp decrease or rise of voltage.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No.51977132)Key Special Science and Technology Project of Liaoning Province (Grant No.2020JH1/10100012)General Program of the Education Department of Liaoning Province (Grant No.LJKZ0126)。
文摘When the contacts of a medium-voltage DC air circuit breaker(DCCB) are separated, the energy distribution of the arc is determined by the formation process of the near-electrode sheath. Therefore, the voltage drop through the near-electrode sheath is an important means to build up the arc voltage, which directly determines the current-limiting performance of the DCCB. A numerical model to describe the near-electrode sheath formation process can provide insight into the physical mechanism of the arc formation, and thus provide a method for arc energy regulation. In this work, we establish a two-dimensional axisymmetric time-varying model of a medium-voltage DCCB arc when interrupted by high current based on a fluid-chemical model involving 16 kinds of species and 46 collision reactions. The transient distributions of electron number density, positive and negative ion number density, net space charge density, axial electric field, axial potential between electrodes, and near-cathode sheath are obtained from the numerical model. The computational results show that the electron density in the arc column increases, then decreases, and then stabilizes during the near-cathode sheath formation process, and the arc column's diameter gradually becomes wider. The 11.14 V–12.33 V drops along the17 μm space charge layer away from the cathode(65.5 k V/m–72.5 k V/m) when the current varies from 20 k A–80 k A.The homogeneous external magnetic field has little effect on the distribution of particles in the near-cathode sheath core,but the electron number density at the near-cathode sheath periphery can increase as the magnetic field increases and the homogeneous external magnetic field will lead to arc diffusion. The validity of the numerical model can be proven by comparison with the experiment.
文摘The nitrided layers mainly containing TiN dendrites were fabricated by direct current nitrogen arc melting method. The test results show that the layers are harder and more resistant to wear than the titanium substrate. Arc traveling speeds and arc currents have an effect on both the microstructures and the properties of the layers. Decreasing the arc traveling speed or increasing the arc current can obviously enhance the hardness and the wear resistance of the nitrided layers.
文摘The characteristics of nitrided layers prepared on commercially pure titanium substrates by direct current nitrogen arc are presented by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) micrographs as well as X-ray diffraction ( XRD ). The titanium nitride ( TiN ) dendrites were fully developed with interconnected cellular morphologies at the top surface but grew almost perpendicular to the integrace with coarser arms in the middle area. Also less TiN was found near the interface. The energy inputs had an obvious effect on the microstructures and the hardness of the nitrided layers. The maximum micro-hardness was 2 500 HV at the top surface which was over 9 times higher than that of the substrate.
文摘Based on the analysis of three-dimensional power conductor for DC arcfurnace, the electric arc deflection model was set up and the control system of the arc directionwas configured. According to the bus bar distribution at the bottom electrodes cooled by water, thearc direction control principle and its configuration were described. The simulation results showthat the control system can restrain the electric arc deflection and control the arc direction.
基金supported by the National Program on Key Basic Research Project of China (973 Program) (Nos. 2013CB036002 and 2014CB046901)the National Key Technology R&D Program of the Ministry of Science and Technology of China (No. 2013BAK06B01)the National Natural Science Foundation of China (No. 51139004)
文摘Detecting, real-time monitoring and early warning of underground water-bearing structures are critically important issues in prevention and mitigation of water inrush hazards in underground engineering. Direct current (DC) resistivity method is a widely used method for routine detection, advanced detection and real-time monitoring of water-bearing structures, due to its high sensitivity to groundwater. In this study, the DC resistivity method applied to underground engineering is reviewed and discussed, including the observation mode, multiple inversions, and real-time monitoring. It is shown that a priori information constrained inversion is desirable to reduce the non-uniqueness of inversion, with which the accuracy of detection can be significantly improved. The focused resistivity method is prospective for advanced detection;with this method, the flanking interference can be reduced and the detection dis-tance is increased subsequently. The time-lapse resistivity inversion method is suitable for the regions with continuous conductivity changes, and it can be used to monitor water inrush in those regions. Based on above-mentioned features of various methods in terms of benefits and limitations, we propose a three-dimensional (3D) induced polarization method characterized with multi-electrode array, and introduce it into tunnels and mines combining with real-time monitoring with time-lapse inversion and cross-hole resistivity method. At last, the prospective applications of DC resistivity method are discussed as follows: (1) available advanced detection technology and instrument in tunnel excavated by tunnel boring machine (TBM), (2) high-resolution detection method in holes, (3) four-dimensional (4D) monitoring technology for water inrush sources, and (4) estimation of water volume in water-bearing structures.
基金supported by National Natural Science Foundation of China(No.51977132)the Key Special Science and Technology Project of Liaoning Province(No.2020JH1/10100012)the General Program of the Education Department of Liaoning Province(No.LJKZ0126).
文摘The self-excited DC air circuit breaker(SE-DCCB)has been widely used in urban rail transit due to its excellent stability.It can realize forward and reverse interruption,but has difficulty interrupting small currents due to the phenomenon of arc root sticking at the entrance of the arc chamber in the splitting process,which is known as arc root stagnation.A coupling model of the self-excited magnetic field and magnetohydrodynamics is established for the SE-DCCB with the traditional structure.The magnetic field,temperature and airflow distribution in the arc chamber are investigated with an interrupting current of 150 A.The simulation results show that the direction and magnitude of the magnetic blowout force are the dominant factors in the arc root stagnation.The local high temperature of the arc chamber due to arc root stagnation increases the obstruction effect of the airflow vortex on the arc root movement,which significantly increases the arc duration time of small current interruption.Based on the research,the structure of the magnetic conductance plate of the actual product is improved,which can improve the direction and magnitude of the magnetic blowout force at the arc root so as to restrain the development of the airflow vortex effectively and solve the problem of arc root stagnation when the small current is interrupted.The simulation results show that the circuit breaker with improved structure has a better performance for a small current interruption range from 100 A to 350 A.
基金Project supported by International Cooperation Project in Shaanxi Province of China(2012KW-01)
文摘It is difficult to detect and extinguish direct current(DC)arc in power electronics systems,and the arc could easily lead to a fire and cause great damage to surrounding equipment.A DC arc generation simulation unit is established,in which DC series arcs are generated by dragging the moving electrode away from the fixed one with the help of the stepper motor.In addition,a ferrite rod antenna is used to receive the electromagnetic radiation signals induced by the arcs.Based on experiments using the unit,the general characteristics of DC arc,including the pulse characteristics of arc current and source output in corresponding time window,and the frequency-domain characteristics of arc current,are studied.With discussion on three detection methods,it is concluded that the variation of current and voltage of arc,the spectrum of the arc current during the discontinuous intervals and the radiating electromagnetic signal are all features that can be adopted for detecting DC series arc.Therefore,a synthetic judgment method is suggested for further study.
基金This project is funded by the Dongying Science Development Fund Project(DJ2021013).
文摘Due to the low impedance characteristic of the high voltage direct current(HVDC)grid,the fault current rises extremely fast after a DC-side fault occurs,and this phenomenon seriously endangers the safety of the HVDC grid.In order to suppress the rising speed of the fault current and reduce the current interruption requirements of the main breaker(MB),a fault current limiting hybrid DC circuit breaker(FCL-HCB)has been proposed in this paper,and it has the capability of bidirectional fault current limiting and fault current interruption.After the occurrence of the overcurrent in the HVDC grid,the current limiting circuit(CLC)of FCL-HCB is put into operation immediately,and whether the protected line is cut off or resumed to normal operation is decided according to the fault detection result.Compared with the traditional hybrid DC circuit breaker(HCB),the required number of semiconductor switches and the peak value of fault current after fault occurs are greatly reduced by adopting the proposed device.Extensive simulations also verify the effectiveness of the proposed FCL-HCB.
基金financially supported by the International Science and Technology Cooperation Program of China (No.2015DFG02100)the National Key Laboratory of Shock Wave and Detonation Physics (LSD) Project (No.YK20150101001)
文摘Optical centers of single-crystal diamond grown by DC arc plasma jet chemical vapor deposition(CVD) were examined using a low-temperature photoluminescence(PL) technique. The results show that most of the nitrogen-vacancy(NV) complexes are present as NV-centers, although some H2 and H3 centers and B-aggregates are also present in the single-crystal diamond because of nitrogen aggregation resulting from high N_2 incorporation and the high mobility of vacancies under growth temperatures of 950–1000°C. Furthermore, emissions of radiation-induced defects were also detected at 389, 467.5, 550, and 588.6 nm in the PL spectra. The reason for the formation of these radiation-induced defects is not clear. Although a Ni-based alloy was used during the diamond growth, Ni-related emissions were not detected in the PL spectra. In addition, the silicon-vacancy(Si-V)-related emission line at 737 nm, which has been observed in the spectra of many previously reported microwave plasma chemical vapor deposition(MPCVD) synthetic diamonds, was absent in the PL spectra of the single-crystal diamond prepared in this work. The high density of NV-centers, along with the absence of Ni-related defects and Si-V centers, makes the single-crystal diamond grown by DC arc plasma jet CVD a promising material for applications in quantum computing.
基金funded by State Grid Science&Technology Project“Research and Demonstration of Key Technologies on Electric-Heating Collaboration Cross-Network Mutual Supply for Typical Regional Clean Energy”,Grant Number 5400-202111575A-0-5-SF.
文摘Photovoltaics,energy storage,direct current and flexibility(PEDF)are important pillars of achievement on the path to manufacturing nearly zero energy buildings(NZEBs).HVAC systems,which are an important part of public buildings,play a key role in adapting to PDEF systems.This research studied the basic principles and operational control strategies of a DC inverter heat pump using a DC distribution network with the aim of contributing to the development and application of small DC distribution systems.Along with the characteristics of a DC distribution network and different operating conditions,a DC inverter heat pump has the ability to adapt to changes in the DC bus voltage and adds flexibility to the system.Theoretical models of the DC inverter heat pump integrated with an ice storage unit were developed.The control strategies of the DC inverter heat pump system considered the influence of both room temperature and varied bus voltage.A simulation study was conducted using MATLAB&Simulink software with simulation results validated by experimental data.The results showed that:(1)The bus fluctuation under the rated working voltage had little effect on the operation of the unit;(2)When the bus voltage was fluctuating from 80%-90%or 105%-107%,the heat pump could still operate normally by reducing the frequency;(3)When the bus voltage was less than 80%or more than 107%,the unit needed to be shut down for the sake of equipment safety,so that the energy storage device could adjust to the sharp decrease or rise of voltage.