This paper investigates superconvergence properties of the direct discontinuous Galerkin(DDG)method with interface corrections and the symmetric DDG method for diffusion equations.We apply the Fourier analysis techniq...This paper investigates superconvergence properties of the direct discontinuous Galerkin(DDG)method with interface corrections and the symmetric DDG method for diffusion equations.We apply the Fourier analysis technique to symbolically compute eigenvalues and eigenvectors of the amplification matrices for both DDG methods with different coefficient settings in the numerical fluxes.Based on the eigen-structure analysis,we carry out error estimates of the DDG solutions,which can be decomposed into three parts:(i)dissipation errors of the physically relevant eigenvalue,which grow linearly with the time and are of order 2k for P^(k)(k=2,3)approximations;(ii)projection error from a special projection of the exact solution,which is decreasing over the time and is related to the eigenvector corresponding to the physically relevant eigenvalue;(iii)dissipative errors of non-physically relevant eigenvalues,which decay exponentially with respect to the spatial mesh sizeΔx.We observe that the errors are sensitive to the choice of the numerical flux coefficient for even degree P^(2)approximations,but are not for odd degree P^(3)approximations.Numerical experiments are provided to verify the theoretical results.展开更多
In this paper,we develop bound-preserving discontinuous Galerkin(DG)methods for chemical reactive flows.There are several difficulties in constructing suitable numerical schemes.First of all,the density and internal e...In this paper,we develop bound-preserving discontinuous Galerkin(DG)methods for chemical reactive flows.There are several difficulties in constructing suitable numerical schemes.First of all,the density and internal energy are positive,and the mass fraction of each species is between 0 and 1.Second,due to the rapid reaction rate,the system may contain stiff sources,and the strong-stability-preserving explicit Runge-Kutta method may result in limited time-step sizes.To obtain physically relevant numerical approximations,we apply the bound-preserving technique to the DG methods.Though traditional positivity-preserving techniques can successfully yield positive density,internal energy,and mass fractions,they may not enforce the upper bound 1 of the mass fractions.To solve this problem,we need to(i)make sure the numerical fluxes in the equations of the mass fractions are consistent with that in the equation of the density;(ii)choose conservative time integrations,such that the summation of the mass fractions is preserved.With the above two conditions,the positive mass fractions have summation 1,and then,they are all between 0 and 1.For time discretization,we apply the modified Runge-Kutta/multi-step Patankar methods,which are explicit for the flux while implicit for the source.Such methods can handle stiff sources with relatively large time steps,preserve the positivity of the target variables,and keep the summation of the mass fractions to be 1.Finally,it is not straightforward to combine the bound-preserving DG methods and the Patankar time integrations.The positivity-preserving technique for DG methods requires positive numerical approximations at the cell interfaces,while Patankar methods can keep the positivity of the pre-selected point values of the target variables.To match the degree of freedom,we use polynomials on rectangular meshes for problems in two space dimensions.To evolve in time,we first read the polynomials at the Gaussian points.Then,suitable slope limiters can be applied to enforce the positivity of the solutions at those points,which can be preserved by the Patankar methods,leading to positive updated numerical cell averages.In addition,we use another slope limiter to get positive solutions used for the bound-preserving technique for the flux.Numerical examples are given to demonstrate the good performance of the proposed schemes.展开更多
In this paper,numerical experiments are carried out to investigate the impact of penalty parameters in the numerical traces on the resonance errors of high-order multiscale discontinuous Galerkin(DG)methods(Dong et al...In this paper,numerical experiments are carried out to investigate the impact of penalty parameters in the numerical traces on the resonance errors of high-order multiscale discontinuous Galerkin(DG)methods(Dong et al.in J Sci Comput 66:321–345,2016;Dong and Wang in J Comput Appl Math 380:1–11,2020)for a one-dimensional stationary Schrödinger equation.Previous work showed that penalty parameters were required to be positive in error analysis,but the methods with zero penalty parameters worked fine in numerical simulations on coarse meshes.In this work,by performing extensive numerical experiments,we discover that zero penalty parameters lead to resonance errors in the multiscale DG methods,and taking positive penalty parameters can effectively reduce resonance errors and make the matrix in the global linear system have better condition numbers.展开更多
In this paper,we construct a high-order discontinuous Galerkin(DG)method which can preserve the positivity of the density and the pressure for the viscous and resistive magnetohydrodynamics(VRMHD).To control the diver...In this paper,we construct a high-order discontinuous Galerkin(DG)method which can preserve the positivity of the density and the pressure for the viscous and resistive magnetohydrodynamics(VRMHD).To control the divergence error in the magnetic field,both the local divergence-free basis and the Godunov source term would be employed for the multi-dimensional VRMHD.Rigorous theoretical analyses are presented for one-dimensional and multi-dimensional DG schemes,respectively,showing that the scheme can maintain the positivity-preserving(PP)property under some CFL conditions when combined with the strong-stability-preserving time discretization.Then,general frameworks are established to construct the PP limiter for arbitrary order of accuracy DG schemes.Numerical tests demonstrate the effectiveness of the proposed schemes.展开更多
In this paper,we propose a novel Local Macroscopic Conservative(LoMaC)low rank tensor method with discontinuous Galerkin(DG)discretization for the physical and phase spaces for simulating the Vlasov-Poisson(VP)system....In this paper,we propose a novel Local Macroscopic Conservative(LoMaC)low rank tensor method with discontinuous Galerkin(DG)discretization for the physical and phase spaces for simulating the Vlasov-Poisson(VP)system.The LoMaC property refers to the exact local conservation of macroscopic mass,momentum,and energy at the discrete level.The recently developed LoMaC low rank tensor algorithm(arXiv:2207.00518)simultaneously evolves the macroscopic conservation laws of mass,momentum,and energy using the kinetic flux vector splitting;then the LoMaC property is realized by projecting the low rank kinetic solution onto a subspace that shares the same macroscopic observables.This paper is a generalization of our previous work,but with DG discretization to take advantage of its compactness and flexibility in handling boundary conditions and its superior accuracy in the long term.The algorithm is developed in a similar fashion as that for a finite difference scheme,by observing that the DG method can be viewed equivalently in a nodal fashion.With the nodal DG method,assuming a tensorized computational grid,one will be able to(i)derive differentiation matrices for different nodal points based on a DG upwind discretization of transport terms,and(ii)define a weighted inner product space based on the nodal DG grid points.The algorithm can be extended to the high dimensional problems by hierarchical Tucker(HT)decomposition of solution tensors and a corresponding conservative projection algorithm.In a similar spirit,the algorithm can be extended to DG methods on nodal points of an unstructured mesh,or to other types of discretization,e.g.,the spectral method in velocity direction.Extensive numerical results are performed to showcase the efficacy of the method.展开更多
In this study, we use the direct discontinuous Galerkin method to solve the generalized Burgers-Fisher equation. The method is based on the direct weak formulation of the Burgers-Fisher equation. The two adjacent cell...In this study, we use the direct discontinuous Galerkin method to solve the generalized Burgers-Fisher equation. The method is based on the direct weak formulation of the Burgers-Fisher equation. The two adjacent cells are jointed by a numerical flux that includes the convection numerical flux and the diffusion numerical flux. We solve the ordinary differential equations arising in the direct Galerkin method by using the strong stability preserving Runge^Kutta method. Numerical results are compared with the exact solution and the other results to show the accuracy and reliability of the method.展开更多
In this paper,we apply the Fourier analysis technique to investigate superconvergence properties of the direct disontinuous Galerkin(DDG)method(Liu and Yan in SIAM J Numer Anal 47(1):475-698,2009),the DDG method with ...In this paper,we apply the Fourier analysis technique to investigate superconvergence properties of the direct disontinuous Galerkin(DDG)method(Liu and Yan in SIAM J Numer Anal 47(1):475-698,2009),the DDG method with the interface correction(DDGIC)(Liu and Yan in Commun Comput Phys 8(3):541-564,2010),the symmetric DDG method(Vidden and Yan in Comput Math 31(6):638-662,2013),and the nonsymmetric DDG method(Yan in J Sci Comput 54(2):663-683,2013).We also include the study of the interior penalty DG(IPDG)method,due to its close relation to DDG methods.Error estimates are carried out for both P2 and P3 polynomial approximations.By investigating the quantitative errors at the Lobatto points,we show that the DDGIC and symmetric DDG methods are superior,in the sense of obtaining(k+2)th superconvergence orders for both P2 and P3 approximations.Superconvergence order of(k+2)is also observed for the IPDG method with P3 polynomial approximations.The errors are sensitive to the choice of the numerical flux coefficient for even degree P2 approximations,but are not for odd degree P3 approxi-mations.Numerical experiments are carried out at the same time and the numerical errors match well with the analytically estimated errors.展开更多
In this paper,a fully discrete stability analysis is carried out for the direct discontinuous Galerkin(DDG)methods coupled with Runge-Kutta-type implicit-explicit time marching,for solving one-dimensional linear conve...In this paper,a fully discrete stability analysis is carried out for the direct discontinuous Galerkin(DDG)methods coupled with Runge-Kutta-type implicit-explicit time marching,for solving one-dimensional linear convection-diffusion problems.In the spatial discretization,both the original DDG methods and the refined DDG methods with interface corrections are considered.In the time discretization,the convection term is treated explicitly and the diffusion term implicitly.By the energy method,we show that the corresponding fully discrete schemes are unconditionally stable,in the sense that the time-stepis only required to be upper bounded by a constant which is independent of the mesh size h.Opti-mal error estimate is also obtained by the aid of a special global projection.Numerical experiments are given to verify the stability and accuracy of the proposed schemes.展开更多
<div style="text-align:justify;"> In this paper, we study the error estimates for direct discontinuous Galerkin methods based on the upwind-biased fluxes. We use a newly global projection to obtain the...<div style="text-align:justify;"> In this paper, we study the error estimates for direct discontinuous Galerkin methods based on the upwind-biased fluxes. We use a newly global projection to obtain the optimal error estimates. The numerical experiments imply that <em>L</em><sup>2 </sup>norms error estimates can reach to order <em>k</em> + 1 by using time discretization methods. </div>展开更多
This paper provides a study on the stability and time-step constraints of solving the linearized Korteweg-de Vries(KdV)equation,using implicit-explicit(IMEX)Runge-Kutta(RK)time integration methods combined with either...This paper provides a study on the stability and time-step constraints of solving the linearized Korteweg-de Vries(KdV)equation,using implicit-explicit(IMEX)Runge-Kutta(RK)time integration methods combined with either finite difference(FD)or local discontinuous Galerkin(DG)spatial discretization.We analyze the stability of the fully discrete scheme,on a uniform mesh with periodic boundary conditions,using the Fourier method.For the linearized KdV equation,the IMEX schemes are stable under the standard Courant-Friedrichs-Lewy(CFL)conditionτ≤λh.Here,λis the CFL number,τis the time-step size,and h is the spatial mesh size.We study several IMEX schemes and characterize their CFL number as a function ofθ=d/h^(2)with d being the dispersion coefficient,which leads to several interesting observations.We also investigate the asymptotic behaviors of the CFL number for sufficiently refined meshes and derive the necessary conditions for the asymptotic stability of the IMEX-RK methods.Some numerical experiments are provided in the paper to illustrate the performance of IMEX methods under different time-step constraints.展开更多
In this work, we present the direct discontinuous Galerkin (DDG) method for the one-dimensional coupled nonlinear Schr5dinger (CNLS) equation. We prove that the new discontinuous Galerkin method preserves the disc...In this work, we present the direct discontinuous Galerkin (DDG) method for the one-dimensional coupled nonlinear Schr5dinger (CNLS) equation. We prove that the new discontinuous Galerkin method preserves the discrete mass conservations corresponding to the properties of the CNLS system. The ordinary differential equations obtained by the DDG space discretization is solved via a third-order stabilized Runge Kutta method. Numerical experiments show that the new DDG scheme gives stable and less diffusive results and has excellent long-time numerical behaviors for the CNLS equations.展开更多
In this work,we present the direct discontinuous Galerkin(DDG) method for the one-dimensional coupled nonlinear Schrdinger(CNLS) equation.We prove that the new discontinuous Galerkin method preserves the discrete mass...In this work,we present the direct discontinuous Galerkin(DDG) method for the one-dimensional coupled nonlinear Schrdinger(CNLS) equation.We prove that the new discontinuous Galerkin method preserves the discrete mass conservations corresponding to the properties of the CNLS system.The ordinary differential equations obtained by the DDG space discretization is solved via a third-order stabilized Runge-Kutta method.Numerical experiments show that the new DDG scheme gives stable and less diffusive results and has excellent long-time numerical behaviors for the CNLS equations.展开更多
A class of multidomain hybrid methods of direct discontinuous Galerkin(DDG)methods and central difference(CD)schemes for the viscous terms is pro-posed in this paper.Both conservative and nonconservative coupling mode...A class of multidomain hybrid methods of direct discontinuous Galerkin(DDG)methods and central difference(CD)schemes for the viscous terms is pro-posed in this paper.Both conservative and nonconservative coupling modes are dis-cussed.To treat the shock wave,the nonconservative coupling mode automatically switch to conservative coupling mode to preserve the conservative property when discontinuities pass through the artificial interface.To maintain the accuracy of the hybrid methods,the Lagrange interpolation polynomials and their derivatives are reconstructed to handle the coupling cells in the DDG subdomain,while the values of ghost points for the CD subdomain are calculated by the approximate polynomials from the DDG methods.The linear stabilities of these methods are demonstrated in detail through von-Neumann analysis.The multidomain hybrid DDG and CD meth-ods are then extended to one-and two-dimensional hyperbolic-parabolic equations.Numerical results validate that the multidomain hybrid methods are high-order ac-curate in the smooth regions,robust for viscous shock simulations and capable to save computational cost.展开更多
For the numerical simulation of compressible flows,normally different mesh sizes are expected in different regions.For example,smaller mesh sizes are required to improve the local numerical resolution in the regions w...For the numerical simulation of compressible flows,normally different mesh sizes are expected in different regions.For example,smaller mesh sizes are required to improve the local numerical resolution in the regions where the physical variables vary violently(for example,near the shock waves or in the boundary layers)and larger elements are expected for the regions where the solution is smooth.h-adaptive mesh has been widely used for complex flows.However,there are two difficulties when employing h-adaptivity for high-order discontinuous Galerkin(DG)methods.First,locally curved elements are required to precisely match the solid boundary,which significantly increases the difficulty to conduct the"refining"and"coarsening"operations since the curved information has to be maintained.Second,h-adaptivity could break the partition balancing,which would significantly affect the efficiency of parallel computing.In this paper,a robust and automatic h-adaptive method is developed for high-order DG methods on locally curved tetrahedral mesh,for which the curved geometries are maintained during the h-adaptivity.Furthermore,the reallocating and rebalancing of the computational loads on parallel clusters are conducted to maintain the parallel efficiency.Numerical results indicate that the introduced h-adaptive method is able to generate more reasonable mesh according to the structure of flow-fields.展开更多
The discontinuous Galerkin(DG) method is established and innovatively conducted on accurately simulating the evolution of blade-tip vortex and the aerodynamic characteristics of helicopter rotor. Firstly,the Reynolds-...The discontinuous Galerkin(DG) method is established and innovatively conducted on accurately simulating the evolution of blade-tip vortex and the aerodynamic characteristics of helicopter rotor. Firstly,the Reynolds-Averaged Navier-Stokes(RANS)equations in rotating reference frame are employed,and the embedded grid system is developed with the finite volume method(FVM)and the DG method conducted on the blade grid and background grid respectively. Besides,the Harten-Lax-Van Leer contact(HLLC)scheme with high-resolution and low-dissipation is employed for spatial discretization,and the explicit third-order Runge-Kutta scheme is used to accomplish the temporal discretization. Secondly,the aerodynamic characteristics and the evolution of blade-tip vortex for Caradonna-Tung rotor are simulated by the established CFD method,and the numerical results are in good agreement with experimental data,which well validates the accuracy of the DG method and shows the advantages of DG method on capturing the detailed blade-tip vortex compared with the FVM method. Finally,the evolution of tip vortex at different blade tip Mach numbers and collective pitches is discussed.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.11871428 and 12071214)the Natural Science Foundation for Colleges and Universities of Jiangsu Province of China(Grant No.20KJB110011)+1 种基金supported by the National Science Foundation(Grant No.DMS-1620335)and the Simons Foundation(Grant No.637716)supported by the National Natural Science Foundation of China(Grant Nos.11871428 and 12272347).
文摘This paper investigates superconvergence properties of the direct discontinuous Galerkin(DDG)method with interface corrections and the symmetric DDG method for diffusion equations.We apply the Fourier analysis technique to symbolically compute eigenvalues and eigenvectors of the amplification matrices for both DDG methods with different coefficient settings in the numerical fluxes.Based on the eigen-structure analysis,we carry out error estimates of the DDG solutions,which can be decomposed into three parts:(i)dissipation errors of the physically relevant eigenvalue,which grow linearly with the time and are of order 2k for P^(k)(k=2,3)approximations;(ii)projection error from a special projection of the exact solution,which is decreasing over the time and is related to the eigenvector corresponding to the physically relevant eigenvalue;(iii)dissipative errors of non-physically relevant eigenvalues,which decay exponentially with respect to the spatial mesh sizeΔx.We observe that the errors are sensitive to the choice of the numerical flux coefficient for even degree P^(2)approximations,but are not for odd degree P^(3)approximations.Numerical experiments are provided to verify the theoretical results.
基金supported by the NSF under Grant DMS-1818467Simons Foundation under Grant 961585.
文摘In this paper,we develop bound-preserving discontinuous Galerkin(DG)methods for chemical reactive flows.There are several difficulties in constructing suitable numerical schemes.First of all,the density and internal energy are positive,and the mass fraction of each species is between 0 and 1.Second,due to the rapid reaction rate,the system may contain stiff sources,and the strong-stability-preserving explicit Runge-Kutta method may result in limited time-step sizes.To obtain physically relevant numerical approximations,we apply the bound-preserving technique to the DG methods.Though traditional positivity-preserving techniques can successfully yield positive density,internal energy,and mass fractions,they may not enforce the upper bound 1 of the mass fractions.To solve this problem,we need to(i)make sure the numerical fluxes in the equations of the mass fractions are consistent with that in the equation of the density;(ii)choose conservative time integrations,such that the summation of the mass fractions is preserved.With the above two conditions,the positive mass fractions have summation 1,and then,they are all between 0 and 1.For time discretization,we apply the modified Runge-Kutta/multi-step Patankar methods,which are explicit for the flux while implicit for the source.Such methods can handle stiff sources with relatively large time steps,preserve the positivity of the target variables,and keep the summation of the mass fractions to be 1.Finally,it is not straightforward to combine the bound-preserving DG methods and the Patankar time integrations.The positivity-preserving technique for DG methods requires positive numerical approximations at the cell interfaces,while Patankar methods can keep the positivity of the pre-selected point values of the target variables.To match the degree of freedom,we use polynomials on rectangular meshes for problems in two space dimensions.To evolve in time,we first read the polynomials at the Gaussian points.Then,suitable slope limiters can be applied to enforce the positivity of the solutions at those points,which can be preserved by the Patankar methods,leading to positive updated numerical cell averages.In addition,we use another slope limiter to get positive solutions used for the bound-preserving technique for the flux.Numerical examples are given to demonstrate the good performance of the proposed schemes.
基金supported by the National Science Foundation grant DMS-1818998.
文摘In this paper,numerical experiments are carried out to investigate the impact of penalty parameters in the numerical traces on the resonance errors of high-order multiscale discontinuous Galerkin(DG)methods(Dong et al.in J Sci Comput 66:321–345,2016;Dong and Wang in J Comput Appl Math 380:1–11,2020)for a one-dimensional stationary Schrödinger equation.Previous work showed that penalty parameters were required to be positive in error analysis,but the methods with zero penalty parameters worked fine in numerical simulations on coarse meshes.In this work,by performing extensive numerical experiments,we discover that zero penalty parameters lead to resonance errors in the multiscale DG methods,and taking positive penalty parameters can effectively reduce resonance errors and make the matrix in the global linear system have better condition numbers.
基金supported by the NSFC Grant 11901555,12271499the Cyrus Tang Foundationsupported by the NSFC Grant 11871448 and 12126604.
文摘In this paper,we construct a high-order discontinuous Galerkin(DG)method which can preserve the positivity of the density and the pressure for the viscous and resistive magnetohydrodynamics(VRMHD).To control the divergence error in the magnetic field,both the local divergence-free basis and the Godunov source term would be employed for the multi-dimensional VRMHD.Rigorous theoretical analyses are presented for one-dimensional and multi-dimensional DG schemes,respectively,showing that the scheme can maintain the positivity-preserving(PP)property under some CFL conditions when combined with the strong-stability-preserving time discretization.Then,general frameworks are established to construct the PP limiter for arbitrary order of accuracy DG schemes.Numerical tests demonstrate the effectiveness of the proposed schemes.
基金supported by the NSF(Grant Nos.the NSF-DMS-1818924 and 2111253)the Air Force Office of Scientific Research FA9550-22-1-0390 and Department of Energy DE-SC0023164+1 种基金supported by the NSF(Grant Nos.NSF-DMS-1830838 and NSF-DMS-2111383)the Air Force Office of Scientific Research FA9550-22-1-0390.
文摘In this paper,we propose a novel Local Macroscopic Conservative(LoMaC)low rank tensor method with discontinuous Galerkin(DG)discretization for the physical and phase spaces for simulating the Vlasov-Poisson(VP)system.The LoMaC property refers to the exact local conservation of macroscopic mass,momentum,and energy at the discrete level.The recently developed LoMaC low rank tensor algorithm(arXiv:2207.00518)simultaneously evolves the macroscopic conservation laws of mass,momentum,and energy using the kinetic flux vector splitting;then the LoMaC property is realized by projecting the low rank kinetic solution onto a subspace that shares the same macroscopic observables.This paper is a generalization of our previous work,but with DG discretization to take advantage of its compactness and flexibility in handling boundary conditions and its superior accuracy in the long term.The algorithm is developed in a similar fashion as that for a finite difference scheme,by observing that the DG method can be viewed equivalently in a nodal fashion.With the nodal DG method,assuming a tensorized computational grid,one will be able to(i)derive differentiation matrices for different nodal points based on a DG upwind discretization of transport terms,and(ii)define a weighted inner product space based on the nodal DG grid points.The algorithm can be extended to the high dimensional problems by hierarchical Tucker(HT)decomposition of solution tensors and a corresponding conservative projection algorithm.In a similar spirit,the algorithm can be extended to DG methods on nodal points of an unstructured mesh,or to other types of discretization,e.g.,the spectral method in velocity direction.Extensive numerical results are performed to showcase the efficacy of the method.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61105130 and 61175124)
文摘In this study, we use the direct discontinuous Galerkin method to solve the generalized Burgers-Fisher equation. The method is based on the direct weak formulation of the Burgers-Fisher equation. The two adjacent cells are jointed by a numerical flux that includes the convection numerical flux and the diffusion numerical flux. We solve the ordinary differential equations arising in the direct Galerkin method by using the strong stability preserving Runge^Kutta method. Numerical results are compared with the exact solution and the other results to show the accuracy and reliability of the method.
基金the National Science Foundation grant DMS-1620335 and Simons Foundation Grant 637716Research work of Xinghui Zhong is supported by the National Natural Science Foundation of China(NSFC)(Grant no.11871428).
文摘In this paper,we apply the Fourier analysis technique to investigate superconvergence properties of the direct disontinuous Galerkin(DDG)method(Liu and Yan in SIAM J Numer Anal 47(1):475-698,2009),the DDG method with the interface correction(DDGIC)(Liu and Yan in Commun Comput Phys 8(3):541-564,2010),the symmetric DDG method(Vidden and Yan in Comput Math 31(6):638-662,2013),and the nonsymmetric DDG method(Yan in J Sci Comput 54(2):663-683,2013).We also include the study of the interior penalty DG(IPDG)method,due to its close relation to DDG methods.Error estimates are carried out for both P2 and P3 polynomial approximations.By investigating the quantitative errors at the Lobatto points,we show that the DDGIC and symmetric DDG methods are superior,in the sense of obtaining(k+2)th superconvergence orders for both P2 and P3 approximations.Superconvergence order of(k+2)is also observed for the IPDG method with P3 polynomial approximations.The errors are sensitive to the choice of the numerical flux coefficient for even degree P2 approximations,but are not for odd degree P3 approxi-mations.Numerical experiments are carried out at the same time and the numerical errors match well with the analytically estimated errors.
基金the NSFC grant 11871428the Nature Science Research Program for Colleges and Universities of Jiangsu Province grant 20KJB110011Qiang Zhang:Research supported by the NSFC grant 11671199。
文摘In this paper,a fully discrete stability analysis is carried out for the direct discontinuous Galerkin(DDG)methods coupled with Runge-Kutta-type implicit-explicit time marching,for solving one-dimensional linear convection-diffusion problems.In the spatial discretization,both the original DDG methods and the refined DDG methods with interface corrections are considered.In the time discretization,the convection term is treated explicitly and the diffusion term implicitly.By the energy method,we show that the corresponding fully discrete schemes are unconditionally stable,in the sense that the time-stepis only required to be upper bounded by a constant which is independent of the mesh size h.Opti-mal error estimate is also obtained by the aid of a special global projection.Numerical experiments are given to verify the stability and accuracy of the proposed schemes.
文摘<div style="text-align:justify;"> In this paper, we study the error estimates for direct discontinuous Galerkin methods based on the upwind-biased fluxes. We use a newly global projection to obtain the optimal error estimates. The numerical experiments imply that <em>L</em><sup>2 </sup>norms error estimates can reach to order <em>k</em> + 1 by using time discretization methods. </div>
基金supported by the NSF under Grant DMS-2208391sponsored by the NSF under Grant DMS-1753581.
文摘This paper provides a study on the stability and time-step constraints of solving the linearized Korteweg-de Vries(KdV)equation,using implicit-explicit(IMEX)Runge-Kutta(RK)time integration methods combined with either finite difference(FD)or local discontinuous Galerkin(DG)spatial discretization.We analyze the stability of the fully discrete scheme,on a uniform mesh with periodic boundary conditions,using the Fourier method.For the linearized KdV equation,the IMEX schemes are stable under the standard Courant-Friedrichs-Lewy(CFL)conditionτ≤λh.Here,λis the CFL number,τis the time-step size,and h is the spatial mesh size.We study several IMEX schemes and characterize their CFL number as a function ofθ=d/h^(2)with d being the dispersion coefficient,which leads to several interesting observations.We also investigate the asymptotic behaviors of the CFL number for sufficiently refined meshes and derive the necessary conditions for the asymptotic stability of the IMEX-RK methods.Some numerical experiments are provided in the paper to illustrate the performance of IMEX methods under different time-step constraints.
基金Project supported by the National Natural Science Foundation of China (Grant No 11171038).
文摘In this work, we present the direct discontinuous Galerkin (DDG) method for the one-dimensional coupled nonlinear Schr5dinger (CNLS) equation. We prove that the new discontinuous Galerkin method preserves the discrete mass conservations corresponding to the properties of the CNLS system. The ordinary differential equations obtained by the DDG space discretization is solved via a third-order stabilized Runge Kutta method. Numerical experiments show that the new DDG scheme gives stable and less diffusive results and has excellent long-time numerical behaviors for the CNLS equations.
基金Project supported by the National Natural Science Foundation of China (Grant No 11171038)
文摘In this work,we present the direct discontinuous Galerkin(DDG) method for the one-dimensional coupled nonlinear Schrdinger(CNLS) equation.We prove that the new discontinuous Galerkin method preserves the discrete mass conservations corresponding to the properties of the CNLS system.The ordinary differential equations obtained by the DDG space discretization is solved via a third-order stabilized Runge-Kutta method.Numerical experiments show that the new DDG scheme gives stable and less diffusive results and has excellent long-time numerical behaviors for the CNLS equations.
基金supported by the National Natural Science Foundation of China(Grant No.12001031).
文摘A class of multidomain hybrid methods of direct discontinuous Galerkin(DDG)methods and central difference(CD)schemes for the viscous terms is pro-posed in this paper.Both conservative and nonconservative coupling modes are dis-cussed.To treat the shock wave,the nonconservative coupling mode automatically switch to conservative coupling mode to preserve the conservative property when discontinuities pass through the artificial interface.To maintain the accuracy of the hybrid methods,the Lagrange interpolation polynomials and their derivatives are reconstructed to handle the coupling cells in the DDG subdomain,while the values of ghost points for the CD subdomain are calculated by the approximate polynomials from the DDG methods.The linear stabilities of these methods are demonstrated in detail through von-Neumann analysis.The multidomain hybrid DDG and CD meth-ods are then extended to one-and two-dimensional hyperbolic-parabolic equations.Numerical results validate that the multidomain hybrid methods are high-order ac-curate in the smooth regions,robust for viscous shock simulations and capable to save computational cost.
基金supported by the funding of the Key Laboratory of Aerodynamic Noise Control(No.ANCL20190103)the State Key Laboratory of Aerodynamics(No.SKLA20180102)+1 种基金the Aeronautical Science Foundation of China(Nos.2018ZA52002,2019ZA052011)the National Natural Science Foundation of China(Nos.61672281,61732006)。
文摘For the numerical simulation of compressible flows,normally different mesh sizes are expected in different regions.For example,smaller mesh sizes are required to improve the local numerical resolution in the regions where the physical variables vary violently(for example,near the shock waves or in the boundary layers)and larger elements are expected for the regions where the solution is smooth.h-adaptive mesh has been widely used for complex flows.However,there are two difficulties when employing h-adaptivity for high-order discontinuous Galerkin(DG)methods.First,locally curved elements are required to precisely match the solid boundary,which significantly increases the difficulty to conduct the"refining"and"coarsening"operations since the curved information has to be maintained.Second,h-adaptivity could break the partition balancing,which would significantly affect the efficiency of parallel computing.In this paper,a robust and automatic h-adaptive method is developed for high-order DG methods on locally curved tetrahedral mesh,for which the curved geometries are maintained during the h-adaptivity.Furthermore,the reallocating and rebalancing of the computational loads on parallel clusters are conducted to maintain the parallel efficiency.Numerical results indicate that the introduced h-adaptive method is able to generate more reasonable mesh according to the structure of flow-fields.
基金supported by the National Natural Science Foundation of China(Nos.12072156, 12032012)the Foundation of Rotor Aerodynamic Key Laboratory (No.RAL20190102)the Priority Academic Program Development Project of Jiangsu Higher Education Institutions(PAPD)。
文摘The discontinuous Galerkin(DG) method is established and innovatively conducted on accurately simulating the evolution of blade-tip vortex and the aerodynamic characteristics of helicopter rotor. Firstly,the Reynolds-Averaged Navier-Stokes(RANS)equations in rotating reference frame are employed,and the embedded grid system is developed with the finite volume method(FVM)and the DG method conducted on the blade grid and background grid respectively. Besides,the Harten-Lax-Van Leer contact(HLLC)scheme with high-resolution and low-dissipation is employed for spatial discretization,and the explicit third-order Runge-Kutta scheme is used to accomplish the temporal discretization. Secondly,the aerodynamic characteristics and the evolution of blade-tip vortex for Caradonna-Tung rotor are simulated by the established CFD method,and the numerical results are in good agreement with experimental data,which well validates the accuracy of the DG method and shows the advantages of DG method on capturing the detailed blade-tip vortex compared with the FVM method. Finally,the evolution of tip vortex at different blade tip Mach numbers and collective pitches is discussed.