For bistatic multiple-input multiple-output(MIMO)radar,this paper presents a robust and direction finding method in strong impulse noise environment.By means of a new lower order covariance,the method is effective in ...For bistatic multiple-input multiple-output(MIMO)radar,this paper presents a robust and direction finding method in strong impulse noise environment.By means of a new lower order covariance,the method is effective in suppressing impulse noise and achieving superior direction finding performance using the maximum likelihood(ML)estimation method.A quantum equilibrium optimizer algorithm(QEOA)is devised to resolve the corresponding objective function for efficient and accurate direc-tion finding.The results of simulation reveal the capability of the presented method in success rate and root mean square error over existing direction-finding methods in different application situations,e.g.,locating coherent signal sources with very few snapshots in strong impulse noise.Other than that,the Cramér-Rao bound(CRB)under impulse noise environment has been drawn to test the capability of the presented method.展开更多
High-resolution non-emissive displays based on electrochromic tungsten oxides(WOx)are crucial for future near-eye virtual/augmented reality interactions,given their impressive attributes such as high environmental sta...High-resolution non-emissive displays based on electrochromic tungsten oxides(WOx)are crucial for future near-eye virtual/augmented reality interactions,given their impressive attributes such as high environmental stability,ideal outdoor readability,and low energy consumption.However,the limited intrinsic structure of inorganic materials has presented a significant challenge in achieving precise patterning/pixelation at the micron scale.Here,we successfully developed the direct photolithography for WOx nanoparticles based on in situ photo-induced ligand exchange.This strategy enabled us to achieve ultra-high resolution efficiently(line width<4μm,the best resolution for reported inorganic electrochromic materials).Additionally,the resulting device exhibited impressive electrochromic performance,such as fast response(<1 s at 0 V),high coloration efficiency(119.5 cm^(2) C^(−1)),good optical modulation(55.9%),and durability(>3600 cycles),as well as promising applications in electronic logos,pixelated displays,flexible electronics,etc.The success and advancements presented here are expected to inspire and accelerate research and development(R&D)in high-resolution non-emissive displays and other ultra-fine micro-electronics.展开更多
BACKGROUND Depression is a significant psychiatric disorder with particularly high prevalence among adolescents.This mental health condition can have severe consequences,including academic failure,social withdrawal,an...BACKGROUND Depression is a significant psychiatric disorder with particularly high prevalence among adolescents.This mental health condition can have severe consequences,including academic failure,social withdrawal,and suicidal behavior.Given the increasing rate of depression in this age group,understanding the underlying biological mechanisms is essential for early detection and intervention.Recent studies have suggested that immune markers play a role in the pathophysiology of depression,prompting further investigation of their potential association with depressive symptoms in adolescents.AIM To investigate the relationship between immune markers(monocytes,lymphocytes,and direct bilirubin)and the incidence and severity of depression among adolescents.METHODS This cross-sectional study recruited 145 adolescent patients with depression[male(M)/female(F)=38/107]from Jiangbin Hospital in Guangxi,Zhuang and 163 healthy controls(M/F=77/86)from routine health check-ups.Blood samples were collected after an overnight fast.Depression severity was measured using the Zung Self-Rating Depression Scale.The inclusion criteria were age 12-24 years,diagnosis of depressive disorder(ICD-10),and no recent antidepressant use.The exclusion criteria included psychiatric comorbidities and serious somatic diseases.Key statistical methods included group comparisons and correlation analyses.RESULTS There was a higher prevalence of females in the depression group(P<0.001).Significant age differences were observed between the groups(Z=9.43,P<0.001).The depression group had higher monocyte(Z=3.43,P<0.001)and lymphocyte(t=2.29,P<0.05)counts,and higher serum direct bilirubin levels(Z=4.72,P<0.001).Monocyte count varied significantly according to depression severity,with lower counts in the mild group(Z=-2.90,P<0.05).A negative correlation between age and lymphocyte counts was observed(ρ=-0.22,P<0.01).Logistic regression analysis showed that serum direct bilirubin levels significantly predicted depression.CONCLUSION The potential role of elevated levels of immune markers in the early detection of depression in adolescents has been highlighted.Therefore,it is necessary to explore further the relationships between these immune markers and depression.展开更多
Microporosity formed in the solidification process of Al alloys is detrimental to the alloy properties.A two-dimensional cellular automaton(CA)model was developed to simulate the microstructure and microporosity forma...Microporosity formed in the solidification process of Al alloys is detrimental to the alloy properties.A two-dimensional cellular automaton(CA)model was developed to simulate the microstructure and microporosity formation in Al-Cu alloys,considering variations in Cu content and solidification rate.The results indicate that the Cu content primarily influences the growth of microporosity.To validate the model,directional solidification experiments were conducted on Al-Cu alloys with varing Cu contents and withdrawal rates.The experimental results of dendrites and microporosity characteristics agree well with the predictions from the developed model,thus confirming the validity of the model.The alloy’s liquidus temperature,dendrite morphology,and hydrogen saturation solubility arising from different Cu contents have significant effects on microporosity morphology.The withdrawal rate primarily affects the nucleation of hydrogen microporosity by altering cooling rates and dendritic growth rates,resulting in different microporosity characteristics.展开更多
Understanding the mesoscopic tensile fracture damage of rock is the basis of evaluating the deterioration process of mechanical properties of heat-damaged rock. For this, tensile tests of rocks under high-temperature ...Understanding the mesoscopic tensile fracture damage of rock is the basis of evaluating the deterioration process of mechanical properties of heat-damaged rock. For this, tensile tests of rocks under high-temperature treatment were conducted with a ϕ75 mm split Hopkinson tension bar (SHTB) to investigate the mesoscopic fracture and damage properties of rock. An improved scanning electron microscopy (SEM) experimental method was used to analyze the tensile fracture surfaces of rock samples. Qualitative and quantitative analyses were performed to assess evolution of mesoscopic damage of heat-damaged rock under tensile loading. A constitutive model describing the mesoscopic fractal damage under thermo-mechanical coupling was established. The results showed that the high temperatures significantly reduced the tensile strength and fracture surface roughness of the red sandstone. The three-dimensional (3D) reconstruction of the fracture surface of the samples that experienced tensile failure at 900 °C showed a flat surface. The standard deviation of elevation and slope angle of specimen fracture surface first increased and then decreased with increasing temperature. The threshold for brittle fracture of the heat-damaged red sandstone specimens was 600 °C. Beyond this threshold temperature, local ductile fracture occurred, resulting in plastic deformation of the fracture surface during tensile fracturing. With increase of temperature, the internal meso-structure of samples was strengthened slightly at first and then deteriorated gradually, which was consistent with the change of macroscopic mechanical properties of red sandstone. The mesoscopic characteristics, such as the number, mean side length, maximum area, porosity, and fractal dimension of crack, exhibited an initial decline, followed by a gradual increase. The development of microcracks in samples had significant influence on mesoscopic fractal dimension. The mesoscopic fractal characteristics were used to establish a mesoscopic fractal damage constitutive model for red sandstone, and the agreement between the theoretical and experimental results validated the proposed model.展开更多
The existing direction of arrival (DOA) estimation algorithms based on the electromagnetic vector sensors array barely deal with the coexisting of independent and coherent signals. A two-dimensional direction findin...The existing direction of arrival (DOA) estimation algorithms based on the electromagnetic vector sensors array barely deal with the coexisting of independent and coherent signals. A two-dimensional direction finding method using an L-shape electromagnetic vector sensors array is proposed. According to this method, the DOAs of the independent signals and the coherent signals are estimated separately, so that the array aperture can be exploited sufficiently. Firstly, the DOAs of the independent signals are estimated by the estimation of signal parameters via rotational invariance techniques, and the influence of the co- herent signals can be eliminated by utilizing the property of the coherent signals. Then the data covariance matrix containing the information of the coherent signals only is obtained by exploiting the Toeplitz property of the independent signals, and an improved polarimetric angular smoothing technique is proposed to de-correlate the coherent signals. This new method is more practical in actual signal environment than common DOA estimation algorithms and can expand the array aperture. Simulation results are presented to show the estimating performance of the proposed method.展开更多
In this paper,a low complexity ESPRIT algorithm based on power method and Orthogo- nal-triangular (QR) decomposition is presented for direction finding,which does not require a priori knowledge of source number and th...In this paper,a low complexity ESPRIT algorithm based on power method and Orthogo- nal-triangular (QR) decomposition is presented for direction finding,which does not require a priori knowledge of source number and the predetermined threshold (separates the signal and noise ei- gen-values).Firstly,according to the estimation of noise subspace obtained by the power method,a novel source number detection method without eigen-decomposition is proposed based on QR de- composition.Furthermore,the eigenvectors of signal subspace can be determined according to Q matrix and then the directions of signals could be computed by the ESPRIT algorithm.To determine the source number and subspace,the computation complexity of the proposed algorithm is approximated as (2log_2 n+2.67)M^3,where n is the power of covariance matrix and M is the number of array ele- ments.Compared with the Single Vector Decomposition (SVD) based algorithm,it has a substantial computational saving with the approximation performance.The simulation results demonstrate its effectiveness and robustness.展开更多
The antenna geometry strategy for direction finding (DF) with multiple-input multiple-output (MIMO) radars is studied. One case, usually encountered is practical applications, is consi- dered. For a directional an...The antenna geometry strategy for direction finding (DF) with multiple-input multiple-output (MIMO) radars is studied. One case, usually encountered is practical applications, is consi- dered. For a directional antenna geometry with a prior direction, the trace-optimal (TO) criterion (minimizing the trace) on the av- erage Cramer-Rao bound (CRB) matrix is employed. A qualitative explanation for antenna geometry is provided, which is a combi- natorial optimization problem. In the numerical example section, it is shown that the antenna geometries, designed by the proposed strategy, outperform the representative DF antenna geometries.展开更多
A direct method to find the first integral for two-dimensional autonomous system in polar coordinates is suggested. It is shown that if the equation of motion expressed by differential 1-forms for a given autonomous H...A direct method to find the first integral for two-dimensional autonomous system in polar coordinates is suggested. It is shown that if the equation of motion expressed by differential 1-forms for a given autonomous Hamiltonian system is multiplied by a set of multiplicative functions, then the general expression of the first integral can be obtained, An example is given to illustrate the application of the results.展开更多
Understanding the anisotropic creep behaviors of shale under direct shearing is a challenging issue.In this context,we conducted shear-creep and steady-creep tests on shale with five bedding orientations (i.e.0°,...Understanding the anisotropic creep behaviors of shale under direct shearing is a challenging issue.In this context,we conducted shear-creep and steady-creep tests on shale with five bedding orientations (i.e.0°,30°,45°,60°,and 90°),under multiple levels of direct shearing for the first time.The results show that the anisotropic creep of shale exhibits a significant stress-dependent behavior.Under a low shear stress,the creep compliance of shale increases linearly with the logarithm of time at all bedding orientations,and the increase depends on the bedding orientation and creep time.Under high shear stress conditions,the creep compliance of shale is minimal when the bedding orientation is 0°,and the steady-creep rate of shale increases significantly with increasing bedding orientations of 30°,45°,60°,and 90°.The stress-strain values corresponding to the inception of the accelerated creep stage show an increasing and then decreasing trend with the bedding orientation.A semilogarithmic model that could reflect the stress dependence of the steady-creep rate while considering the hardening and damage process is proposed.The model minimizes the deviation of the calculated steady-state creep rate from the observed value and reveals the behavior of the bedding orientation's influence on the steady-creep rate.The applicability of the five classical empirical creep models is quantitatively evaluated.It shows that the logarithmic model can well explain the experimental creep strain and creep rate,and it can accurately predict long-term shear creep deformation.Based on an improved logarithmic model,the variations in creep parameters with shear stress and bedding orientations are discussed.With abovementioned findings,a mathematical method for constructing an anisotropic shear creep model of shale is proposed,which can characterize the nonlinear dependence of the anisotropic shear creep behavior of shale on the bedding orientation.展开更多
Neurogenesis is a tightly regulated process in time and space both in the developing embryo and in adult neurogenic niches.A drastic change in the transcriptome and proteome of radial glial cells or neural stem cells ...Neurogenesis is a tightly regulated process in time and space both in the developing embryo and in adult neurogenic niches.A drastic change in the transcriptome and proteome of radial glial cells or neural stem cells towards the neuronal state is achieved due to sophisticated mechanisms of epigenetic,transcriptional,and post-transcriptional regulation.Understanding these neurogenic mechanisms is of major importance,not only for shedding light on very complex and crucial developmental processes,but also for the identification of putative reprogramming factors,that harbor hierarchically central regulatory roles in the course of neurogenesis and bare thus the capacity to drive direct reprogramming towards the neuronal fate.The major transcriptional programs that orchestrate the neurogenic process have been the focus of research for many years and key neurogenic transcription factors,as well as repressor complexes,have been identified and employed in direct reprogramming protocols to convert non-neuronal cells,into functional neurons.The post-transcriptional regulation of gene expression during nervous system development has emerged as another important and intricate regulatory layer,strongly contributing to the complexity of the mechanisms controlling neurogenesis and neuronal function.In particular,recent advances are highlighting the importance of specific RNA binding proteins that control major steps of mRNA life cycle during neurogenesis,such as alternative splicing,polyadenylation,stability,and translation.Apart from the RNA binding proteins,microRNAs,a class of small non-coding RNAs that block the translation of their target mRNAs,have also been shown to play crucial roles in all the stages of the neurogenic process,from neural stem/progenitor cell proliferation,neuronal differentiation and migration,to functional maturation.Here,we provide an overview of the most prominent post-transcriptional mechanisms mediated by RNA binding proteins and microRNAs during the neurogenic process,giving particular emphasis on the interplay of specific RNA binding proteins with neurogenic microRNAs.Taking under consideration that the molecular mechanisms of neurogenesis exert high similarity to the ones driving direct neuronal reprogramming,we also discuss the current advances in in vitro and in vivo direct neuronal reprogramming approaches that have employed microRNAs or RNA binding proteins as reprogramming factors,highlighting the so far known mechanisms of their reprogramming action.展开更多
Lightweight aluminum(Al)alloys have been widely used in frontier fields like aerospace and automotive industries,which attracts great interest in additive manufacturing(AM)to process high-value Al parts.As a mainstrea...Lightweight aluminum(Al)alloys have been widely used in frontier fields like aerospace and automotive industries,which attracts great interest in additive manufacturing(AM)to process high-value Al parts.As a mainstream AM technique,laser-directed energy deposition(LDED)shows good scalability to meet the requirements for large-format component manufacturing and repair.However,LDED Al alloys are highly challenging due to their inherent poor printability(e.g.low laser absorption,high oxidation sensitivity and cracking tendency).To further promote the development of LDED high-performance Al alloys,this review offers a deep understanding of the challenges and strategies to improve printability in LDED Al alloys.The porosity,cracking,distortion,inclusions,element evaporation and resultant inferior mechanical properties(worse than laser powder bed fusion)are the key challenges in LDED Al alloys.Processing parameter optimizations,in-situ alloy design,reinforcing particle addition and field assistance are the efficient approaches to improving the printability and performance of LDED Al alloys.The underlying correlations between processes,alloy innovation,characteristic microstructures,and achievable performances in LDED Al alloys are discussed.The benchmark mechanical properties and primary strengthening mechanism of LDED Al alloys are summarized.This review aims to provide a critical and in-depth evaluation of current progress in LDED Al alloys.Future opportunities and perspectives in LDED high-performance Al alloys are also outlined.展开更多
BACKGROUND Dislocation rates after hemiarthroplasty reportedly vary from 1%to 17%.This serious complication is associated with increased morbidity and mortality rates.Approaches to this surgery are still debated,with ...BACKGROUND Dislocation rates after hemiarthroplasty reportedly vary from 1%to 17%.This serious complication is associated with increased morbidity and mortality rates.Approaches to this surgery are still debated,with no consensus regarding the superiority of any single approach.AIM To compare early postoperative complications after implementing the direct anterior and posterior approaches(PL)for hip hemiarthroplasty after femoral neck fractures.METHODS This is a comparative,retrospective,single-center cohort study conducted at a university hospital.Between March 2008 and December 2018,273 patients(a total of 280 hips)underwent bipolar hemiarthroplasties(n=280)for displaced femoral neck fractures using either the PL(n=171)or the minimally invasive direct anterior approach(DAA)(n=109).The choice of approach was related to the surgeons’practices;the implant types were similar and unrelated to the approach.Dislocation rates and other complications were reviewed after a minimum followup of 6 mo.RESULTS Both treatment groups had similarly aged patients(mean age:82 years),sex ratios,patient body mass indexes,and patient comorbidities.Surgical data(surgery delay time,operative time,and blood loss volume)did not differ significantly between the groups.The 30 d mortality rate was higher in the PL group(9.9%)than in the DAA group(3.7%),but the difference was not statistically significant(P=0.052).Among the one-month survivors,a significantly higher rate of dislocation was observed in the PL group(14/154;9.1%)than in the DAA group(0/105;0%)(P=0.002).Of the 14 patients with dislocation,8 underwent revision surgery for recurrent instability(posterior group),and one of them had 2 additional procedures due to a deep infection.The rate of other complications(e.g.,perioperative and early postoperative periprosthetic fractures and infection-related complications)did not differ significantly between the groups.CONCLUSION These findings suggest that the DAA to bipolar hemiarthroplasty for patients with femoral neck fractures is associated with a lower dislocation rate(<1%)than the PL.展开更多
The top goal of modern medicine is treating disease without destroying organ structures and making patients as healthy as they were before their sickness.Minimally invasive surgery(MIS)has dominated the surgical realm...The top goal of modern medicine is treating disease without destroying organ structures and making patients as healthy as they were before their sickness.Minimally invasive surgery(MIS)has dominated the surgical realm because of its lesser invasiveness.However,changes in anatomical structures of the body and reconstruction of internal organs or different organs are common after traditional surgery or MIS,decreasing the quality of life of patients post-operation.Thus,I propose a new treatment mode,super MIS(SMIS),which is defined as“curing a disease or lesion which used to be treated by MIS while preserving the integrity of the organs”.In this study,I describe the origin,definition,operative channels,advantages,and future perspectives of SMIS.展开更多
The problem considered in this paper is to interpolate a virtual uniform array froma real two-dimensional array with arbitrary geometry via an interpolation matrix. The key to thisproblem is how to arrange these virtu...The problem considered in this paper is to interpolate a virtual uniform array froma real two-dimensional array with arbitrary geometry via an interpolation matrix. The key to thisproblem is how to arrange these virtual sensors. It is shown that the virtual uniform linear arrayshould have the same main-lobe beam-pattern as the real array over an angular sector of interest.Simulation results are presented to illustrate the application of virtual array in direction finding.展开更多
Sensor location uncertainty of array degrades severely the performance of eigenstruc-ture based direction finding system.A new calibration method of sensor location is presentedwith three far field sources whose direc...Sensor location uncertainty of array degrades severely the performance of eigenstruc-ture based direction finding system.A new calibration method of sensor location is presentedwith three far field sources whose directions are not known accurately.A signal subspace basediteration algorithm for sensor location calibration is developed and its convergence to the globaloptimal point has been shown.The guide line for selecting directions of calibrating sources isgiven.Simulation results illustrate that the new method is successful and practicable.展开更多
In this paper, Bayesian technique of direction finding based on two different priorities is described. Some useful formulas are deduced. The performance of the method and the influence of the priors on direction findi...In this paper, Bayesian technique of direction finding based on two different priorities is described. Some useful formulas are deduced. The performance of the method and the influence of the priors on direction finding are demonstrated by computer simulations.展开更多
Additive manufacturing provides achievability for the fabrication of bimetallic and multi-material structures;however,the material compatibility and bondability directly affect the parts’formability and final quality...Additive manufacturing provides achievability for the fabrication of bimetallic and multi-material structures;however,the material compatibility and bondability directly affect the parts’formability and final quality.It is essential to understand the underlying printability of different material combinations based on an adapted process.Here,the printability disparities of two common and attractive material combinations(nickel-and iron-based alloys)are evaluated at the macro and micro levels via laser directed energy deposition(DED).The deposition processes were captured using in situ high-speed imaging,and the dissimilarities in melt pool features and track morphology were quantitatively investigated within specific process windows.Moreover,the microstructure diversity of the tracks and blocks processed with varied material pairs was comparatively elaborated and,complemented with the informative multi-physics modeling,the presented non-uniformity in mechanical properties(microhardness)among the heterogeneous material pairs was rationalized.The differences in melt flow induced by the unlike thermophysical properties of the material pairs and the resulting element intermixing and localized re-alloying during solidification dominate the presented dissimilarity in printability among the material combinations.This work provides an in-depth understanding of the phenomenological differences in the deposition of dissimilar materials and aims to guide more reliable DED forming of bimetallic parts.展开更多
Ceramic oxides,renowned for their exceptional combination of mechanical,thermal,and chemical properties,are indispensable in numerous crucial applications across diverse engineering fields.However,conventional manufac...Ceramic oxides,renowned for their exceptional combination of mechanical,thermal,and chemical properties,are indispensable in numerous crucial applications across diverse engineering fields.However,conventional manufacturing methods frequently grapple with limitations,such as challenges in shaping intricate geometries,extended processing durations,elevated porosity,and substantial shrinkage deformations.Direct additive manufacturing(dAM)technology stands out as a state-of-the-art solution for ceramic oxides production.It facilitates the one-step fabrication of high-performance,intricately designed components characterized by dense structures.Importantly,dAM eliminates the necessity for post-heat treatments,streamlining the manufacturing process and enhancing overall efficiency.This study undertakes a comprehensive review of recent developments in dAM for ceramic oxides,with a specific emphasis on the laser powder bed fusion and laser directed energy deposition techniques.A thorough investigation is conducted into the shaping quality,microstructure,and properties of diverse ceramic oxides produced through dAM.Critical examination is given to key aspects including feedstock preparation,laser-material coupling,formation and control of defects,in-situ monitoring and simulation.This paper concludes by outlining future trends and potential breakthrough directions,taking into account current gaps in this rapidly evolving field.展开更多
The wide-band direction finding is one of hit and difficult task in array signal processing. This paper generalizes narrow-band deterministic maximum likelihood direction finding algorithm to the wideband case, and so...The wide-band direction finding is one of hit and difficult task in array signal processing. This paper generalizes narrow-band deterministic maximum likelihood direction finding algorithm to the wideband case, and so constructions an object function, then utilizes genetic algorithm for nonlinear global optimization. Direction of arrival is estimated without preprocessing of array data and so the algorithm eliminates the effect of pre-estimate on the final estimation. The algorithm is applied on uniform linear array and extensive simulation results prove the efficacy of the algorithm. In the process of simulation, we obtain the relation between estimation error and parameters of genetic algorithm.展开更多
基金This work was supported by the National Natural Science Foundation of China(62073093)the Postdoctoral Scientific Research Developmental Fund of Heilongjiang Province(LBH-Q19098)+1 种基金the Heilongjiang Provincial Natural Science Foundation of China(LH2020F017)the Key Laboratory of Advanced Marine Communication and Information Technology,Ministry of Industry and Information Technology.
文摘For bistatic multiple-input multiple-output(MIMO)radar,this paper presents a robust and direction finding method in strong impulse noise environment.By means of a new lower order covariance,the method is effective in suppressing impulse noise and achieving superior direction finding performance using the maximum likelihood(ML)estimation method.A quantum equilibrium optimizer algorithm(QEOA)is devised to resolve the corresponding objective function for efficient and accurate direc-tion finding.The results of simulation reveal the capability of the presented method in success rate and root mean square error over existing direction-finding methods in different application situations,e.g.,locating coherent signal sources with very few snapshots in strong impulse noise.Other than that,the Cramér-Rao bound(CRB)under impulse noise environment has been drawn to test the capability of the presented method.
基金supported by the National Key R&D Program of China(2022YFB3606501,2022YFB3602902)the Key projects of National Natural Science Foundation of China(62234004)+8 种基金the National Natural Science Foundation of China(U23A2092)Pioneer and Leading Goose R&D Program of Zhejiang(2024C01191,2024C01092)Innovation and Entrepreneurship Team of Zhejiang Province(2021R01003)Ningbo Key Technologies R&D Program(2022Z085),Ningbo 3315 Programme(2020A-01-B)YONGJIANG Talent Introduction Programme(2021A-038-B,2021A-159-G)“Innovation Yongjiang 2035”Key R&D Programme(2024Z146)Ningbo JiangBei District public welfare science and technology project(2022C07)the China National Postdoctoral Program for Innovative Talents(grant no.BX20240391)the China Postdoctoral Science Foundation(grant no.2023M743623).
文摘High-resolution non-emissive displays based on electrochromic tungsten oxides(WOx)are crucial for future near-eye virtual/augmented reality interactions,given their impressive attributes such as high environmental stability,ideal outdoor readability,and low energy consumption.However,the limited intrinsic structure of inorganic materials has presented a significant challenge in achieving precise patterning/pixelation at the micron scale.Here,we successfully developed the direct photolithography for WOx nanoparticles based on in situ photo-induced ligand exchange.This strategy enabled us to achieve ultra-high resolution efficiently(line width<4μm,the best resolution for reported inorganic electrochromic materials).Additionally,the resulting device exhibited impressive electrochromic performance,such as fast response(<1 s at 0 V),high coloration efficiency(119.5 cm^(2) C^(−1)),good optical modulation(55.9%),and durability(>3600 cycles),as well as promising applications in electronic logos,pixelated displays,flexible electronics,etc.The success and advancements presented here are expected to inspire and accelerate research and development(R&D)in high-resolution non-emissive displays and other ultra-fine micro-electronics.
文摘BACKGROUND Depression is a significant psychiatric disorder with particularly high prevalence among adolescents.This mental health condition can have severe consequences,including academic failure,social withdrawal,and suicidal behavior.Given the increasing rate of depression in this age group,understanding the underlying biological mechanisms is essential for early detection and intervention.Recent studies have suggested that immune markers play a role in the pathophysiology of depression,prompting further investigation of their potential association with depressive symptoms in adolescents.AIM To investigate the relationship between immune markers(monocytes,lymphocytes,and direct bilirubin)and the incidence and severity of depression among adolescents.METHODS This cross-sectional study recruited 145 adolescent patients with depression[male(M)/female(F)=38/107]from Jiangbin Hospital in Guangxi,Zhuang and 163 healthy controls(M/F=77/86)from routine health check-ups.Blood samples were collected after an overnight fast.Depression severity was measured using the Zung Self-Rating Depression Scale.The inclusion criteria were age 12-24 years,diagnosis of depressive disorder(ICD-10),and no recent antidepressant use.The exclusion criteria included psychiatric comorbidities and serious somatic diseases.Key statistical methods included group comparisons and correlation analyses.RESULTS There was a higher prevalence of females in the depression group(P<0.001).Significant age differences were observed between the groups(Z=9.43,P<0.001).The depression group had higher monocyte(Z=3.43,P<0.001)and lymphocyte(t=2.29,P<0.05)counts,and higher serum direct bilirubin levels(Z=4.72,P<0.001).Monocyte count varied significantly according to depression severity,with lower counts in the mild group(Z=-2.90,P<0.05).A negative correlation between age and lymphocyte counts was observed(ρ=-0.22,P<0.01).Logistic regression analysis showed that serum direct bilirubin levels significantly predicted depression.CONCLUSION The potential role of elevated levels of immune markers in the early detection of depression in adolescents has been highlighted.Therefore,it is necessary to explore further the relationships between these immune markers and depression.
基金financially supported by the National Natural Science Foundation of China(Grant No.51875211)the Beijing Natural Science Foundation(Grant No.L223001)。
文摘Microporosity formed in the solidification process of Al alloys is detrimental to the alloy properties.A two-dimensional cellular automaton(CA)model was developed to simulate the microstructure and microporosity formation in Al-Cu alloys,considering variations in Cu content and solidification rate.The results indicate that the Cu content primarily influences the growth of microporosity.To validate the model,directional solidification experiments were conducted on Al-Cu alloys with varing Cu contents and withdrawal rates.The experimental results of dendrites and microporosity characteristics agree well with the predictions from the developed model,thus confirming the validity of the model.The alloy’s liquidus temperature,dendrite morphology,and hydrogen saturation solubility arising from different Cu contents have significant effects on microporosity morphology.The withdrawal rate primarily affects the nucleation of hydrogen microporosity by altering cooling rates and dendritic growth rates,resulting in different microporosity characteristics.
基金supported by The National Natural Science Foundation of China(Grant Nos.12272411 and 42007259).
文摘Understanding the mesoscopic tensile fracture damage of rock is the basis of evaluating the deterioration process of mechanical properties of heat-damaged rock. For this, tensile tests of rocks under high-temperature treatment were conducted with a ϕ75 mm split Hopkinson tension bar (SHTB) to investigate the mesoscopic fracture and damage properties of rock. An improved scanning electron microscopy (SEM) experimental method was used to analyze the tensile fracture surfaces of rock samples. Qualitative and quantitative analyses were performed to assess evolution of mesoscopic damage of heat-damaged rock under tensile loading. A constitutive model describing the mesoscopic fractal damage under thermo-mechanical coupling was established. The results showed that the high temperatures significantly reduced the tensile strength and fracture surface roughness of the red sandstone. The three-dimensional (3D) reconstruction of the fracture surface of the samples that experienced tensile failure at 900 °C showed a flat surface. The standard deviation of elevation and slope angle of specimen fracture surface first increased and then decreased with increasing temperature. The threshold for brittle fracture of the heat-damaged red sandstone specimens was 600 °C. Beyond this threshold temperature, local ductile fracture occurred, resulting in plastic deformation of the fracture surface during tensile fracturing. With increase of temperature, the internal meso-structure of samples was strengthened slightly at first and then deteriorated gradually, which was consistent with the change of macroscopic mechanical properties of red sandstone. The mesoscopic characteristics, such as the number, mean side length, maximum area, porosity, and fractal dimension of crack, exhibited an initial decline, followed by a gradual increase. The development of microcracks in samples had significant influence on mesoscopic fractal dimension. The mesoscopic fractal characteristics were used to establish a mesoscopic fractal damage constitutive model for red sandstone, and the agreement between the theoretical and experimental results validated the proposed model.
基金supported by the National Natural Science Foundation of China (61102106)the Fundamental Research Funds for the Central Universities (HEUCF1208 HEUCF100801)
文摘The existing direction of arrival (DOA) estimation algorithms based on the electromagnetic vector sensors array barely deal with the coexisting of independent and coherent signals. A two-dimensional direction finding method using an L-shape electromagnetic vector sensors array is proposed. According to this method, the DOAs of the independent signals and the coherent signals are estimated separately, so that the array aperture can be exploited sufficiently. Firstly, the DOAs of the independent signals are estimated by the estimation of signal parameters via rotational invariance techniques, and the influence of the co- herent signals can be eliminated by utilizing the property of the coherent signals. Then the data covariance matrix containing the information of the coherent signals only is obtained by exploiting the Toeplitz property of the independent signals, and an improved polarimetric angular smoothing technique is proposed to de-correlate the coherent signals. This new method is more practical in actual signal environment than common DOA estimation algorithms and can expand the array aperture. Simulation results are presented to show the estimating performance of the proposed method.
基金Supported by the National Natural Science Foundation of China (No.60102005).
文摘In this paper,a low complexity ESPRIT algorithm based on power method and Orthogo- nal-triangular (QR) decomposition is presented for direction finding,which does not require a priori knowledge of source number and the predetermined threshold (separates the signal and noise ei- gen-values).Firstly,according to the estimation of noise subspace obtained by the power method,a novel source number detection method without eigen-decomposition is proposed based on QR de- composition.Furthermore,the eigenvectors of signal subspace can be determined according to Q matrix and then the directions of signals could be computed by the ESPRIT algorithm.To determine the source number and subspace,the computation complexity of the proposed algorithm is approximated as (2log_2 n+2.67)M^3,where n is the power of covariance matrix and M is the number of array ele- ments.Compared with the Single Vector Decomposition (SVD) based algorithm,it has a substantial computational saving with the approximation performance.The simulation results demonstrate its effectiveness and robustness.
基金supported by the National Natural Science Foundation of China(6107211761302142)
文摘The antenna geometry strategy for direction finding (DF) with multiple-input multiple-output (MIMO) radars is studied. One case, usually encountered is practical applications, is consi- dered. For a directional antenna geometry with a prior direction, the trace-optimal (TO) criterion (minimizing the trace) on the av- erage Cramer-Rao bound (CRB) matrix is employed. A qualitative explanation for antenna geometry is provided, which is a combi- natorial optimization problem. In the numerical example section, it is shown that the antenna geometries, designed by the proposed strategy, outperform the representative DF antenna geometries.
文摘A direct method to find the first integral for two-dimensional autonomous system in polar coordinates is suggested. It is shown that if the equation of motion expressed by differential 1-forms for a given autonomous Hamiltonian system is multiplied by a set of multiplicative functions, then the general expression of the first integral can be obtained, An example is given to illustrate the application of the results.
基金funded by the National Natural Science Foundation of China(Grant Nos.U22A20166 and 12172230)the Guangdong Basic and Applied Basic Research Foundation(Grant No.2023A1515012654)+1 种基金funded by the National Natural Science Foundation of China(Grant Nos.U22A20166 and 12172230)the Guangdong Basic and Applied Basic Research Foundation(Grant No.2023A1515012654)。
文摘Understanding the anisotropic creep behaviors of shale under direct shearing is a challenging issue.In this context,we conducted shear-creep and steady-creep tests on shale with five bedding orientations (i.e.0°,30°,45°,60°,and 90°),under multiple levels of direct shearing for the first time.The results show that the anisotropic creep of shale exhibits a significant stress-dependent behavior.Under a low shear stress,the creep compliance of shale increases linearly with the logarithm of time at all bedding orientations,and the increase depends on the bedding orientation and creep time.Under high shear stress conditions,the creep compliance of shale is minimal when the bedding orientation is 0°,and the steady-creep rate of shale increases significantly with increasing bedding orientations of 30°,45°,60°,and 90°.The stress-strain values corresponding to the inception of the accelerated creep stage show an increasing and then decreasing trend with the bedding orientation.A semilogarithmic model that could reflect the stress dependence of the steady-creep rate while considering the hardening and damage process is proposed.The model minimizes the deviation of the calculated steady-state creep rate from the observed value and reveals the behavior of the bedding orientation's influence on the steady-creep rate.The applicability of the five classical empirical creep models is quantitatively evaluated.It shows that the logarithmic model can well explain the experimental creep strain and creep rate,and it can accurately predict long-term shear creep deformation.Based on an improved logarithmic model,the variations in creep parameters with shear stress and bedding orientations are discussed.With abovementioned findings,a mathematical method for constructing an anisotropic shear creep model of shale is proposed,which can characterize the nonlinear dependence of the anisotropic shear creep behavior of shale on the bedding orientation.
基金supported by Stavros Niarhos FoundationGreek‘Flagship Action for the Study of Neurodegenerative Diseases on the Basis of Precision Medicine’(to DT).
文摘Neurogenesis is a tightly regulated process in time and space both in the developing embryo and in adult neurogenic niches.A drastic change in the transcriptome and proteome of radial glial cells or neural stem cells towards the neuronal state is achieved due to sophisticated mechanisms of epigenetic,transcriptional,and post-transcriptional regulation.Understanding these neurogenic mechanisms is of major importance,not only for shedding light on very complex and crucial developmental processes,but also for the identification of putative reprogramming factors,that harbor hierarchically central regulatory roles in the course of neurogenesis and bare thus the capacity to drive direct reprogramming towards the neuronal fate.The major transcriptional programs that orchestrate the neurogenic process have been the focus of research for many years and key neurogenic transcription factors,as well as repressor complexes,have been identified and employed in direct reprogramming protocols to convert non-neuronal cells,into functional neurons.The post-transcriptional regulation of gene expression during nervous system development has emerged as another important and intricate regulatory layer,strongly contributing to the complexity of the mechanisms controlling neurogenesis and neuronal function.In particular,recent advances are highlighting the importance of specific RNA binding proteins that control major steps of mRNA life cycle during neurogenesis,such as alternative splicing,polyadenylation,stability,and translation.Apart from the RNA binding proteins,microRNAs,a class of small non-coding RNAs that block the translation of their target mRNAs,have also been shown to play crucial roles in all the stages of the neurogenic process,from neural stem/progenitor cell proliferation,neuronal differentiation and migration,to functional maturation.Here,we provide an overview of the most prominent post-transcriptional mechanisms mediated by RNA binding proteins and microRNAs during the neurogenic process,giving particular emphasis on the interplay of specific RNA binding proteins with neurogenic microRNAs.Taking under consideration that the molecular mechanisms of neurogenesis exert high similarity to the ones driving direct neuronal reprogramming,we also discuss the current advances in in vitro and in vivo direct neuronal reprogramming approaches that have employed microRNAs or RNA binding proteins as reprogramming factors,highlighting the so far known mechanisms of their reprogramming action.
基金supported by the 2022 MTC Young Individual Research Grants(Grant No.M22K3c0097)the Singapore Research,Innovation and Enterprise(RIE)2025 PlanSingapore Aerospace Programme Cycle 16(Grant No.M2215a0073)。
文摘Lightweight aluminum(Al)alloys have been widely used in frontier fields like aerospace and automotive industries,which attracts great interest in additive manufacturing(AM)to process high-value Al parts.As a mainstream AM technique,laser-directed energy deposition(LDED)shows good scalability to meet the requirements for large-format component manufacturing and repair.However,LDED Al alloys are highly challenging due to their inherent poor printability(e.g.low laser absorption,high oxidation sensitivity and cracking tendency).To further promote the development of LDED high-performance Al alloys,this review offers a deep understanding of the challenges and strategies to improve printability in LDED Al alloys.The porosity,cracking,distortion,inclusions,element evaporation and resultant inferior mechanical properties(worse than laser powder bed fusion)are the key challenges in LDED Al alloys.Processing parameter optimizations,in-situ alloy design,reinforcing particle addition and field assistance are the efficient approaches to improving the printability and performance of LDED Al alloys.The underlying correlations between processes,alloy innovation,characteristic microstructures,and achievable performances in LDED Al alloys are discussed.The benchmark mechanical properties and primary strengthening mechanism of LDED Al alloys are summarized.This review aims to provide a critical and in-depth evaluation of current progress in LDED Al alloys.Future opportunities and perspectives in LDED high-performance Al alloys are also outlined.
基金This study was reviewed and approved by the Ethics Committee of the HUB-Hospital Erasme.
文摘BACKGROUND Dislocation rates after hemiarthroplasty reportedly vary from 1%to 17%.This serious complication is associated with increased morbidity and mortality rates.Approaches to this surgery are still debated,with no consensus regarding the superiority of any single approach.AIM To compare early postoperative complications after implementing the direct anterior and posterior approaches(PL)for hip hemiarthroplasty after femoral neck fractures.METHODS This is a comparative,retrospective,single-center cohort study conducted at a university hospital.Between March 2008 and December 2018,273 patients(a total of 280 hips)underwent bipolar hemiarthroplasties(n=280)for displaced femoral neck fractures using either the PL(n=171)or the minimally invasive direct anterior approach(DAA)(n=109).The choice of approach was related to the surgeons’practices;the implant types were similar and unrelated to the approach.Dislocation rates and other complications were reviewed after a minimum followup of 6 mo.RESULTS Both treatment groups had similarly aged patients(mean age:82 years),sex ratios,patient body mass indexes,and patient comorbidities.Surgical data(surgery delay time,operative time,and blood loss volume)did not differ significantly between the groups.The 30 d mortality rate was higher in the PL group(9.9%)than in the DAA group(3.7%),but the difference was not statistically significant(P=0.052).Among the one-month survivors,a significantly higher rate of dislocation was observed in the PL group(14/154;9.1%)than in the DAA group(0/105;0%)(P=0.002).Of the 14 patients with dislocation,8 underwent revision surgery for recurrent instability(posterior group),and one of them had 2 additional procedures due to a deep infection.The rate of other complications(e.g.,perioperative and early postoperative periprosthetic fractures and infection-related complications)did not differ significantly between the groups.CONCLUSION These findings suggest that the DAA to bipolar hemiarthroplasty for patients with femoral neck fractures is associated with a lower dislocation rate(<1%)than the PL.
基金Supported by National Key R&D Programs of China,No.2022YFC2503600.
文摘The top goal of modern medicine is treating disease without destroying organ structures and making patients as healthy as they were before their sickness.Minimally invasive surgery(MIS)has dominated the surgical realm because of its lesser invasiveness.However,changes in anatomical structures of the body and reconstruction of internal organs or different organs are common after traditional surgery or MIS,decreasing the quality of life of patients post-operation.Thus,I propose a new treatment mode,super MIS(SMIS),which is defined as“curing a disease or lesion which used to be treated by MIS while preserving the integrity of the organs”.In this study,I describe the origin,definition,operative channels,advantages,and future perspectives of SMIS.
文摘The problem considered in this paper is to interpolate a virtual uniform array froma real two-dimensional array with arbitrary geometry via an interpolation matrix. The key to thisproblem is how to arrange these virtual sensors. It is shown that the virtual uniform linear arrayshould have the same main-lobe beam-pattern as the real array over an angular sector of interest.Simulation results are presented to illustrate the application of virtual array in direction finding.
文摘Sensor location uncertainty of array degrades severely the performance of eigenstruc-ture based direction finding system.A new calibration method of sensor location is presentedwith three far field sources whose directions are not known accurately.A signal subspace basediteration algorithm for sensor location calibration is developed and its convergence to the globaloptimal point has been shown.The guide line for selecting directions of calibrating sources isgiven.Simulation results illustrate that the new method is successful and practicable.
文摘In this paper, Bayesian technique of direction finding based on two different priorities is described. Some useful formulas are deduced. The performance of the method and the influence of the priors on direction finding are demonstrated by computer simulations.
基金supported by the National Natural Science Foundation of China(51975112,52375412)Fundamental Research Funds for Central Universities(N2203011)。
文摘Additive manufacturing provides achievability for the fabrication of bimetallic and multi-material structures;however,the material compatibility and bondability directly affect the parts’formability and final quality.It is essential to understand the underlying printability of different material combinations based on an adapted process.Here,the printability disparities of two common and attractive material combinations(nickel-and iron-based alloys)are evaluated at the macro and micro levels via laser directed energy deposition(DED).The deposition processes were captured using in situ high-speed imaging,and the dissimilarities in melt pool features and track morphology were quantitatively investigated within specific process windows.Moreover,the microstructure diversity of the tracks and blocks processed with varied material pairs was comparatively elaborated and,complemented with the informative multi-physics modeling,the presented non-uniformity in mechanical properties(microhardness)among the heterogeneous material pairs was rationalized.The differences in melt flow induced by the unlike thermophysical properties of the material pairs and the resulting element intermixing and localized re-alloying during solidification dominate the presented dissimilarity in printability among the material combinations.This work provides an in-depth understanding of the phenomenological differences in the deposition of dissimilar materials and aims to guide more reliable DED forming of bimetallic parts.
基金financially supported by the National Natural Science Foundation of China(Grant Nos:52305502,U23B6005,52293405)China Postdoctoral Science Foundation(Grant No:2023M732788)the Postdoctoral Research Project of Shaanxi Province.
文摘Ceramic oxides,renowned for their exceptional combination of mechanical,thermal,and chemical properties,are indispensable in numerous crucial applications across diverse engineering fields.However,conventional manufacturing methods frequently grapple with limitations,such as challenges in shaping intricate geometries,extended processing durations,elevated porosity,and substantial shrinkage deformations.Direct additive manufacturing(dAM)technology stands out as a state-of-the-art solution for ceramic oxides production.It facilitates the one-step fabrication of high-performance,intricately designed components characterized by dense structures.Importantly,dAM eliminates the necessity for post-heat treatments,streamlining the manufacturing process and enhancing overall efficiency.This study undertakes a comprehensive review of recent developments in dAM for ceramic oxides,with a specific emphasis on the laser powder bed fusion and laser directed energy deposition techniques.A thorough investigation is conducted into the shaping quality,microstructure,and properties of diverse ceramic oxides produced through dAM.Critical examination is given to key aspects including feedstock preparation,laser-material coupling,formation and control of defects,in-situ monitoring and simulation.This paper concludes by outlining future trends and potential breakthrough directions,taking into account current gaps in this rapidly evolving field.
基金This project was supported by the Teaching and Research Award Programfor Outstanding Young Teachersin Higher Educa-tion Institutions of MOE (2001226) .
文摘The wide-band direction finding is one of hit and difficult task in array signal processing. This paper generalizes narrow-band deterministic maximum likelihood direction finding algorithm to the wideband case, and so constructions an object function, then utilizes genetic algorithm for nonlinear global optimization. Direction of arrival is estimated without preprocessing of array data and so the algorithm eliminates the effect of pre-estimate on the final estimation. The algorithm is applied on uniform linear array and extensive simulation results prove the efficacy of the algorithm. In the process of simulation, we obtain the relation between estimation error and parameters of genetic algorithm.