In this paper,the authors consider a sparse parameter estimation problem in continuoustime linear stochastic regression models using sampling data.Based on the compressed sensing(CS)method,the authors propose a compre...In this paper,the authors consider a sparse parameter estimation problem in continuoustime linear stochastic regression models using sampling data.Based on the compressed sensing(CS)method,the authors propose a compressed least squares(LS) algorithm to deal with the challenges of parameter sparsity.At each sampling time instant,the proposed compressed LS algorithm first compresses the original high-dimensional regressor using a sensing matrix and obtains a low-dimensional LS estimate for the compressed unknown parameter.Then,the original high-dimensional sparse unknown parameter is recovered by a reconstruction method.By introducing a compressed excitation assumption and employing stochastic Lyapunov function and martingale estimate methods,the authors establish the performance analysis of the compressed LS algorithm under the condition on the sampling time interval without using independence or stationarity conditions on the system signals.At last,a simulation example is provided to verify the theoretical results by comparing the standard and the compressed LS algorithms for estimating a high-dimensional sparse unknown parameter.展开更多
Recently a novel algebraic method was proposed for linear continuous-time model identification,which has attracted extensive attention in the literature.This work reveals its connection to classic identification metho...Recently a novel algebraic method was proposed for linear continuous-time model identification,which has attracted extensive attention in the literature.This work reveals its connection to classic identification methods,discusses a limitation and presents a useful modification of the method.The discussions are supported by analysis and numerical experiments.展开更多
Advanced model-based control strategies,e.g.,model predictive control,can offer superior control of key process variables for multiple-input multiple-output systems.The quality of the system model is critical to contr...Advanced model-based control strategies,e.g.,model predictive control,can offer superior control of key process variables for multiple-input multiple-output systems.The quality of the system model is critical to controller performance and should adequately describe the process dynamics across its operating range while remaining amenable to fast optimization.This work articulates an integrated system identification procedure for deriving black-box nonlinear continuous-time multiple-input multiple-output system models for nonlinear model predictive control.To showcase this approach,five candidate models for polynomial and interaction features of both output and manipulated variables were trained on simulated data and integrated into a nonlinear model predictive controller for a highly nonlinear continuous stirred tank reactor system.This procedure successfully identified system models that enabled effective control in both servo and regulator problems across wider operating ranges.These controllers also had reasonable per-iteration times of ca.0.1 s.This demonstration of how such system models could be identified for nonlinear model predictive control without prior knowledge of system dynamics opens further possibilities for direct data-driven methodologies for model-based control which,in the face of process uncertainties or modelling limitations,allow rapid and stable control over wider operating ranges.展开更多
为有效解决构建电力运检知识图谱的关键步骤之一的电力运检命名实体识别问题,通过构建一种基于Stacking多模型融合的隐马尔可夫-条件随机场-双向长短期记忆网络(hidden Markov-conditional random fields-bi-directional long short-ter...为有效解决构建电力运检知识图谱的关键步骤之一的电力运检命名实体识别问题,通过构建一种基于Stacking多模型融合的隐马尔可夫-条件随机场-双向长短期记忆网络(hidden Markov-conditional random fields-bi-directional long short-term,HCB)模型方法研究了电力运检命名实体识别问题。HCB模型分为两层,第一层使用隐马尔可夫模型(hidden Markov model,HMM)、条件随机场(conditional random fields,CRF)和双向长短期记忆网络(bi-directional long short-term memory,Bi-LSTM)模型进行训练预测,再将预测结果输入第二层的CRF模型进行训练,经过双层模型训练预测得出最后的命名实体。结果表明:在电力运检命名实体识别问题上HCB模型的精确率、召回率及F1值等指标明显优于单模型以及其他的融合模型。可见HCB模型能有效解决电力运检命名实体识别问题。展开更多
基金supported by the Major Key Project of Peng Cheng Laboratory under Grant No.PCL2023AS1-2Project funded by China Postdoctoral Science Foundation under Grant Nos.2022M722926 and2023T160605。
文摘In this paper,the authors consider a sparse parameter estimation problem in continuoustime linear stochastic regression models using sampling data.Based on the compressed sensing(CS)method,the authors propose a compressed least squares(LS) algorithm to deal with the challenges of parameter sparsity.At each sampling time instant,the proposed compressed LS algorithm first compresses the original high-dimensional regressor using a sensing matrix and obtains a low-dimensional LS estimate for the compressed unknown parameter.Then,the original high-dimensional sparse unknown parameter is recovered by a reconstruction method.By introducing a compressed excitation assumption and employing stochastic Lyapunov function and martingale estimate methods,the authors establish the performance analysis of the compressed LS algorithm under the condition on the sampling time interval without using independence or stationarity conditions on the system signals.At last,a simulation example is provided to verify the theoretical results by comparing the standard and the compressed LS algorithms for estimating a high-dimensional sparse unknown parameter.
基金This work was supported in part by NTU[startup grant number M4080181.050]MOE AcRF[Tier 1 grant number RG 33/10 M4010492.050].
文摘Recently a novel algebraic method was proposed for linear continuous-time model identification,which has attracted extensive attention in the literature.This work reveals its connection to classic identification methods,discusses a limitation and presents a useful modification of the method.The discussions are supported by analysis and numerical experiments.
基金The authors thank the MOE AcRF Grant in Singapore for financial support of the projects on Precision Healthcare Development,Manufacturing and Supply Chain Optimization(Grant No.R-279-000-513-133)Advanced Process Control and Machine Learning Methods for Enhanced Continuous Manufacturing of Pharmaceutical Products(Grant No.R-279-000-541-114).
文摘Advanced model-based control strategies,e.g.,model predictive control,can offer superior control of key process variables for multiple-input multiple-output systems.The quality of the system model is critical to controller performance and should adequately describe the process dynamics across its operating range while remaining amenable to fast optimization.This work articulates an integrated system identification procedure for deriving black-box nonlinear continuous-time multiple-input multiple-output system models for nonlinear model predictive control.To showcase this approach,five candidate models for polynomial and interaction features of both output and manipulated variables were trained on simulated data and integrated into a nonlinear model predictive controller for a highly nonlinear continuous stirred tank reactor system.This procedure successfully identified system models that enabled effective control in both servo and regulator problems across wider operating ranges.These controllers also had reasonable per-iteration times of ca.0.1 s.This demonstration of how such system models could be identified for nonlinear model predictive control without prior knowledge of system dynamics opens further possibilities for direct data-driven methodologies for model-based control which,in the face of process uncertainties or modelling limitations,allow rapid and stable control over wider operating ranges.
文摘为有效解决构建电力运检知识图谱的关键步骤之一的电力运检命名实体识别问题,通过构建一种基于Stacking多模型融合的隐马尔可夫-条件随机场-双向长短期记忆网络(hidden Markov-conditional random fields-bi-directional long short-term,HCB)模型方法研究了电力运检命名实体识别问题。HCB模型分为两层,第一层使用隐马尔可夫模型(hidden Markov model,HMM)、条件随机场(conditional random fields,CRF)和双向长短期记忆网络(bi-directional long short-term memory,Bi-LSTM)模型进行训练预测,再将预测结果输入第二层的CRF模型进行训练,经过双层模型训练预测得出最后的命名实体。结果表明:在电力运检命名实体识别问题上HCB模型的精确率、召回率及F1值等指标明显优于单模型以及其他的融合模型。可见HCB模型能有效解决电力运检命名实体识别问题。