Using the seismic records of 83 temporary and 17 permanent broadband seismic stations deployed in Tangshan earthquake region and its adjacent areas(39°N–41.5°N,115.5°E–119.5°E),we conducted a non...Using the seismic records of 83 temporary and 17 permanent broadband seismic stations deployed in Tangshan earthquake region and its adjacent areas(39°N–41.5°N,115.5°E–119.5°E),we conducted a nonlinear joint inversion of receiver functions and surface wave dispersion.We obtained some detailed information about the Tangshan earthquake region and its adjacent areas,including sedimentary thickness,Moho depth,and crustal and upper mantle S-wave velocity.Meanwhile,we also obtained the vP/vS structure along two sections across the Tangshan region.The results show that:(1)the Moho depth ranges from 30 km to 38 km,and it becomes shallower from Yanshan uplift area to North China basin;(2)the thickness of sedimentary layer ranges from 0 km to 3 km,and it thickens from Yanshan uplift region to North China basin;(3)the S-wave velocity structure shows that the velocity distribution of the upper crust has obvious correlation with the surface geological structure,while the velocity characteristics of the middle and lower crust are opposite to that of the upper crust.Compared with the upper crust,the heterogeneity of the middle and lower crust is more obvious;(4)the discontinuity of Moho on the two sides of Tangshan fault suggests that Tangshan fault cut the whole crust,and the low vS and high vP/vS beneath the Tangshan earthquake region may reflect the invasion of mantle thermal material through Tangshan fault.展开更多
In petroleum seismic exploration,dense seismic ray coverage is often guaranteed through dense seismic sources and geophones.Dense ray coverage facilitates the high-resolution 3D velocity structure imaging of near surf...In petroleum seismic exploration,dense seismic ray coverage is often guaranteed through dense seismic sources and geophones.Dense ray coverage facilitates the high-resolution 3D velocity structure imaging of near surfaces using surface waves.In this study,the 3D velocity and anisotropy structure of a petroleum exploration area are obtained using the azimuth-dependent dispersion curve inversion(ADDCI)method.Imaging results show that low-velocity zones correspond to a river channel.The fast propagation direction(FPD)of S-waves along this channel is basically consistent with the direction of the channel.The eastern part of the study area has a surface sediment layer with a thickness of less than 20 m,which corresponds to the sand and gravel deposits formed by the river alluvial deposition near the surface.In addition,a relatively thick sedimentary layer is formed on the southern side of the study area.The anisotropy shows that the FPD is positively correlated with the direction of alluvial fl ow and that the magnitude of anisotropy in the deep part is greater than that in the shallow part.Inversion results are basically consistent with the geological data and suggest that the obtained model can truly refl ect the 3D velocity structure and anisotropy of the near-surface area.This study shows that the ADDCI method can maximize the high-energy surface waves in exploration data to obtain near-surface velocity structures,which provide a highly accurate model for near-surface static correction.展开更多
Short period surface waves generated by a local earthquake recorded by broadband seismometers at distances of about 186 to 778 km from the earthquake’s epicenter located in Cameroon (Central Africa) were processed fo...Short period surface waves generated by a local earthquake recorded by broadband seismometers at distances of about 186 to 778 km from the earthquake’s epicenter located in Cameroon (Central Africa) were processed for group velocity maps and dispersion waveforms using the frequency time analysis (FTAN) method. The resulting group velocity fundamental modes of the extracted Rayleigh and Love waves were used for a joint amplitude spectral and P polarity inversion using moment tensor inversion. The corresponding group velocity dispersion curves, the residual as a function of depth, the amplitude spectra and the moment tensor solutions of the regions from the epicenter to the different stations up to a depth of about 10 km were obtained.展开更多
As the coated materials are widely applied in engineering, estimation of the elastic properties of coating layers is of great practical importance. This paper presents an inversion algorithm for determining the elasti...As the coated materials are widely applied in engineering, estimation of the elastic properties of coating layers is of great practical importance. This paper presents an inversion algorithm for determining the elastic properties of coating layers from the given velocity dispersion of surface ultrasonic waves. Based on the dispersive equation of surface waves in layered half space, an objective function dependent on coating material parameters is introduced. The density and wave velocities, which make the object function minimum, are taken as the inversion results. Inverse analyses of two parameters (longitudinal and transverse velocities) and three parameters (the density, longitudinal and transverse velocities) of the coating layer were made.展开更多
This paper is based on the surface wave seismogram of South Sandwich Island earthquake(Ms=6.4) recorded by Antarctic General Bernardo O'Higgins Station. We computed a group velocity dispersion of Love surface wave...This paper is based on the surface wave seismogram of South Sandwich Island earthquake(Ms=6.4) recorded by Antarctic General Bernardo O'Higgins Station. We computed a group velocity dispersion of Love surface wave and obtained lithosphere structure by using the method of the matchedfilter frequencytime analysis and grid dispersion inversion. Our result shows that crust structure below Antarctic Peninsula may be divided into three layers and their thickness are respectively 5 km,8 km and 10 km. Upper mantle velocity is 5.32 km/s and gradually changes into 5.11 4.9 km/s below 53 km.The mininum velocity is 4.8 km/s. It can be referred that Antarctic mantle is also of layered structure.展开更多
基金This research is supported by Spark Program of Earthquake Science(No.XH18065Y)National Natural Science Foundation of China(Nos.41774066 and 41604049)。
文摘Using the seismic records of 83 temporary and 17 permanent broadband seismic stations deployed in Tangshan earthquake region and its adjacent areas(39°N–41.5°N,115.5°E–119.5°E),we conducted a nonlinear joint inversion of receiver functions and surface wave dispersion.We obtained some detailed information about the Tangshan earthquake region and its adjacent areas,including sedimentary thickness,Moho depth,and crustal and upper mantle S-wave velocity.Meanwhile,we also obtained the vP/vS structure along two sections across the Tangshan region.The results show that:(1)the Moho depth ranges from 30 km to 38 km,and it becomes shallower from Yanshan uplift area to North China basin;(2)the thickness of sedimentary layer ranges from 0 km to 3 km,and it thickens from Yanshan uplift region to North China basin;(3)the S-wave velocity structure shows that the velocity distribution of the upper crust has obvious correlation with the surface geological structure,while the velocity characteristics of the middle and lower crust are opposite to that of the upper crust.Compared with the upper crust,the heterogeneity of the middle and lower crust is more obvious;(4)the discontinuity of Moho on the two sides of Tangshan fault suggests that Tangshan fault cut the whole crust,and the low vS and high vP/vS beneath the Tangshan earthquake region may reflect the invasion of mantle thermal material through Tangshan fault.
基金supported by the National Key Research and Development Program of China(No.2017YFC0601206)the Science and Technology Innovation(Seedling Project)Cultivation Program of Sichuan Province in 2020(No.2020127)the National Natural Science Foundation of China(Nos.41674059,41340009)。
文摘In petroleum seismic exploration,dense seismic ray coverage is often guaranteed through dense seismic sources and geophones.Dense ray coverage facilitates the high-resolution 3D velocity structure imaging of near surfaces using surface waves.In this study,the 3D velocity and anisotropy structure of a petroleum exploration area are obtained using the azimuth-dependent dispersion curve inversion(ADDCI)method.Imaging results show that low-velocity zones correspond to a river channel.The fast propagation direction(FPD)of S-waves along this channel is basically consistent with the direction of the channel.The eastern part of the study area has a surface sediment layer with a thickness of less than 20 m,which corresponds to the sand and gravel deposits formed by the river alluvial deposition near the surface.In addition,a relatively thick sedimentary layer is formed on the southern side of the study area.The anisotropy shows that the FPD is positively correlated with the direction of alluvial fl ow and that the magnitude of anisotropy in the deep part is greater than that in the shallow part.Inversion results are basically consistent with the geological data and suggest that the obtained model can truly refl ect the 3D velocity structure and anisotropy of the near-surface area.This study shows that the ADDCI method can maximize the high-energy surface waves in exploration data to obtain near-surface velocity structures,which provide a highly accurate model for near-surface static correction.
文摘Short period surface waves generated by a local earthquake recorded by broadband seismometers at distances of about 186 to 778 km from the earthquake’s epicenter located in Cameroon (Central Africa) were processed for group velocity maps and dispersion waveforms using the frequency time analysis (FTAN) method. The resulting group velocity fundamental modes of the extracted Rayleigh and Love waves were used for a joint amplitude spectral and P polarity inversion using moment tensor inversion. The corresponding group velocity dispersion curves, the residual as a function of depth, the amplitude spectra and the moment tensor solutions of the regions from the epicenter to the different stations up to a depth of about 10 km were obtained.
基金Project (No. 10372058) supported by the National Natural Science Foundation of China
文摘As the coated materials are widely applied in engineering, estimation of the elastic properties of coating layers is of great practical importance. This paper presents an inversion algorithm for determining the elastic properties of coating layers from the given velocity dispersion of surface ultrasonic waves. Based on the dispersive equation of surface waves in layered half space, an objective function dependent on coating material parameters is introduced. The density and wave velocities, which make the object function minimum, are taken as the inversion results. Inverse analyses of two parameters (longitudinal and transverse velocities) and three parameters (the density, longitudinal and transverse velocities) of the coating layer were made.
文摘This paper is based on the surface wave seismogram of South Sandwich Island earthquake(Ms=6.4) recorded by Antarctic General Bernardo O'Higgins Station. We computed a group velocity dispersion of Love surface wave and obtained lithosphere structure by using the method of the matchedfilter frequencytime analysis and grid dispersion inversion. Our result shows that crust structure below Antarctic Peninsula may be divided into three layers and their thickness are respectively 5 km,8 km and 10 km. Upper mantle velocity is 5.32 km/s and gradually changes into 5.11 4.9 km/s below 53 km.The mininum velocity is 4.8 km/s. It can be referred that Antarctic mantle is also of layered structure.