We give the direct method of moving planes for solutions to the conformally invariant fractional power sub Laplace equation on the Heisenberg group.The method is based on four maximum principles derived here.Then symm...We give the direct method of moving planes for solutions to the conformally invariant fractional power sub Laplace equation on the Heisenberg group.The method is based on four maximum principles derived here.Then symmetry and nonexistence of positive cylindrical solutions are proved.展开更多
The paper generalizes the direct method of moving planes to the Logarithmic Laplacian system.Firstly,some key ingredients of the method are discussed,for example,Narrow region principle and Decay at infinity.Then,the ...The paper generalizes the direct method of moving planes to the Logarithmic Laplacian system.Firstly,some key ingredients of the method are discussed,for example,Narrow region principle and Decay at infinity.Then,the radial symmetry of the solution of the Logarithmic Laplacian system is obtained.展开更多
In this paper,we first establish narrow region principle and decay at infinity theorems to extend the direct method of moving planes for general fractional p-Laplacian systems.By virtue of this method,we investigate t...In this paper,we first establish narrow region principle and decay at infinity theorems to extend the direct method of moving planes for general fractional p-Laplacian systems.By virtue of this method,we investigate the qualitative properties of positive solutions for the following Schrodinger system with fractional p-Laplacian{(-△)^(s)_(p)u+au^(p-1)=f(u,v),(-△)^(t)_(p)v+bv(p-1)=g(u,v),where 0<s,t<1 and 2<p<∞.We obtain the radial symmetry in the unit ball or the whole space R^(N)(N≥2),the monotonicity in the parabolic domain and the nonexistence on the half space for positive solutions to the above system under some suitable conditions on f and g,respectively.展开更多
基金supported by the National Natural Science Foundation of China(No.11771354)。
文摘We give the direct method of moving planes for solutions to the conformally invariant fractional power sub Laplace equation on the Heisenberg group.The method is based on four maximum principles derived here.Then symmetry and nonexistence of positive cylindrical solutions are proved.
基金Supported by the National Natural Science Foundation of China(11501342,12001344)。
文摘The paper generalizes the direct method of moving planes to the Logarithmic Laplacian system.Firstly,some key ingredients of the method are discussed,for example,Narrow region principle and Decay at infinity.Then,the radial symmetry of the solution of the Logarithmic Laplacian system is obtained.
基金Supported by the National Natural Science Foundation of China(12101452,12071229,11771218)。
文摘In this paper,we first establish narrow region principle and decay at infinity theorems to extend the direct method of moving planes for general fractional p-Laplacian systems.By virtue of this method,we investigate the qualitative properties of positive solutions for the following Schrodinger system with fractional p-Laplacian{(-△)^(s)_(p)u+au^(p-1)=f(u,v),(-△)^(t)_(p)v+bv(p-1)=g(u,v),where 0<s,t<1 and 2<p<∞.We obtain the radial symmetry in the unit ball or the whole space R^(N)(N≥2),the monotonicity in the parabolic domain and the nonexistence on the half space for positive solutions to the above system under some suitable conditions on f and g,respectively.