Introduction: In the last thirty years, brain neuromodulation techniques have been used as an alternative to pharmacological treatment of neurological disorders. Parkinson’s disease (PD) is a neurodegenerative disord...Introduction: In the last thirty years, brain neuromodulation techniques have been used as an alternative to pharmacological treatment of neurological disorders. Parkinson’s disease (PD) is a neurodegenerative disorder leading to bradykinesia, rest tremor, postural changes, and non-motor symptoms such as depression, anxiety, sleep disorders, pain, and cognitive decline that compromises executive functions (EFs), responsible for the orderly execution of behaviors and tasks of daily life and intentional and directed actions. To this date, a few studies with transcranial direct current stimulation (tDCS) have shown beneficial effects in PD patients concerning specific motor and non-motor symptoms, targeting the motor cortex and/or prefrontal regions. Objective: The main objective of this study was to evaluate the effects of left prefrontal tDCS across a broad spectrum of motor and non-motor symptoms of PD using established validated scales. Method: Single-blind randomized clinical trial with 18 volunteers with PD, aged between 45 and 80 years (66.1 ± 9.65), who met inclusion and exclusion criteria. Participants were submitted to assessments of motor and non-motor functions employing psychometric scales and tests to evaluate EFs and were randomly divided into two groups: control (sham stimulation) and experimental (active stimulation). All participants were involved in three separate tDCS sessions. The anode was positioned over the left dorsolateral prefrontal cortex and the cathode over the right supraorbital region, with a direct current intensity of 2 mA, lasting 20 minutes. At the end of the three sessions, all participants were reassessed. Results: Significant effects of tDCS on non-motor functions were observed for cognition (verbal fluency of actions, clock copy test, appointment by visual confrontation, and verbal memory with immediate free recall) and subjective assessment of sleep quality (overall restlessness and discomfort in the arms and legs at night, leg and arm cramps at night and distressing dreams). There was also an improvement in the rate of errors and successes for congruent and incongruent stimuli of the Stroop Test. The beneficial effects on motor function were decreased rigidity, improved gait, and greater agility in the finger-tapping test. Conclusion: Three tDCS sessions showed positive results for participants with PD, producing significant improvements in various motor and non-motor functions, including sleep quality, cognition, and EFs. Additionally, the present results indicate that tDCS neuromodulation of the left dorsolateral prefrontal cortex region is feasible, safe, and provides significant objective benefits for PD patients.展开更多
Forex(foreign exchange)is a special financial market that entails both high risks and high profit opportunities for traders.It is also a very simple market since traders can profit by just predicting the direction of ...Forex(foreign exchange)is a special financial market that entails both high risks and high profit opportunities for traders.It is also a very simple market since traders can profit by just predicting the direction of the exchange rate between two currencies.However,incorrect predictions in Forex may cause much higher losses than in other typical financial markets.The direction prediction requirement makes the problem quite different from other typical time-series forecasting problems.In this work,we used a popular deep learning tool called“long short-term memory”(LSTM),which has been shown to be very effective in many time-series forecasting problems,to make direction predictions in Forex.We utilized two different data sets—namely,macroeconomic data and technical indicator data—since in the financial world,fundamental and technical analysis are two main techniques,and they use those two data sets,respectively.Our proposed hybrid model,which combines two separate LSTMs corresponding to these two data sets,was found to be quite successful in experiments using real data.展开更多
背景:卓越的下肢移动能力被视作是赢得比赛的先决条件之一,可穿戴式阻力训练能够有效克服传统力量训练在提高下肢移动能力时所面临的能力转化效率不足的问题。考虑到基于不同身体部位的可穿戴式阻力训练对下肢移动能力的影响可能存在显...背景:卓越的下肢移动能力被视作是赢得比赛的先决条件之一,可穿戴式阻力训练能够有效克服传统力量训练在提高下肢移动能力时所面临的能力转化效率不足的问题。考虑到基于不同身体部位的可穿戴式阻力训练对下肢移动能力的影响可能存在显著的差异化特征,深入回顾并总结其具体应用策略以及急性与慢性干预效果则显得尤为重要。目的:旨在通过梳理与分析基于不同身体部位的可穿戴式阻力训练在下肢移动能力方面的急性和慢性干预效果,从而为优化下肢运动能力的应用策略提供思路借鉴和方法参考。方法:检索各大数据库建库至2023年10月发表的文献,在中国知网、万方、维普、Web of Science、Medline、SPORTDiscus和PubMed数据库进行文献检索,以“手臂,前臂,肢体,腿,下肢,背,躯干,阻力,重量,负重,冲刺,灵敏,变向”为中文检索词,以“arm,forearm,limb,leg,lower extremity,vest,trunk,resist,weight,load,sprint,agility,change of direction”为英文检索词,筛选检索结果后最终纳入文献60篇进行综述分析。结果与结论:①6%-20%BM的躯干负重适用于优化加速跑,≤6%BM的躯干负重适用于优化高速跑,5%BM的躯干负重适用于优化变向移动;前臂、小腿或大腿负重多采用1%BM或2%BM。②躯干负重通过增加垂直负重来优化下肢拉伸-缩短循环的功能表现、提升地面反作用力的利用效率和增强全身肌群的协调稳定控制;前臂负重可有效增强上肢摆臂驱动力、提升下肢冲刺推进力和优化肢体间的协同配合效率;小腿负重可对髋关节的功能执行形成限制,进而导致膝或踝关节产生局部性的负荷刺激加重和代偿性的运动功能增强;大腿负重会部分限制膝关节的伸展峰值角度和伸展速度,针对髋关节部位形成特定的负荷刺激,显著提高其旋转动能输出。③在进行更大角度的变向移动时,小腿负重比大腿负重所产生的影响更为显著,大腿负重刺激有助于增强动力输出,小腿负重刺激有助于提升稳定控制与方向变换。④目前,可穿戴式阻力训练已被证明是改善冲刺和变向移动能力的有效途径,旨在提升冲刺表现的方法学策略已较为成熟,而旨在提升变向表现的最佳应用方案仍有待进一步的细化与优化,建议后续研究对此领域予以补充。展开更多
目的 探讨经颅直流电刺激(transcranial direct current stimulation, t DCS)对纵跳(counter movement jump, CMJ)能力的影响。方法 21名普通大学生(普通大学生组)和17名大学生运动员(运动员组)随机接受脑前额叶区2 m A、20 min的真刺激...目的 探讨经颅直流电刺激(transcranial direct current stimulation, t DCS)对纵跳(counter movement jump, CMJ)能力的影响。方法 21名普通大学生(普通大学生组)和17名大学生运动员(运动员组)随机接受脑前额叶区2 m A、20 min的真刺激(anodic t DCS,a-t DCS)或假刺激(sham t DCS,s-t DCS),采集刺激后即刻及10、20、30、40 min时间点的CMJ运动表现数据。对受试者不同时间点的跳跃高度、加速度、峰值功率、峰值垂直地面反作用力(vertical ground reaction force, v GRF)进行双因素重复测量方差分析(刺激类型×测试时间点)。结果 运动员组,受试者跳跃高度和峰值v GRF的刺激类型×测试时间点交互作用显著,简单效应分析发现a-t DCS后5个时间点的测试数据均显著优于基准值及s-t DCS后(P<0.05);加速度和峰值功率的刺激类型主效应显著。普通大学生组,受试者加速度、峰值功率、峰值v GRF的刺激类型×测试时间点交互作用显著,简单效应分析发现a-t DCS后5个时间点的测试数据均显著优于基准值及s-t DCS后(P<0.05);跳跃高度的刺激类型主效应显著。结论 脑前额叶区a-t DCS能显著改善CMJ完成过程中的多项指标且具有一定的持续性,可以考虑将其作为增强纵跳能力的一种手段。展开更多
With acquisition and accumulation of new data of structural geological investigations and high-resolution isotopic dating data, we have greatly improved our understanding of the tectonic events occurring in eastern Ch...With acquisition and accumulation of new data of structural geological investigations and high-resolution isotopic dating data, we have greatly improved our understanding of the tectonic events occurring in eastern China during the period from the Late Jurassic to Early Cretaceous and may give a new interpretation of the nature, timing and geodynamic settings of the “Yanshan Movement”. During the Mid-Late Jurassic (165±5 Ma), great readjustment of plate amalgamation kinematics took place in East Asia and the tectonic regime underwent great transformation, thus initiating a new tectonic regime in which the North China Block was the center and different plates converged toward it from the north, east and southwest and forming the “East Asia convergent” tectonic system characterized by intracontinental subduction and orogeny. As a consequence, the crustal lithosphere of the East Asian continent thickened considerably during the Late Jurassic, followed immediately by Early Cretaceous substantial lithospheric thinning and craton destruction featured by drastic lithospheric extension and widespread volcano-magmatic activities, resulting in a major biotic turnover from the Yanliao biota to Jehol Biota. Such a tremendous tectonic event that took place in the continent of China and East Asia is the basic connotation of the “Yanshan Movement”. In the paper, according to the deformation patterns, geodynamic settings and deep processes, the “Yanshan Movement” is redefined as the Late Jurassic East Asian multi-directional plate convergent tectonic regime and its associated extensive intracontinental orogeny and great tectonic change that started at -165±5 Ma. The substantial lithospheric attenuation in East China is considered the post-effect of the Yanshanian intracontinental orogeny and deformation.展开更多
文摘Introduction: In the last thirty years, brain neuromodulation techniques have been used as an alternative to pharmacological treatment of neurological disorders. Parkinson’s disease (PD) is a neurodegenerative disorder leading to bradykinesia, rest tremor, postural changes, and non-motor symptoms such as depression, anxiety, sleep disorders, pain, and cognitive decline that compromises executive functions (EFs), responsible for the orderly execution of behaviors and tasks of daily life and intentional and directed actions. To this date, a few studies with transcranial direct current stimulation (tDCS) have shown beneficial effects in PD patients concerning specific motor and non-motor symptoms, targeting the motor cortex and/or prefrontal regions. Objective: The main objective of this study was to evaluate the effects of left prefrontal tDCS across a broad spectrum of motor and non-motor symptoms of PD using established validated scales. Method: Single-blind randomized clinical trial with 18 volunteers with PD, aged between 45 and 80 years (66.1 ± 9.65), who met inclusion and exclusion criteria. Participants were submitted to assessments of motor and non-motor functions employing psychometric scales and tests to evaluate EFs and were randomly divided into two groups: control (sham stimulation) and experimental (active stimulation). All participants were involved in three separate tDCS sessions. The anode was positioned over the left dorsolateral prefrontal cortex and the cathode over the right supraorbital region, with a direct current intensity of 2 mA, lasting 20 minutes. At the end of the three sessions, all participants were reassessed. Results: Significant effects of tDCS on non-motor functions were observed for cognition (verbal fluency of actions, clock copy test, appointment by visual confrontation, and verbal memory with immediate free recall) and subjective assessment of sleep quality (overall restlessness and discomfort in the arms and legs at night, leg and arm cramps at night and distressing dreams). There was also an improvement in the rate of errors and successes for congruent and incongruent stimuli of the Stroop Test. The beneficial effects on motor function were decreased rigidity, improved gait, and greater agility in the finger-tapping test. Conclusion: Three tDCS sessions showed positive results for participants with PD, producing significant improvements in various motor and non-motor functions, including sleep quality, cognition, and EFs. Additionally, the present results indicate that tDCS neuromodulation of the left dorsolateral prefrontal cortex region is feasible, safe, and provides significant objective benefits for PD patients.
文摘Forex(foreign exchange)is a special financial market that entails both high risks and high profit opportunities for traders.It is also a very simple market since traders can profit by just predicting the direction of the exchange rate between two currencies.However,incorrect predictions in Forex may cause much higher losses than in other typical financial markets.The direction prediction requirement makes the problem quite different from other typical time-series forecasting problems.In this work,we used a popular deep learning tool called“long short-term memory”(LSTM),which has been shown to be very effective in many time-series forecasting problems,to make direction predictions in Forex.We utilized two different data sets—namely,macroeconomic data and technical indicator data—since in the financial world,fundamental and technical analysis are two main techniques,and they use those two data sets,respectively.Our proposed hybrid model,which combines two separate LSTMs corresponding to these two data sets,was found to be quite successful in experiments using real data.
文摘背景:卓越的下肢移动能力被视作是赢得比赛的先决条件之一,可穿戴式阻力训练能够有效克服传统力量训练在提高下肢移动能力时所面临的能力转化效率不足的问题。考虑到基于不同身体部位的可穿戴式阻力训练对下肢移动能力的影响可能存在显著的差异化特征,深入回顾并总结其具体应用策略以及急性与慢性干预效果则显得尤为重要。目的:旨在通过梳理与分析基于不同身体部位的可穿戴式阻力训练在下肢移动能力方面的急性和慢性干预效果,从而为优化下肢运动能力的应用策略提供思路借鉴和方法参考。方法:检索各大数据库建库至2023年10月发表的文献,在中国知网、万方、维普、Web of Science、Medline、SPORTDiscus和PubMed数据库进行文献检索,以“手臂,前臂,肢体,腿,下肢,背,躯干,阻力,重量,负重,冲刺,灵敏,变向”为中文检索词,以“arm,forearm,limb,leg,lower extremity,vest,trunk,resist,weight,load,sprint,agility,change of direction”为英文检索词,筛选检索结果后最终纳入文献60篇进行综述分析。结果与结论:①6%-20%BM的躯干负重适用于优化加速跑,≤6%BM的躯干负重适用于优化高速跑,5%BM的躯干负重适用于优化变向移动;前臂、小腿或大腿负重多采用1%BM或2%BM。②躯干负重通过增加垂直负重来优化下肢拉伸-缩短循环的功能表现、提升地面反作用力的利用效率和增强全身肌群的协调稳定控制;前臂负重可有效增强上肢摆臂驱动力、提升下肢冲刺推进力和优化肢体间的协同配合效率;小腿负重可对髋关节的功能执行形成限制,进而导致膝或踝关节产生局部性的负荷刺激加重和代偿性的运动功能增强;大腿负重会部分限制膝关节的伸展峰值角度和伸展速度,针对髋关节部位形成特定的负荷刺激,显著提高其旋转动能输出。③在进行更大角度的变向移动时,小腿负重比大腿负重所产生的影响更为显著,大腿负重刺激有助于增强动力输出,小腿负重刺激有助于提升稳定控制与方向变换。④目前,可穿戴式阻力训练已被证明是改善冲刺和变向移动能力的有效途径,旨在提升冲刺表现的方法学策略已较为成熟,而旨在提升变向表现的最佳应用方案仍有待进一步的细化与优化,建议后续研究对此领域予以补充。
文摘目的 探讨经颅直流电刺激(transcranial direct current stimulation, t DCS)对纵跳(counter movement jump, CMJ)能力的影响。方法 21名普通大学生(普通大学生组)和17名大学生运动员(运动员组)随机接受脑前额叶区2 m A、20 min的真刺激(anodic t DCS,a-t DCS)或假刺激(sham t DCS,s-t DCS),采集刺激后即刻及10、20、30、40 min时间点的CMJ运动表现数据。对受试者不同时间点的跳跃高度、加速度、峰值功率、峰值垂直地面反作用力(vertical ground reaction force, v GRF)进行双因素重复测量方差分析(刺激类型×测试时间点)。结果 运动员组,受试者跳跃高度和峰值v GRF的刺激类型×测试时间点交互作用显著,简单效应分析发现a-t DCS后5个时间点的测试数据均显著优于基准值及s-t DCS后(P<0.05);加速度和峰值功率的刺激类型主效应显著。普通大学生组,受试者加速度、峰值功率、峰值v GRF的刺激类型×测试时间点交互作用显著,简单效应分析发现a-t DCS后5个时间点的测试数据均显著优于基准值及s-t DCS后(P<0.05);跳跃高度的刺激类型主效应显著。结论 脑前额叶区a-t DCS能显著改善CMJ完成过程中的多项指标且具有一定的持续性,可以考虑将其作为增强纵跳能力的一种手段。
文摘With acquisition and accumulation of new data of structural geological investigations and high-resolution isotopic dating data, we have greatly improved our understanding of the tectonic events occurring in eastern China during the period from the Late Jurassic to Early Cretaceous and may give a new interpretation of the nature, timing and geodynamic settings of the “Yanshan Movement”. During the Mid-Late Jurassic (165±5 Ma), great readjustment of plate amalgamation kinematics took place in East Asia and the tectonic regime underwent great transformation, thus initiating a new tectonic regime in which the North China Block was the center and different plates converged toward it from the north, east and southwest and forming the “East Asia convergent” tectonic system characterized by intracontinental subduction and orogeny. As a consequence, the crustal lithosphere of the East Asian continent thickened considerably during the Late Jurassic, followed immediately by Early Cretaceous substantial lithospheric thinning and craton destruction featured by drastic lithospheric extension and widespread volcano-magmatic activities, resulting in a major biotic turnover from the Yanliao biota to Jehol Biota. Such a tremendous tectonic event that took place in the continent of China and East Asia is the basic connotation of the “Yanshan Movement”. In the paper, according to the deformation patterns, geodynamic settings and deep processes, the “Yanshan Movement” is redefined as the Late Jurassic East Asian multi-directional plate convergent tectonic regime and its associated extensive intracontinental orogeny and great tectonic change that started at -165±5 Ma. The substantial lithospheric attenuation in East China is considered the post-effect of the Yanshanian intracontinental orogeny and deformation.