So far, Lou's direct perturbation method has been applied successfully to solve the nonlinear SchrSdinger equation(NLSE) hierarchy, such as the NLSE, the coupled NLSE, the critical NLSE, and the derivative NLSE. Bu...So far, Lou's direct perturbation method has been applied successfully to solve the nonlinear SchrSdinger equation(NLSE) hierarchy, such as the NLSE, the coupled NLSE, the critical NLSE, and the derivative NLSE. But to our knowledge, this method for other types of perturbed nonlinear evolution equations has still been lacking. In this paper, Lou's direct perturbation method is applied to the study of perturbed complex Burgers equation. By this method, we calculate not only the zero-order adiabatic solution, but also the first order modification.展开更多
We extend Lou's direct perturbation method for solving the nonlinear Schrodinger equation to the case of the derivative nonlinear Schrodinger equation (DNLSE). By applying this method, different types of perturbati...We extend Lou's direct perturbation method for solving the nonlinear Schrodinger equation to the case of the derivative nonlinear Schrodinger equation (DNLSE). By applying this method, different types of perturbation solutions are obtained. Based on these approximate solutions, the analytical forms of soliton parameters, such as the velocity, the width and the initial position, are carried out and the effects of perturbation on solitons are analyzed at the same time. A numerical simulation of perturbed DNLSE finally verifies the results of the perturbation method.展开更多
A novel collaborative beamforming algorithm is proposed in a wireless communication system with multiple transmitters and one receiver. All transmitters take part in the collaboration and the weighted message is trans...A novel collaborative beamforming algorithm is proposed in a wireless communication system with multiple transmitters and one receiver. All transmitters take part in the collaboration and the weighted message is transmitted simultaneously. In order to maximize the beamforming gain, the transmitters use one bit feedback information to adjust the phase offset. It tracks the direction in which the signal strength at the receiver can increase. The directional search and perturbation theory is used to achieve the phase alignment. The feasibility of the proposed algorithm is proved both experimentally and theoretically. Simulation results show that the proposed algorithm can improve the convergent speed of the phase alignment.展开更多
In this paper Lou's direct perturbation method is applied to the perturbed coupled nonlinear Schrodinger equations to obtain their asymptotical solutions, which include not only the zero-order solutions but also the ...In this paper Lou's direct perturbation method is applied to the perturbed coupled nonlinear Schrodinger equations to obtain their asymptotical solutions, which include not only the zero-order solutions but also the first-order modifications. Based on the asymptotical solutions, the effects of perturbations on soliton parameters and the collision between two solitons are then discussed in brief. Furthermore, we directly simulate the perturbed coupled nonlinear SchrSdinger equations by split-step Fourier method to check the validity of the direct perturbation method. It turns out that our analytical results are well supported by the numerical calculations.展开更多
By applying Lou's direct perturbation method to perturbed nonlinear Schroedinger equation and the critical nonlinear SchrSdinger equation with a small dispersion, their approximate analytical solutions including the ...By applying Lou's direct perturbation method to perturbed nonlinear Schroedinger equation and the critical nonlinear SchrSdinger equation with a small dispersion, their approximate analytical solutions including the zero-order and the first-order solutions are obtained. Based on these approximate solutions, the analytical forms of parameters of solitons are expressed and the effects of perturbations on solitons are briefly analyzed at the same time. In addition, the perturbed nonlinear Schroedinger equations is directly simulated by split-step Fourier method to check the validity of the direct perturbation method. It turns out that the analytical results given by the direct perturbation method are well supported by numerical calculations.展开更多
We give a general vectorial Ekeland's variational principle, where the objective function is defined on an F-type topological space and taking values in a pre-ordered real linear space. Being quite different from the...We give a general vectorial Ekeland's variational principle, where the objective function is defined on an F-type topological space and taking values in a pre-ordered real linear space. Being quite different from the previous versions of vectorial Ekeland's variational principle, the perturbation in our version is no longer only dependent on a fixed positive vector or a fixed family of positive vectors. It contains a family of set-valued functions taking values in the positive cone and a family of subadditive functions of topology generating quasi-metrics. Hence, the direction of the perturbation in the new version is a family of variable subsets which are dependent on the objective function values. The general version includes and improves a number of known versions of vectorial Ekeland's variational principle. From the general Ekeland's principle, we deduce the corresponding versions of Caristi-Kirk's fixed point theorem and Takahashi's nonconvex minimization theorem. Finally, we prove that all the three theorems are equivalent to each other.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10575087 and 10875106)
文摘So far, Lou's direct perturbation method has been applied successfully to solve the nonlinear SchrSdinger equation(NLSE) hierarchy, such as the NLSE, the coupled NLSE, the critical NLSE, and the derivative NLSE. But to our knowledge, this method for other types of perturbed nonlinear evolution equations has still been lacking. In this paper, Lou's direct perturbation method is applied to the study of perturbed complex Burgers equation. By this method, we calculate not only the zero-order adiabatic solution, but also the first order modification.
基金supported by National Natural Science Foundation of China under Grant No.10575087
文摘We extend Lou's direct perturbation method for solving the nonlinear Schrodinger equation to the case of the derivative nonlinear Schrodinger equation (DNLSE). By applying this method, different types of perturbation solutions are obtained. Based on these approximate solutions, the analytical forms of soliton parameters, such as the velocity, the width and the initial position, are carried out and the effects of perturbation on solitons are analyzed at the same time. A numerical simulation of perturbed DNLSE finally verifies the results of the perturbation method.
基金supported by the National Natural Science Foundation of China(6130115561571003)+2 种基金the Ministry of Education(MCM20130111)the Funds for the Central Universities(ZYGX2014J001)the State Grid Power(W2015000333)
文摘A novel collaborative beamforming algorithm is proposed in a wireless communication system with multiple transmitters and one receiver. All transmitters take part in the collaboration and the weighted message is transmitted simultaneously. In order to maximize the beamforming gain, the transmitters use one bit feedback information to adjust the phase offset. It tracks the direction in which the signal strength at the receiver can increase. The directional search and perturbation theory is used to achieve the phase alignment. The feasibility of the proposed algorithm is proved both experimentally and theoretically. Simulation results show that the proposed algorithm can improve the convergent speed of the phase alignment.
基金Project supported by the National Natural Science Foundation of China (Grant No 10575087) and the Natural Science Foundation of Zheiiang Province of China (Grant No 102053). 0ne of the authors (Lin) would like to thank Prof. Sen-yue Lou for many useful discussions.
文摘In this paper Lou's direct perturbation method is applied to the perturbed coupled nonlinear Schrodinger equations to obtain their asymptotical solutions, which include not only the zero-order solutions but also the first-order modifications. Based on the asymptotical solutions, the effects of perturbations on soliton parameters and the collision between two solitons are then discussed in brief. Furthermore, we directly simulate the perturbed coupled nonlinear SchrSdinger equations by split-step Fourier method to check the validity of the direct perturbation method. It turns out that our analytical results are well supported by the numerical calculations.
基金The project supported by National Natural Science Foundation of China under Grant No. 10575087 and the Natural Science Foundation of Zhejiang Province of China under Grant No. 102053
文摘By applying Lou's direct perturbation method to perturbed nonlinear Schroedinger equation and the critical nonlinear SchrSdinger equation with a small dispersion, their approximate analytical solutions including the zero-order and the first-order solutions are obtained. Based on these approximate solutions, the analytical forms of parameters of solitons are expressed and the effects of perturbations on solitons are briefly analyzed at the same time. In addition, the perturbed nonlinear Schroedinger equations is directly simulated by split-step Fourier method to check the validity of the direct perturbation method. It turns out that the analytical results given by the direct perturbation method are well supported by numerical calculations.
基金Supported by National Natural Science Foundation of China(Grant Nos.10871141,11471236)
文摘We give a general vectorial Ekeland's variational principle, where the objective function is defined on an F-type topological space and taking values in a pre-ordered real linear space. Being quite different from the previous versions of vectorial Ekeland's variational principle, the perturbation in our version is no longer only dependent on a fixed positive vector or a fixed family of positive vectors. It contains a family of set-valued functions taking values in the positive cone and a family of subadditive functions of topology generating quasi-metrics. Hence, the direction of the perturbation in the new version is a family of variable subsets which are dependent on the objective function values. The general version includes and improves a number of known versions of vectorial Ekeland's variational principle. From the general Ekeland's principle, we deduce the corresponding versions of Caristi-Kirk's fixed point theorem and Takahashi's nonconvex minimization theorem. Finally, we prove that all the three theorems are equivalent to each other.