为了实现复杂环境下视距(Line-of-Sigh,LOS)与非视距(Non-Line-of-Sigh,NLOS)同时存在的混合信道中的目标辐射源直接定位(Direct Position Determination,DPD),提出基于到达时间(Time-of-Arrival,TOA)的快速直接定位算法。该算法充分挖...为了实现复杂环境下视距(Line-of-Sigh,LOS)与非视距(Non-Line-of-Sigh,NLOS)同时存在的混合信道中的目标辐射源直接定位(Direct Position Determination,DPD),提出基于到达时间(Time-of-Arrival,TOA)的快速直接定位算法。该算法充分挖掘不同信道信号中的信息参数,采用最小二乘法原理构建代价函数,无需估计定位参数,避免了传统两步定位法所需的NLOS识别与数据关联。引入粒子群(Particle Swarm Optimization,PSO)算法精确估计目标辐射源的位置信息,以降低计算复杂度。将所提定位算法与基于TOA的两步定位法在定位精度方面进行对比,仿真结果表明,所提算法定位精度高于两步定位法,且可以逼近克拉美罗下界(Cramer-Rao Lower Bound,CRLB),能够快速定位混合信道中的目标辐射源。展开更多
在网格直接定位方法的精度依赖于网格划分的精细程度,传统离网格方法缓解了对网格划分的依赖,但是仍然存在补偿精度低、算法复杂度过高的问题。针对这些问题,本文提出了一种参数字典动态更新的SOMP(Simultaneous Orthogonal Matching Pu...在网格直接定位方法的精度依赖于网格划分的精细程度,传统离网格方法缓解了对网格划分的依赖,但是仍然存在补偿精度低、算法复杂度过高的问题。针对这些问题,本文提出了一种参数字典动态更新的SOMP(Simultaneous Orthogonal Matching Pursuit)离网格直接定位方法。首先,利用子空间适应的方法对初始信号进行降噪处理,对二维空间进行粗网格的划分。其次,引入网格量化误差,不同于JSOMP(Joint Simultaneous Orthogonal Matching Pursuit)方法迭代后结算补偿值的方式,该方法在迭代的过程中使用泰勒补偿对每一次匹配相关度最高的网格点进行单源补偿,更新原有字典矩阵参数,从而得到较为理想的字典矩阵。仿真结果表明,本文所提算法能够有效克服网格失配的问题,得到精准的信源位置估计结果,相比于JSOMP、OG-SBI(Off-Grid Sparse Bayesian Inference)、MUSIC-Taylor(Multiple Signal Classification Based on Taylor Compensation)离网格方法,本文所提方法的运算速度更快、定位精度更高。展开更多
To improve the resolution and accuracy of Direct Position Determination(DPD),this paper investigates the problem of positioning multiple emitters directly with a single moving Rotating Linear Array(RLA).Firstly,the ge...To improve the resolution and accuracy of Direct Position Determination(DPD),this paper investigates the problem of positioning multiple emitters directly with a single moving Rotating Linear Array(RLA).Firstly,the geometry of the RLA is formulated and analysed.According to its geometry,the intercepted noncoherent signals in multiple interception intervals are modeled.Correspondingly,the Multiple SIgnal Classification(MUSIC)based noncoherent DPD approach is proposed.Secondly,the synchronous coherent pulse signals are individually considered and formulated.And the coherent DPD approach which aims for localizing this special type of signal is presented by stacking all array responses at different interception intervals.Besides,we also derive the constrained Cramer-Rao Lower Bound(CRLB)expression for both noncoherent and coherent DPD with RLA under the constraint that the altitudes of the emitters are known.At last,computer simulations are included to examine the performance of the proposed approach.The results demonstrate that the localization accuracy and resolution of DPD with single moving linear array can be significantly improved by the array rotation.In addition,coherent DPD with RLA further improves the resolution and increases the maximum emitter number that can be localized compared with the noncoherent DPD with RLA.展开更多
为了解决多阵列中子空间数据融合(Subspace data fusion,SDF)算法自由度受限于实际阵元数与定位精度低的问题,本文利用非圆(Non⁃circular,NC)信号特性并结合降维(Reduced⁃dimension,RD)搜索思想提出了一种基于降维搜索的子空间数据融合...为了解决多阵列中子空间数据融合(Subspace data fusion,SDF)算法自由度受限于实际阵元数与定位精度低的问题,本文利用非圆(Non⁃circular,NC)信号特性并结合降维(Reduced⁃dimension,RD)搜索思想提出了一种基于降维搜索的子空间数据融合的非圆信号直接定位算法(Reduced⁃dimension subspace data fusion,RD⁃SDF)。该算法首先利用辐射源信号的NC特性扩展空间信息,以获得增大的虚拟阵列孔径,与更多的可识别信源数。但是由于NC相位导致的高维搜索大大增加了算法求解时的复杂度,本文引入RD搜索思想,通过数据重构消除NC相位导致的高维搜索复杂度问题,并结合SDF构造RD融合搜索谱函数。仿真结果表明,相比于传统SDF算法,本文RD⁃SDF算法具有更高的空间自由度和定位精度。此外,RD⁃SDF算法在保证估计性能的同时显著降低了算法复杂度。展开更多
本文研究了MIMO(Multiple-Input Multiple-Output)雷达系统中,仅使用多普勒频移(Doppler Frequency Shifts,DFS)信息对目标进行直接定位(Direct Position Determination,DPD)的方法。通常的两步定位的方法需要先将定位参数从接收信号中...本文研究了MIMO(Multiple-Input Multiple-Output)雷达系统中,仅使用多普勒频移(Doppler Frequency Shifts,DFS)信息对目标进行直接定位(Direct Position Determination,DPD)的方法。通常的两步定位的方法需要先将定位参数从接收信号中提取出来再通过求解参数与目标位置的关系方程对目标位置进行估计。这一过程由于忽略了所有测量参数的提取必须相对于同一个目标位置的约束条件,因而是次优的定位方法。针对这一问题,本文提出了一种基于极大似然(Maximum Likelihood,ML)准则的直接定位算法,可以不需要进行参数提取而集中地处理所有接收到的数据,实现对目标位置的一步估计。仿真结果表明,所提算法性能在较低信噪比(signal to noise ratio,SNR)的条件下优于两步定位法,且在较高信噪比下与两步法定位精度相当。展开更多
文摘在网格直接定位方法的精度依赖于网格划分的精细程度,传统离网格方法缓解了对网格划分的依赖,但是仍然存在补偿精度低、算法复杂度过高的问题。针对这些问题,本文提出了一种参数字典动态更新的SOMP(Simultaneous Orthogonal Matching Pursuit)离网格直接定位方法。首先,利用子空间适应的方法对初始信号进行降噪处理,对二维空间进行粗网格的划分。其次,引入网格量化误差,不同于JSOMP(Joint Simultaneous Orthogonal Matching Pursuit)方法迭代后结算补偿值的方式,该方法在迭代的过程中使用泰勒补偿对每一次匹配相关度最高的网格点进行单源补偿,更新原有字典矩阵参数,从而得到较为理想的字典矩阵。仿真结果表明,本文所提算法能够有效克服网格失配的问题,得到精准的信源位置估计结果,相比于JSOMP、OG-SBI(Off-Grid Sparse Bayesian Inference)、MUSIC-Taylor(Multiple Signal Classification Based on Taylor Compensation)离网格方法,本文所提方法的运算速度更快、定位精度更高。
基金funded by the National Defence Science and Technology Project Fund of China(No.3101140)the Shanghai Aerospace Science and Technology Innovation Fund of China(No.SAST2015028)the Equipment Prophecy Fund of China(No.9140A21040115KG01001).
文摘To improve the resolution and accuracy of Direct Position Determination(DPD),this paper investigates the problem of positioning multiple emitters directly with a single moving Rotating Linear Array(RLA).Firstly,the geometry of the RLA is formulated and analysed.According to its geometry,the intercepted noncoherent signals in multiple interception intervals are modeled.Correspondingly,the Multiple SIgnal Classification(MUSIC)based noncoherent DPD approach is proposed.Secondly,the synchronous coherent pulse signals are individually considered and formulated.And the coherent DPD approach which aims for localizing this special type of signal is presented by stacking all array responses at different interception intervals.Besides,we also derive the constrained Cramer-Rao Lower Bound(CRLB)expression for both noncoherent and coherent DPD with RLA under the constraint that the altitudes of the emitters are known.At last,computer simulations are included to examine the performance of the proposed approach.The results demonstrate that the localization accuracy and resolution of DPD with single moving linear array can be significantly improved by the array rotation.In addition,coherent DPD with RLA further improves the resolution and increases the maximum emitter number that can be localized compared with the noncoherent DPD with RLA.
文摘为了解决多阵列中子空间数据融合(Subspace data fusion,SDF)算法自由度受限于实际阵元数与定位精度低的问题,本文利用非圆(Non⁃circular,NC)信号特性并结合降维(Reduced⁃dimension,RD)搜索思想提出了一种基于降维搜索的子空间数据融合的非圆信号直接定位算法(Reduced⁃dimension subspace data fusion,RD⁃SDF)。该算法首先利用辐射源信号的NC特性扩展空间信息,以获得增大的虚拟阵列孔径,与更多的可识别信源数。但是由于NC相位导致的高维搜索大大增加了算法求解时的复杂度,本文引入RD搜索思想,通过数据重构消除NC相位导致的高维搜索复杂度问题,并结合SDF构造RD融合搜索谱函数。仿真结果表明,相比于传统SDF算法,本文RD⁃SDF算法具有更高的空间自由度和定位精度。此外,RD⁃SDF算法在保证估计性能的同时显著降低了算法复杂度。
文摘本文研究了MIMO(Multiple-Input Multiple-Output)雷达系统中,仅使用多普勒频移(Doppler Frequency Shifts,DFS)信息对目标进行直接定位(Direct Position Determination,DPD)的方法。通常的两步定位的方法需要先将定位参数从接收信号中提取出来再通过求解参数与目标位置的关系方程对目标位置进行估计。这一过程由于忽略了所有测量参数的提取必须相对于同一个目标位置的约束条件,因而是次优的定位方法。针对这一问题,本文提出了一种基于极大似然(Maximum Likelihood,ML)准则的直接定位算法,可以不需要进行参数提取而集中地处理所有接收到的数据,实现对目标位置的一步估计。仿真结果表明,所提算法性能在较低信噪比(signal to noise ratio,SNR)的条件下优于两步定位法,且在较高信噪比下与两步法定位精度相当。