Lead, zinc, and iron were recovered from jarosite residues using direct reduction followed by magnetic separation. The influence of the coal dosage, reduction temperature, and reduction time on the volatilization rate...Lead, zinc, and iron were recovered from jarosite residues using direct reduction followed by magnetic separation. The influence of the coal dosage, reduction temperature, and reduction time on the volatilization rates of lead and zinc and the metallization rate of iron were investigated. The results show that the volatilization rates of lead and zinc were 96.97% and 99.89%, respectively, and the iron metallization rate was 91.97% under the optimal reduction roasting conditions of a coal dosage of 25.0 wt% and reduction roasting at 1250°C for 60 min. The magnetic concentrate with an iron content of 90.59 wt% and an iron recovery rate of 50.87% was obtained under the optimum conditions in which 96.56% of the reduction product particles were smaller than 37 μm and the magnetic field strength was 24 k A/m. Therefore, the results of this study demonstrate that recovering valuable metals such as lead, zinc, and iron from jarosite residues is feasible using the developed approach.展开更多
An innovative method for recovering valuable elements from vanadium-bearing titanomagnetite is proposed. This method involves two procedures: low-temperature roasting of vanadium-bearing titanomagnetite and water lea...An innovative method for recovering valuable elements from vanadium-bearing titanomagnetite is proposed. This method involves two procedures: low-temperature roasting of vanadium-bearing titanomagnetite and water leaching of roasting slag. During the roasting process, the reduction of iron oxides to metallic iron, the sodium oxidation of vanadium oxides to water-soluble sodium vanadate, and the smelting separation of metallic iron and slag were accomplished simultaneously. Optimal roasting conditions for iron/slag separation were achieved with a mixture thickness of 42.5 mm, a roasting temperature of 1200°C, a residence time of 2 h, a molar ratio of C/O of 1.7, and a sodium carbonate addition of 70 wt%, as well as with the use of anthracite as a reductant. Under the optimal conditions, 93.67% iron from the raw ore was recovered in the form of iron nugget with 95.44% iron grade. After a water leaching process, 85.61% of the vanadium from the roasting slag was leached, confirming the sodium oxidation of most of the vanadium oxides to water-soluble sodium vanadate during the roasting process. The total recoveries of iron, vanadium, and titanium were 93.67%, 72.68%, and 99.72%, respectively.展开更多
The conventional fast converted-wave imaging method directly uses backward Pand converted S-wavefield to produce joint images. However, this image is accompanied by strong background noises, because the wavefi elds in...The conventional fast converted-wave imaging method directly uses backward Pand converted S-wavefield to produce joint images. However, this image is accompanied by strong background noises, because the wavefi elds in all propagation directions contribute to it. Given this issue, we improve the conventional imaging method in the two aspects. First, the amplitude-preserved P-and S-wavef ield are obtained by using an improved space-domain wavef ield separation scheme to decouple the original elastic wavef ield. Second, a convertedwave imaging condition is constructed based on the directional-wavefield separation and only the wavefields propagating in the same directions used for cross-correlation imaging, resulting in effectively eliminating the imaging artifacts of the wavefields with different directions;Complex-wavefi eld extrapolation is adopted to decompose the decoupled P-and S-wavefield into directional-wavefields during backward propagation, this improves the eff iciency of the directional-wavef ield separation. Experiments on synthetic data show that the improved method generates more accurate converted-wave images than the conventional one. Moreover, the improved method has application potential in micro-seismic and passive-source exploration due to its source-independent characteristic.展开更多
The effect of sodium sulfate on direct reduction of beach titanomagnetite,followed by magnetic separation,to separate iron and titanium was investigated. Direct reduced iron( DRI) with a high Fe content,low TiO_2 co...The effect of sodium sulfate on direct reduction of beach titanomagnetite,followed by magnetic separation,to separate iron and titanium was investigated. Direct reduced iron( DRI) with a high Fe content,low TiO_2 content and low iron recovery was obtained after adding sodium sulfate. When the sodium sulfate dosage was increased from 0 to 10 mass%,the Fe content of the DRI increased from 90. 00 mass% to 93. 55 mass% and the TiO_2 content decreased from 1. 27 mass% to 0. 70 mass%. The reduction mechanism of sodium sulfate was investigated by X-ray diffraction( XRD) and scanning electron microscopy( SEM) with energy dispersive spectrometer( EDS). Results revealed that the metallic iron grains in the reduced ore with sodium sulfate were larger than those in the ore without sodium sulfate. Sodium sulfate promoted the migration of iron as well as the accumulation and growth of metallic iron grains by low-melting-point carnegieite and troilite formed in the redox system. Low-melting-point carnegieite decreased the melting point of the system and then promoted liquefaction. Troilite could decrease the surface tension and melting point of metallic iron grains.展开更多
Embedding direct reduction followed by magnetic separation was conducted to fully recover iron and titanium separately from beach titanomagnetite (TTM). The influences of reduction conditions, such as molar ratio of...Embedding direct reduction followed by magnetic separation was conducted to fully recover iron and titanium separately from beach titanomagnetite (TTM). The influences of reduction conditions, such as molar ratio of C to Fe, reduction time, and reduction temperature, were studied. The results showed that the TTM concentrate was reduced to iron and iron-titanium oxides, depending on the reduction time, and the reduction sequence at 1 200℃ was suggested as follows : Fe2.75 Ti0.25O4→Fe2TiO4→FeTiO3→FeTi2O5. The reduction temperature played a considerable role in the reduction of TTM concentrates. Increasing temperature from 1 100 to 1 200℃ was beneficial to recovering titanium and iron, whereas the results deteriorated as temperature increased further. The results of X-ray diffraction and scanning electron microscopy analyses showed that low temperature (≤1100℃) was unfavorable for the gasification of reductant, resulting in insufficient reducing atmosphere in the reduction process. The molten phase was formed at high temperatures of 1250-1 300℃, which accelerated the migration rate of metallic particles and suppressed the diffusion of reduction gas, resulting in poor reduction. The optimum conditions for reducing TTM concentrate are as follows: molar ratio of C to Fe of 1.68, reduction time of 150 min, and reduction temperature of 1 200℃. Under these conditions, direct reduction iron powder, assaying 90.28 mass% TFe and 1.73 mass% TiO2 with iron recovery of 90.85%, and titanium concentrate, assaying 46.24 mass% TiO2 with TiO2 recovery of 91.15%, were obtained.展开更多
In order to simplify the process which aims at separating the coherent sources located at different sides of holography surface, a direct sound field separation method which only depends on the data of holography surf...In order to simplify the process which aims at separating the coherent sources located at different sides of holography surface, a direct sound field separation method which only depends on the data of holography surface is proposed. Assume that the reconstruction surface is holography surface, according to the equivalent sources located at the spherical surface, there exists a relationship between the measured sound pressure and the calculated value based on equivalent source method. Then, the coherent sources are separated. Nmnerical simulation an- alyzes the separation results when the interference sources are pulsating ball source and simply supported steel sheet with forced oscillation, respectively. The separation method is validated by experiment with two loudspeakers. The results show that the proposed method has high accuracy to the two kinds of interference sources and high tolerate deviation.展开更多
Recently, triboelectric generator(TEG) has attracted a lot of attention due to its high output voltage and low-cost fabrication process. Here, a novel cubic TEG box is designed, which has separated electrodes on diffe...Recently, triboelectric generator(TEG) has attracted a lot of attention due to its high output voltage and low-cost fabrication process. Here, a novel cubic TEG box is designed, which has separated electrodes on different surfaces. Thanks to the specially designed structure, it can scavenge vibration energy from all directions. Firstly the device is investigated through finite element method(FEM) simulation. Then the device is evaluated by experiments. The measuremental results show that this device can generate an amount of 25 n C charge during once shake by charging a 10 n F capacitor. Besides, an output voltage about 100 V is obtained, which is able to directly light up several light-emitting diodes(LEDs) simultaneously. At last, the device is utilized as a self-powered orientation sensor, which shows explicit directivity. This work extends the applications of TEG for ambient vibration energy harvesting techniques and the self-powered orientation sensor.展开更多
A new large-scale three-dimensional(3D) reconstruction technology based on integral imaging with color-position characteristics is presented.The color of the object point is similar to those of corresponding points.Th...A new large-scale three-dimensional(3D) reconstruction technology based on integral imaging with color-position characteristics is presented.The color of the object point is similar to those of corresponding points.The corresponding point coordinates form arithmetic progressions because integral imaging captures information with a senior array which has similar pitches on x and y directions.This regular relationship is used to determine the corresponding point parameters for reconstructing 3D information from divided elemental images separated by color,which contain several corresponding points.The feasibility of the proposed method is demonstrated through an optical indoor experiment.A large-scale application of the proposed method is illustrated by the experiment with a corner of our school as its object.展开更多
文摘Lead, zinc, and iron were recovered from jarosite residues using direct reduction followed by magnetic separation. The influence of the coal dosage, reduction temperature, and reduction time on the volatilization rates of lead and zinc and the metallization rate of iron were investigated. The results show that the volatilization rates of lead and zinc were 96.97% and 99.89%, respectively, and the iron metallization rate was 91.97% under the optimal reduction roasting conditions of a coal dosage of 25.0 wt% and reduction roasting at 1250°C for 60 min. The magnetic concentrate with an iron content of 90.59 wt% and an iron recovery rate of 50.87% was obtained under the optimum conditions in which 96.56% of the reduction product particles were smaller than 37 μm and the magnetic field strength was 24 k A/m. Therefore, the results of this study demonstrate that recovering valuable metals such as lead, zinc, and iron from jarosite residues is feasible using the developed approach.
基金financially supported by the National Basic Research Program of China(Nos.2013CB632601 and 2013CB632604)the National Science Foundation for Distinguished Young Scholars of China(Nos.51125018 and 51504230)+3 种基金the Key Research Program of the Chinese Academy of Sciences(No.KGZD-EW-201-2)the National Natural Science Foundation of China(Nos.51374191,21106167,2160624,and 51104139)the Financial Grant from the China Postdoctoral Science Foundation(Nos.2012M510552 and 2013T60175)the Nonprofit Industry Research Subject of Environmental Projection(No.201509053)
文摘An innovative method for recovering valuable elements from vanadium-bearing titanomagnetite is proposed. This method involves two procedures: low-temperature roasting of vanadium-bearing titanomagnetite and water leaching of roasting slag. During the roasting process, the reduction of iron oxides to metallic iron, the sodium oxidation of vanadium oxides to water-soluble sodium vanadate, and the smelting separation of metallic iron and slag were accomplished simultaneously. Optimal roasting conditions for iron/slag separation were achieved with a mixture thickness of 42.5 mm, a roasting temperature of 1200°C, a residence time of 2 h, a molar ratio of C/O of 1.7, and a sodium carbonate addition of 70 wt%, as well as with the use of anthracite as a reductant. Under the optimal conditions, 93.67% iron from the raw ore was recovered in the form of iron nugget with 95.44% iron grade. After a water leaching process, 85.61% of the vanadium from the roasting slag was leached, confirming the sodium oxidation of most of the vanadium oxides to water-soluble sodium vanadate during the roasting process. The total recoveries of iron, vanadium, and titanium were 93.67%, 72.68%, and 99.72%, respectively.
基金supported by the National Science and Technology Major Project of China(No.2017ZX05018-005)National Natural Science Foundation of China(No.41474110)
文摘The conventional fast converted-wave imaging method directly uses backward Pand converted S-wavefield to produce joint images. However, this image is accompanied by strong background noises, because the wavefi elds in all propagation directions contribute to it. Given this issue, we improve the conventional imaging method in the two aspects. First, the amplitude-preserved P-and S-wavef ield are obtained by using an improved space-domain wavef ield separation scheme to decouple the original elastic wavef ield. Second, a convertedwave imaging condition is constructed based on the directional-wavefield separation and only the wavefields propagating in the same directions used for cross-correlation imaging, resulting in effectively eliminating the imaging artifacts of the wavefields with different directions;Complex-wavefi eld extrapolation is adopted to decompose the decoupled P-and S-wavefield into directional-wavefields during backward propagation, this improves the eff iciency of the directional-wavef ield separation. Experiments on synthetic data show that the improved method generates more accurate converted-wave images than the conventional one. Moreover, the improved method has application potential in micro-seismic and passive-source exploration due to its source-independent characteristic.
基金Item Sponsored by National Natural Science Foundation of China(51474018)
文摘The effect of sodium sulfate on direct reduction of beach titanomagnetite,followed by magnetic separation,to separate iron and titanium was investigated. Direct reduced iron( DRI) with a high Fe content,low TiO_2 content and low iron recovery was obtained after adding sodium sulfate. When the sodium sulfate dosage was increased from 0 to 10 mass%,the Fe content of the DRI increased from 90. 00 mass% to 93. 55 mass% and the TiO_2 content decreased from 1. 27 mass% to 0. 70 mass%. The reduction mechanism of sodium sulfate was investigated by X-ray diffraction( XRD) and scanning electron microscopy( SEM) with energy dispersive spectrometer( EDS). Results revealed that the metallic iron grains in the reduced ore with sodium sulfate were larger than those in the ore without sodium sulfate. Sodium sulfate promoted the migration of iron as well as the accumulation and growth of metallic iron grains by low-melting-point carnegieite and troilite formed in the redox system. Low-melting-point carnegieite decreased the melting point of the system and then promoted liquefaction. Troilite could decrease the surface tension and melting point of metallic iron grains.
基金financially supported by the National Natural Science Foundation of China (Grant No.51474018)
文摘Embedding direct reduction followed by magnetic separation was conducted to fully recover iron and titanium separately from beach titanomagnetite (TTM). The influences of reduction conditions, such as molar ratio of C to Fe, reduction time, and reduction temperature, were studied. The results showed that the TTM concentrate was reduced to iron and iron-titanium oxides, depending on the reduction time, and the reduction sequence at 1 200℃ was suggested as follows : Fe2.75 Ti0.25O4→Fe2TiO4→FeTiO3→FeTi2O5. The reduction temperature played a considerable role in the reduction of TTM concentrates. Increasing temperature from 1 100 to 1 200℃ was beneficial to recovering titanium and iron, whereas the results deteriorated as temperature increased further. The results of X-ray diffraction and scanning electron microscopy analyses showed that low temperature (≤1100℃) was unfavorable for the gasification of reductant, resulting in insufficient reducing atmosphere in the reduction process. The molten phase was formed at high temperatures of 1250-1 300℃, which accelerated the migration rate of metallic particles and suppressed the diffusion of reduction gas, resulting in poor reduction. The optimum conditions for reducing TTM concentrate are as follows: molar ratio of C to Fe of 1.68, reduction time of 150 min, and reduction temperature of 1 200℃. Under these conditions, direct reduction iron powder, assaying 90.28 mass% TFe and 1.73 mass% TiO2 with iron recovery of 90.85%, and titanium concentrate, assaying 46.24 mass% TiO2 with TiO2 recovery of 91.15%, were obtained.
基金supported by the National Natural Science Foundation of China(51275540)Chongqing Foundation and Advanced Research Project(CSTC2015jcyjBX0075)
文摘In order to simplify the process which aims at separating the coherent sources located at different sides of holography surface, a direct sound field separation method which only depends on the data of holography surface is proposed. Assume that the reconstruction surface is holography surface, according to the equivalent sources located at the spherical surface, there exists a relationship between the measured sound pressure and the calculated value based on equivalent source method. Then, the coherent sources are separated. Nmnerical simulation an- alyzes the separation results when the interference sources are pulsating ball source and simply supported steel sheet with forced oscillation, respectively. The separation method is validated by experiment with two loudspeakers. The results show that the proposed method has high accuracy to the two kinds of interference sources and high tolerate deviation.
基金supported by the National Natural Science Foundation of China(Grant Nos.61176103,91323304)the National High-Tech Research and Development Program of China("863"Project)(Grant No.2013AA041102)the Beijing Natural Science Foundation of China(Grant No.4141002)
文摘Recently, triboelectric generator(TEG) has attracted a lot of attention due to its high output voltage and low-cost fabrication process. Here, a novel cubic TEG box is designed, which has separated electrodes on different surfaces. Thanks to the specially designed structure, it can scavenge vibration energy from all directions. Firstly the device is investigated through finite element method(FEM) simulation. Then the device is evaluated by experiments. The measuremental results show that this device can generate an amount of 25 n C charge during once shake by charging a 10 n F capacitor. Besides, an output voltage about 100 V is obtained, which is able to directly light up several light-emitting diodes(LEDs) simultaneously. At last, the device is utilized as a self-powered orientation sensor, which shows explicit directivity. This work extends the applications of TEG for ambient vibration energy harvesting techniques and the self-powered orientation sensor.
基金supported by the National Natural Science Foundation of China(No.11474169)
文摘A new large-scale three-dimensional(3D) reconstruction technology based on integral imaging with color-position characteristics is presented.The color of the object point is similar to those of corresponding points.The corresponding point coordinates form arithmetic progressions because integral imaging captures information with a senior array which has similar pitches on x and y directions.This regular relationship is used to determine the corresponding point parameters for reconstructing 3D information from divided elemental images separated by color,which contain several corresponding points.The feasibility of the proposed method is demonstrated through an optical indoor experiment.A large-scale application of the proposed method is illustrated by the experiment with a corner of our school as its object.