Sewage source heat pump unit operates under partial load most of the time, and study on the law of coefficient of performance (COP) of the unit varying with load ratio can provide basis for the heat pump units running...Sewage source heat pump unit operates under partial load most of the time, and study on the law of coefficient of performance (COP) of the unit varying with load ratio can provide basis for the heat pump units running in high efficiency. A mathematical model determining COP, evaporation temperature and condensation temperature of a single unit was proposed. Under the condition of uniform load distribution, the model was established according to different ways of bearing partial load with the same type multi...展开更多
Based on the characteristics of sewage from beauty salons,a simulation model of a small sewage source heat pump triple supply system that can be applied to such places is established to optimize the operating conditio...Based on the characteristics of sewage from beauty salons,a simulation model of a small sewage source heat pump triple supply system that can be applied to such places is established to optimize the operating conditions of the system.The results show that with the increase of sewage temperature and flow,the performance of the system also increases.In summer conditions,the system provides cooling,recovers waste heat and condensed heat from sewage,with a COP value of 8.97;in winter conditions,the system heats and produces hot water,with a COP value of 2.44;in transitional seasons,only hot water is produced.The COP value is 2.75.Compared with the traditional systems which refers to the air source heat pump and hot water boiler system currently used in beauty salons,this system can save energy by 50.9%.展开更多
Direct Expansion Ground Source Heat Pump (DXGSHP) system directly extracts heat or cold energy from ground by consuming electricity to provide for space conditioning. Compared with the currently widely-used secondary ...Direct Expansion Ground Source Heat Pump (DXGSHP) system directly extracts heat or cold energy from ground by consuming electricity to provide for space conditioning. Compared with the currently widely-used secondary loop Ground Couple Heat Pump (GCHP) system, it has higher energy efficiency, lower operating costs, and less environmental impact. A case study is carried out in this paper. The subject is a residential building located in Beijing, China. It is assumed that the building adopts the DXGSHP system and the GCHP system respectively. Annual loads and energy consumption are simulated and computed. Then the initial cost, operating cost and CO2 emission are calculated. The economic benefit is analyzed with the Payback Time method and the Dynamic Annual Cost Value method. The environmental benefit is discussed mainly by comparing the CO2 emission savings. The results show that the DXGSHP system has higher initial costs, but lower operating costs, and less greenhouse gas emissions. The DXGSHP system has better comprehensive benefits than the GCHP system.展开更多
HFO-1234yf and HFO-1234ze[E] have low global warming potential and zero ozone depletion potential. If they are used in the direct expansion ground source heat pump system substituting for HFC-134a, the system will be ...HFO-1234yf and HFO-1234ze[E] have low global warming potential and zero ozone depletion potential. If they are used in the direct expansion ground source heat pump system substituting for HFC-134a, the system will be beneficial to mitigating climate change. This study aims to find out the thermodynamic characteristics of the direct expansion ground source heat pump system using HFO-1234yf or HFO-1234ze[E] by theoretical calculation. The results indicate that HFO-1234yf system in an actual cycle has the highest COP. HFO-1234yf and HFO-1234ze[E] have such smaller capacity per unit of swept volume that they need larger compression capacity if providing the same heating or cooling loads. For a given unit when HFC-134a is replaced with HFO-1234yf or HFO-1234ze[E], the capacity will decrease. More refrigerant charge is required in the HFO-1234yf or HFO-1234ze[E] system. The results also present that more refrigerant charge is required in the cooling mode than in the heating mode.展开更多
Aiming at the ground-coupled source heat pump that possesses the shortcomings of occupying larger land,this article studies the heat exchanged of heat exchanger in piling,and compares it with common heat exchangers bu...Aiming at the ground-coupled source heat pump that possesses the shortcomings of occupying larger land,this article studies the heat exchanged of heat exchanger in piling,and compares it with common heat exchangers buried directly. The result indicates that the heat exchanger makes the best use of structure of building,saves land,reduces the construction cost,and the heat exchanged is obviously more than exchangers buried directly. In winter condition,when W-shape pipe heat exchanger in pile foundation is 50 m deep and diameter is 800 mm,it transfers 1.2-1.3 times as large as the one of single U-shape buried directly at the flow rate of 0.6 m/s,whose borehole diameter is 300 mm. And in summer condition it does about 2.0-2.3 times as that of U-shape one.展开更多
基金Supported by National Natural Science Foundation of China (No. 50578048)"Heating, Gas, Ventilation and Air Conditioning" Key Laboratory Open Subject in Beijing (No. KF200710)the Postdoctoral Researcher Science Foundation of China (No. 20090450986)
文摘Sewage source heat pump unit operates under partial load most of the time, and study on the law of coefficient of performance (COP) of the unit varying with load ratio can provide basis for the heat pump units running in high efficiency. A mathematical model determining COP, evaporation temperature and condensation temperature of a single unit was proposed. Under the condition of uniform load distribution, the model was established according to different ways of bearing partial load with the same type multi...
基金the Science and Technology Program Project of the Ministry of Housing and Urban-Rural Development“Research on Indoor Thermal Environment Based on Zero Energy Building Technology in Hot Summer and Cold Winter Area”(2017-K1-014)Hubei Provincial Natural Fund Youth Fund“Technology and Evaluation of Multi-energy Complementary Energy Supply for Rural Residential Buildings in Hubei”(2017CFB311).
文摘Based on the characteristics of sewage from beauty salons,a simulation model of a small sewage source heat pump triple supply system that can be applied to such places is established to optimize the operating conditions of the system.The results show that with the increase of sewage temperature and flow,the performance of the system also increases.In summer conditions,the system provides cooling,recovers waste heat and condensed heat from sewage,with a COP value of 8.97;in winter conditions,the system heats and produces hot water,with a COP value of 2.44;in transitional seasons,only hot water is produced.The COP value is 2.75.Compared with the traditional systems which refers to the air source heat pump and hot water boiler system currently used in beauty salons,this system can save energy by 50.9%.
文摘Direct Expansion Ground Source Heat Pump (DXGSHP) system directly extracts heat or cold energy from ground by consuming electricity to provide for space conditioning. Compared with the currently widely-used secondary loop Ground Couple Heat Pump (GCHP) system, it has higher energy efficiency, lower operating costs, and less environmental impact. A case study is carried out in this paper. The subject is a residential building located in Beijing, China. It is assumed that the building adopts the DXGSHP system and the GCHP system respectively. Annual loads and energy consumption are simulated and computed. Then the initial cost, operating cost and CO2 emission are calculated. The economic benefit is analyzed with the Payback Time method and the Dynamic Annual Cost Value method. The environmental benefit is discussed mainly by comparing the CO2 emission savings. The results show that the DXGSHP system has higher initial costs, but lower operating costs, and less greenhouse gas emissions. The DXGSHP system has better comprehensive benefits than the GCHP system.
文摘HFO-1234yf and HFO-1234ze[E] have low global warming potential and zero ozone depletion potential. If they are used in the direct expansion ground source heat pump system substituting for HFC-134a, the system will be beneficial to mitigating climate change. This study aims to find out the thermodynamic characteristics of the direct expansion ground source heat pump system using HFO-1234yf or HFO-1234ze[E] by theoretical calculation. The results indicate that HFO-1234yf system in an actual cycle has the highest COP. HFO-1234yf and HFO-1234ze[E] have such smaller capacity per unit of swept volume that they need larger compression capacity if providing the same heating or cooling loads. For a given unit when HFC-134a is replaced with HFO-1234yf or HFO-1234ze[E], the capacity will decrease. More refrigerant charge is required in the HFO-1234yf or HFO-1234ze[E] system. The results also present that more refrigerant charge is required in the cooling mode than in the heating mode.
基金Project(2006BAJ03A10) supported by the National Key Technology R&D Program of China
文摘Aiming at the ground-coupled source heat pump that possesses the shortcomings of occupying larger land,this article studies the heat exchanged of heat exchanger in piling,and compares it with common heat exchangers buried directly. The result indicates that the heat exchanger makes the best use of structure of building,saves land,reduces the construction cost,and the heat exchanged is obviously more than exchangers buried directly. In winter condition,when W-shape pipe heat exchanger in pile foundation is 50 m deep and diameter is 800 mm,it transfers 1.2-1.3 times as large as the one of single U-shape buried directly at the flow rate of 0.6 m/s,whose borehole diameter is 300 mm. And in summer condition it does about 2.0-2.3 times as that of U-shape one.