期刊文献+
共找到1,162篇文章
< 1 2 59 >
每页显示 20 50 100
Study on inhomogeneous cooling behavior of extruded profile with unequal and large thicknesses during quenching using thermo-mechanical coupling model 被引量:6
1
作者 Zhi-wen LIU Jie YI +3 位作者 Shi-kang LI Wen-jie NIE Luo-xing LI Guan WANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第5期1211-1226,共16页
The interfacial heat transfer coefficient between hot profile surface and cooling water was determined by using inverse heat conduction model combined with end quenching experiment. Then, a Deform-3 D thermo-mechanica... The interfacial heat transfer coefficient between hot profile surface and cooling water was determined by using inverse heat conduction model combined with end quenching experiment. Then, a Deform-3 D thermo-mechanical coupling model for simulating the on-line water quenching of extruded profile with unequal and large thicknesses was developed. The temperature field, residual stress field and distortion of profile during quenching were investigated systematically. The results show that heat transfer coefficient increases as water flow rate increases. The peak heat transfer coefficient with higher water flow rates appears at lower interface temperatures. The temperature distribution across the cross-section of profile during quenching is severe nonuniform and the maximum temperature difference is 300 ℃ at quenching time of 3.49 s. The temperature difference through the thickness of different parts of profile first increases sharply to a maximum value, and then gradually decreases. The temperature gradient increases obviously with the increase of thickness of parts. After quenching, there exist large residual stresses on the inner side of joints of profile and the two ends of part with thickness of 10 mm. The profile presents a twisting-type distortion across the cross-section under non-uniform cooling and the maximum twisting angle during quenching is 2.78°. 展开更多
关键词 aluminum profile unequal and large thicknesses water quenching heat transfer coefficient thermo-mechanical coupling model
下载PDF
Multiscale Nonlinear Thermo-Mechanical Coupling Analysis of Composite Structures with Quasi-Periodic Properties 被引量:2
2
作者 Zihao Yang Liang Ma +4 位作者 Qiang Ma Junzhi Cui Yufeng Nie Hao Dong Xiaohong An 《Computers, Materials & Continua》 SCIE EI 2017年第3期219-248,共30页
This paper reports a multiscale analysis method to predict the thermomechanical coupling performance of composite structures with quasi-periodic properties.In these material structures,the configurations are periodic,... This paper reports a multiscale analysis method to predict the thermomechanical coupling performance of composite structures with quasi-periodic properties.In these material structures,the configurations are periodic,and the material coefficients are quasi-periodic,i.e.,they depend not only on the microscale information but also on the macro location.Also,a mutual interaction between displacement and temperature fields is considered in the problem,which is our particular interest in this study.The multiscale asymptotic expansions of the temperature and displacement fields are constructed and associated error estimation in nearly pointwise sense is presented.Then,a finite element-difference algorithm based on the multiscale analysis method is brought forward in detail.Finally,some numerical examples are given.And the numerical results show that the multiscale method presented in this paper is effective and reliable to study the nonlinear thermo-mechanical coupling problem of composite structures with quasiperiodic properties. 展开更多
关键词 thermo-mechanical coupling problem quasi-periodic properties multiscale asymptotic analysis multiscale finite element-difference algorithm
下载PDF
Shear behavior of intact granite under thermo-mechanical coupling and three-dimensional morphology of shear-formed fractures 被引量:1
3
作者 Bing Chen Baotang Shen Haiyang Jiang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第3期523-537,共15页
The shear failure of intact rock under thermo-mechanical(TM)coupling conditions is common,such as in enhanced geothermal mining and deep mine construction.Under the effect of a continuous engineering disturbance,shear... The shear failure of intact rock under thermo-mechanical(TM)coupling conditions is common,such as in enhanced geothermal mining and deep mine construction.Under the effect of a continuous engineering disturbance,shear-formed fractures are prone to secondary instability,posing a severe threat to deep engineering.Although numerous studies regarding three-dimensional(3D)morphologies of fracture surfaces have been conducted,the understanding of shear-formed fractures under TM coupling conditions is limited.In this study,direct shear tests of intact granite under various TM coupling conditions were conducted,followed by 3D laser scanning tests of shear-formed fractures.Test results demonstrated that the peak shear strength of intact granite is positively correlated with the normal stress,whereas it is negatively correlated with the temperature.The internal friction angle and cohesion of intact granite significantly decrease with an increase in the temperature.The anisotropy,roughness value,and height of the asperities on the fracture surfaces are reduced as the normal stress increases,whereas their variation trends are the opposite as the temperature increases.The macroscopic failure mode of intact granite under TM coupling conditions is dominated by mixed tensileeshear and shear failures.As the normal stress increases,intragranular fractures are developed ranging from a local to a global distribution,and the macroscopic failure mode of intact granite changes from mixed tensileeshear to shear failure.Finally,3D morphological characteristics of the asperities on the shear-formed fracture surfaces were analyzed,and a quadrangular pyramid conceptual model representing these asperities was proposed and sufficiently verified. 展开更多
关键词 thermo-mechanical(TM)coupling Peak shear strength Three-dimensional(3D)morphological characterization Failure mode Quadrangular pyramid model
下载PDF
Formation Mechanism in Alloy Steel Rolling Process Using Thermo-mechanical Coupling Method
4
作者 杨理诚 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第3期422-426,共5页
Based on the theory of elastic-plastic finite element method, the high-speed hot continuous rolling process of a billet is simulated and analyzed in vertical and horizontal passes. The billet is dragged into the passe... Based on the theory of elastic-plastic finite element method, the high-speed hot continuous rolling process of a billet is simulated and analyzed in vertical and horizontal passes. The billet is dragged into the passes by contact friction force between the billet and rollers. The rollers and billet are represented by respectively rigid and deformable bodies, and three-dimensional models are developed for the billet and rollers. The distribution of deformation field, effective strain, rolling force and temperature field are accurately calculated for the whole rolling process (including unstable and stable stages). In addition, the rolling pressure on the width symmetry center is compared with that in the in-situ experimental measurements. It is revealed that various heat exchange phenomena among the billet, rollers and surroundings can result in unbalanced temperature distribution on the cross section. Rolling force and strain can change significantly when the billet is moved towards or away from the roller gap, and keep almost invariable in the stable stage. It is expected that the simulation results would be useful for practical manufacture and provide the theoretical foundation for improvement of process planning and optimization of process parameters. 展开更多
关键词 thermo-mechanical coupling temperature field deformation mechanism hot rolling process
下载PDF
Thermo-mechanical coupled particle model for rock 被引量:7
5
作者 夏明 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第7期2367-2379,共13页
A thermo-mechanical coupled particle model for simulation of thermally-induced rock damage based on the particle simulation method was proposed.The simulation results of three verification examples,for which the analy... A thermo-mechanical coupled particle model for simulation of thermally-induced rock damage based on the particle simulation method was proposed.The simulation results of three verification examples,for which the analytical solutions are available,demonstrate the correctness and usefulness of the thermo-mechanical coupled particle model.This model is applied to simulating an application example with two cases:one is temperature-independent elastic modulus and strength,while the other is temperature-dependent elastic modulus and strength.The related simulation results demonstrate that microscopic crack initiation and propagation process with consideration of temperature-independent and temperature-dependent elastic modulus and strength are different and therefore,the corresponding macroscopic failure patterns of rock are also different.On the contrary,considering the temperature-dependent elastic modulus and strength has no or little effect on the heating conduction behavior.Numerical results,which are obtained by using the proposed model with temperature-dependent elastic modulus and strength,agree well with the experimental results.This also reveals that the rock subjected to heating experiences much more cracking than the rock subjected to cooling. 展开更多
关键词 particle simulation method MICROMECHANICS rock fracture thermo-mechanical coupled model
下载PDF
A thermo-mechanical damage constitutive model for deep rock considering brittleness-ductility transition characteristics
6
作者 FENG Chen-chen WANG Zhi-liang +2 位作者 WANG Jian-guo LU Zhi-tang LI Song-yu 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2379-2392,共14页
This paper developed a statistical damage constitutive model for deep rock by considering the effects of external load and thermal treatment temperature based on the distortion energy.The model parameters were determi... This paper developed a statistical damage constitutive model for deep rock by considering the effects of external load and thermal treatment temperature based on the distortion energy.The model parameters were determined through the extremum features of stress−strain curve.Subsequently,the model predictions were compared with experimental results of marble samples.It is found that when the treatment temperature rises,the coupling damage evolution curve shows an S-shape and the slope of ascending branch gradually decreases during the coupling damage evolution process.At a constant temperature,confining pressure can suppress the expansion of micro-fractures.As the confining pressure increases the rock exhibits ductility characteristics,and the shape of coupling damage curve changes from an S-shape into a quasi-parabolic shape.This model can well characterize the influence of high temperature on the mechanical properties of deep rock and its brittleness-ductility transition characteristics under confining pressure.Also,it is suitable for sandstone and granite,especially in predicting the pre-peak stage and peak stress of stress−strain curve under the coupling action of confining pressure and high temperature.The relevant results can provide a reference for further research on the constitutive relationship of rock-like materials and their engineering applications. 展开更多
关键词 deep rock crack initiation threshold thermo-mechanical coupling statistical damage model distortion energy theory
下载PDF
Spudcan Penetration Simulation Using the Coupled Eulerian-Lagrangian Method with Thermo-Mechanical Coupled Analysis 被引量:1
7
作者 YIN Qilin DONG Sheng +1 位作者 JIANG Fengyuan GUEDES SOARES Carlos 《Journal of Ocean University of China》 SCIE CAS CSCD 2019年第2期317-327,共11页
A novel modeling technique based on the coupled Eulerian-Lagrangian(CEL) method is provided to solve the geotechnical problems with large deformations. The technique is intended to solve the update problem of soil mec... A novel modeling technique based on the coupled Eulerian-Lagrangian(CEL) method is provided to solve the geotechnical problems with large deformations. The technique is intended to solve the update problem of soil mechanical properties during spudcan penetration in normally consolidated clay soil. In the CEL model, the normal method of assigning an increasing shear strength profile with depth(NA) is defective due to its Eulerian framework. In this paper, a new technique is proposed to update soil material properties by introducing thermo-mechanical coupled analysis(TMCA) to the CEL models. During establishment of the CEL models, the optimal penetration velocity and minimum mesh size are determined through parametric studies. Reasonability and accuracy are then verified through comparison of the preliminary results with the soil flow configuration and penetration resistance(Fv) of a centrifuge test, and the results of the proposed method are compared with those of the remeshing and interpolation technique with small strain(RITSS) method. To achieve a CEL model with satisfactory accuracy, the NA and TMCA methods implemented in the CEL models and the RITSS method are first adopted in weightless soil. Comparison of the findings with those obtained in previous studies shows that the TMCA method can update material properties and predict Fv. The TMCA method is then applied to soils with self-weight and different shear strength profiles. Results show that the proposed method is capable of accurately modeling the large deformation problem of spudcan penetration in non-homogeneous clay. 展开更多
关键词 thermo-mechanical couplED analysis NON-HOMOGENEOUS clay SPUDCAN PENETRATION CEL RITSS
下载PDF
Numerical modeling of coupled thermo-mechanical response of a rock pillar 被引量:2
8
作者 Yifeng Chen Chuangbing Zhou Lanru Jing 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2010年第3期262-273,共12页
Understanding the rock mass response to excavation and thermal loading and improving the capability of the numerical models for simulating the progressive failure process of brittle rocks are important for safety asse... Understanding the rock mass response to excavation and thermal loading and improving the capability of the numerical models for simulating the progressive failure process of brittle rocks are important for safety assessment and optimization design of nuclear waste repositories.The international cooperative DECOVALEX-2011 project provides a platform for development,validation and comparison of numerical models,in which the sp pillar stability experiment(APSE) was selected as the modeling target for Task B.This paper presents the modeling results of Wuhan University(WHU) team for stages 1 and 2 of Task B by using a coupled thermo-mechanical model within the framework of continuum mechanics.The rock mass response to excavation is modeled with linear elastic,elastoplastic and brittle-plastic models,while the response to heating is modeled with a coupled thermo-elastic model.The capabilities and limitations of the model for representation of the thermo-mechanical responses of the rock pillar are discussed by comparing the modeling results with experimental observations.The results may provide a helpful reference for the stability and safety assessment of the hard granite host rock in China's Beishan preselected area for high-level radioactive waste disposal. 展开更多
关键词 thermo-mechanical coupling sp pillar stability experiment(ASPE) numerical modeling DECOVALEX-2011 project
下载PDF
ANALYSIS OF COUPLING INFLUENCES OF LABYRINTH SEAL PARAMETERS ON CROSS COUPLED STIFFNESS AND DIRECT DAMPING COEFFICIENT 被引量:3
9
作者 Zhou Shouqin, Xie Youbai (Theory of Lubrication and Bearing Institute, Xi’ an Jiaotiong University) 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2000年第3期190-196,共7页
Labyrinth seal can cause steam-exciting, the structural and operating parameters of labyrinth seal have effect on stability of rotor-system. For investigating the coupling influences of the structure and operating par... Labyrinth seal can cause steam-exciting, the structural and operating parameters of labyrinth seal have effect on stability of rotor-system. For investigating the coupling influences of the structure and operating parameters of labyrinth seals on dynamic coefficients, a model of calculating dynamic coefficients of labyrinth seals is presented using a two control volume model. The coupling influences of parameters on cross-coupled stiffness and direct damping of labyrinth seal are discussed. In the conclusion, a reference of preventing steam-exciting vibration and optimum determination of design parameters of labyrinth seals are provided. 展开更多
关键词 Labyrinth seal Cross coupled stiffness direct damping Steam exciting vibratio
下载PDF
Numerical study on coupled thermo-mechanical processes in sp Pillar Stability Experiment 被引量:1
10
作者 Pengzhi Pan Xiating Feng 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2013年第2期136-144,共9页
This paper presents a study of the full three-dimensional thermo-mechanical (TM) behavior of rock pillar in,Aspo Pillar Stability Experiment (APSE) using a self-developed numerical code TM-EPCA3D. The transient th... This paper presents a study of the full three-dimensional thermo-mechanical (TM) behavior of rock pillar in,Aspo Pillar Stability Experiment (APSE) using a self-developed numerical code TM-EPCA3D. The transient thermal conduction function was descritized on space and time scales, and was solved by using cellular automaton (CA) method on space scale and finite difference method on time scale, respectively. The advantage of this approach is that no global, but local matrix is used so that it avoids the need to develop and solve large-scale linear equations and the complexity therein. A thermal conductivity versus stress function was proposed to reflect the effect of stress on thermal field. The temperature evolution and induced thermal stress in the pillar part during the heating and cooling processes were well simulated by the developed code. The factors that affect the modeling results were discussed. It is concluded that, the complex TM behavior of Aspo rock pillar is significantly influenced by the complex boundary and initial conditions. 展开更多
关键词 Aspo Pillar Stability Experiment (APSE) Elasto-plastic cellular automaton (EPCA) thermo-mechanical (TM) coupling Thermal conduction Thermal conductivity
下载PDF
Numerical modeling for the coupled thermo-mechanical processes and spalling phenomena in sp Pillar Stability Experiment (APSE) 被引量:11
11
作者 T.Koyama M.Chijimatsu +4 位作者 H.Shimizu S.Nakama T.Fujita A.Kobayashi Y.Ohnishi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2013年第1期58-72,共15页
In this paper, the coupled thermo-mechanical (TM) processes in the AEspoe Pillar Stability Experiment (APSE) carried out by the Swedish Nuclear Fuel and Waste Management Company (SKB) were simulated using both c... In this paper, the coupled thermo-mechanical (TM) processes in the AEspoe Pillar Stability Experiment (APSE) carried out by the Swedish Nuclear Fuel and Waste Management Company (SKB) were simulated using both continuum and discontinuum based numerical methods. Two-dimensional (2D) and three- dimensional (3D) finite element method (FEM) and 2D distinct element method (DEM) with particles were used. The main objective for the large scale in situ experiment is to investigate the yielding strength of crystalline rock and the formation of the excavation disturbed/damaged zone (EDZ) during excavation of two boreholes, pressurizing of one of the boreholes and heating. For the DEM simulations, the heat flow algorithm was newly introduced into the original code. The calculated stress, displacement and temperature distributions were compared with the ones obtained from in situ measurements and FEM simulations. A parametric study for initial microcracks was also performed to reproduce the spalling phenomena observed in the APSE. 展开更多
关键词 coupled thermo-mechanical (TM)processesAspoe Pillar Stability Experiment (APSE)Excavation disturbed/damaged zone (EDZ)Finite element method (FEM)Distinct element method (DEM)
下载PDF
ANALYSIS OF COUPLING SENSITIVITY OF UN-CONVENTIONAL RESPONSES FOR DIRECTFORCE CONTROL AIRCRAFT
12
作者 Xu Ruijuan(Faculty 503, Northwestern Polytechnical University, Xi’an, China, 710072) 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 1995年第4期297-304,共8页
The object of this paper is to analyze the coupling sensitivity ofunconventional responses of direct force control (DFC) aircraft with the closed-loopsystem dynamics and the aiming error dynamics, further, to venfy th... The object of this paper is to analyze the coupling sensitivity ofunconventional responses of direct force control (DFC) aircraft with the closed-loopsystem dynamics and the aiming error dynamics, further, to venfy the analytical resultsthrough numerical examples, and finally to obtain some important conclusions on thecoupling sensitivity, which can be referred to the system design and flying quality ratingfor DFC aircraft. 展开更多
关键词 coupling sensitivity RESPONSES direct lift controls AIRCRAFT
下载PDF
DIRECTION-OF-ARRIVAL ESTIMATION IN THE PRESENCE OF MUTUAL COUPLING BASED ON JOINT SPARSE RECOVERY 被引量:2
13
作者 Wang Libin Cui Chen 《Journal of Electronics(China)》 2012年第5期408-414,共7页
A novel Direction-Of-Arrival (DOA) estimation method is proposed in the presence of mutual coupling using the joint sparse recovery. In the proposed method, the eigenvector corresponding to the maximum eigenvalue of c... A novel Direction-Of-Arrival (DOA) estimation method is proposed in the presence of mutual coupling using the joint sparse recovery. In the proposed method, the eigenvector corresponding to the maximum eigenvalue of covariance matrix of array measurement is viewed as the signal to be represented. By exploiting the geometrical property in steering vectors and the symmetric Toeplitz structure of Mutual Coupling Matrix (MCM), the redundant dictionaries containing the DOA information are constructed. Consequently, the optimization model based on joint sparse recovery is built and then is solved through Second Order Cone Program (SOCP) and Interior Point Method (IPM). The DOA estimates are gotten according to the positions of nonzeros elements. At last, computer simulations demonstrate the excellent performance of the proposed method. 展开更多
关键词 direction-Of-Arrival (DOA) Uniform Linear Array (ULA) Mutual coupling Joint sparse recovery
下载PDF
Dynamic thermo-mechanical coupled simulation of statistically inhomogeneous materials by statistical second-order two-scale method
14
作者 Zihao Yang Junzhi Cui +2 位作者 Yufeng Nie Zhiqiang Huang Meizhen Xiang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2015年第5期762-776,共15页
In this paper,a statistical second-order twoscale(SSOTS) method is developed to simulate the dynamic thcrmo-mechanical performances of the statistically inhomogeneous materials.For this kind of composite material,th... In this paper,a statistical second-order twoscale(SSOTS) method is developed to simulate the dynamic thcrmo-mechanical performances of the statistically inhomogeneous materials.For this kind of composite material,the random distribution characteristics of particles,including the shape,size,orientation,spatial location,and volume fractions,are all considered.Firstly,the repre.sentation for the microscopic configuration of the statistically inhomogeneous materials is described.Secondly,the SSOTS formulation for the dynamic thermo-mechanical coupled problem is proposed in a constructive way,including the cell problems,effective thermal and mechanical parameters,homogenized problems,and the SSOTS formulas of the temperatures,displacements,heat flux densities and stresses.And then the algorithm procedure corresponding to the SSOTS method is brought forward.The numerical results obtained by using the SSOTS algorithm are compared with those by classical methods.In addition,the thermo-mechanical coupling effect is studied by comparing the results of coupled case with those of uncoupled case.It demonstrates that the coupling effect on the temperatures,heat flux densities,displacements,and stresses is very distinct.The results show that the SSOTS method is valid to predict the dynamic thermo-mechanical coupled performances of statistically inhomogeneous materials. 展开更多
关键词 Statistically inhomogeneous materials Dynamic thermo-mechanical coupled performances The SSOTS method The thermo-mechanical coupling effect
下载PDF
Numerical Simulation of Coupled Thermo-mechanical Behavior of a Cylinder Billet during Hot-forging Process
15
作者 Peiran Ding, Don g-Ying Ju, Shoji Imatani, Tatsuo Inoue 1.Engineering Services Department, MSC Japan Ltd., Osaka, Japan 2.Department of Mechanical Engineering, Saitama Institute of Technology, Saitama, Japan 3.Department of Energy Conversion Science, K 《Journal of Shanghai Jiaotong university(Science)》 EI 2000年第1期263-269,共7页
A finite volume method is applied to simulate a closed die hot forging process of a cylinder billet. Since variation and distribution of temperature play very important role in hot forging, the code involves a methodo... A finite volume method is applied to simulate a closed die hot forging process of a cylinder billet. Since variation and distribution of temperature play very important role in hot forging, the code involves a methodology of a coupled system of mechanical and thermal equations. The simulated results are compared with the experimental ones. The distribution of temperature in the billet obtained from the simulation is also discussed. 展开更多
关键词 Hot-forging numerical simulation FINITE volume method EULERIAN FORMULATION thermo-mechanical coupling
下载PDF
Design and Coupled Thermo-Mechanical Analysis of Silicon Carbide Primary Mirror Assembly
16
作者 HAN Yuan-yuan ZHANG Yu-min HAN Jie-cai 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2006年第B12期62-65,共4页
Based on the principle that the thermal expansion coefficient of the support structure should match that of the mirror, three schemes of primary mirror assembly were designed. Of them, the first is fused silica mirror... Based on the principle that the thermal expansion coefficient of the support structure should match that of the mirror, three schemes of primary mirror assembly were designed. Of them, the first is fused silica mirror plus 4J32 flexible support plus ZTC4 support back plate, the second K9 mirror plus 4J45 flexible support plus ZTC4 support back plate, and the third SiC mirror plus SiC rigid support back plate. A coupled thermo-mechanical analysis of the three primary mirror assemblies was made with finite element method. The results show that the SiC assembly is the best of all schemes in terms of their combination properties due to its elimination of the thermal expansion mismatch between the materials. The analytical results on the cryogenic property of the SiC primary mirror assembly show a higher surface finish of the SiC mirror even under the cryogenic condition. 展开更多
关键词 silicon carbide primary mirror assembly DESIGN coupled thermo-mechanical analysis
下载PDF
Effects of Tensor Couplings on Nucleonic Direct URCA Processes in Neutron Star Matter
17
作者 许妍 黄修林 +2 位作者 刘承志 特木尔巴根 刘广洲 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第9期132-135,共4页
The relativistic neutrino emissivity of the nucleonic direct URCA processes in neutron star matter is investigated within the relativistic Hartree-Fock approximation. We particularly study the influences of the tensor... The relativistic neutrino emissivity of the nucleonic direct URCA processes in neutron star matter is investigated within the relativistic Hartree-Fock approximation. We particularly study the influences of the tensor couplings of vector mesons ω and ρ on the nucleonic direct URCA processes. It is found that the inclusion of the tensor couplings of vector mesons w and p can slightly increase the maximum mass of neutron stars. In addition, the results indicate that the tensor couplings of vector mesons ω and ρ lead to obvious enhancement of the total neutrino emissivity for the nucleonic direct URCA processes, which must accelerate the cooling rate of the non- superfluid neutron star matter. However, when considering only the tensor coupling of vector meson ρ, the neutrino emissivity for the nucleonic direct URCA processes slightly declines at low densities and significantly increases at high densities. That is, the tensor coupling of vector meson ρ leads to the slow cooling rate of a low-mass neutron star and rapid cooling rate of a massive neutron star. 展开更多
关键词 of is it for Effects of Tensor couplings on Nucleonic direct URCA Processes in Neutron Star Matter in on
下载PDF
Multi-scale coupling simulation in directional solidification of superalloy based on cellular automaton-finite difference method
18
作者 Zhao Guo Jian-xin Zhou +3 位作者 Ya-jun Yin Dong-qiao Zhang Xiao-yuan Ji Xu Shen 《China Foundry》 SCIE 2017年第5期398-404,共7页
Casting microstructure evolution is difficult to describe quantitatively by only a separate simulation of dendrite scale or grain scale, and the numerical simulation of these two scales is difficult to render compatib... Casting microstructure evolution is difficult to describe quantitatively by only a separate simulation of dendrite scale or grain scale, and the numerical simulation of these two scales is difficult to render compatible. A three-dimensional cellular automaton model couplling both dendritic scale and grain scale is developed to simulate the microstructure evolution of the nickel-based single crystal superalloy DD406. Besides, a macro–mesoscopic/microscopic coupling solution algorithm is proposed to improve computational efficiency. The simulation results of dendrite growth and grain growth of the alloy are obtained and compared with the results given in previous reports. The results show that the primary dendritic arm spacing and secondary dendritic arm spacing of the dendritic growth are consistent with the theoretical and experimental results. The mesoscopic grain simulation can be used to obtain results similar to those of microscopic dendrites simulation. It is indicated that the developed model is feasible and effective. 展开更多
关键词 multi-scale coupling dendritic growth grain growth directional solidification cellular automata numerical simulation
下载PDF
Improving RNA secondary structure prediction using direct coupling analysis
19
作者 Xiaoling He Jun Wang +1 位作者 Jian Wang Yi Xiao 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第7期104-110,共7页
Secondary structures of RNAs are the basis of understanding their tertiary structures and functions and so their predictions are widely needed due to increasing discovery of noncoding RNAs.In the last decades,a lot of... Secondary structures of RNAs are the basis of understanding their tertiary structures and functions and so their predictions are widely needed due to increasing discovery of noncoding RNAs.In the last decades,a lot of methods have been proposed to predict RNA secondary structures but their accuracies encountered bottleneck.Here we present a method for RNA secondary structure prediction using direct coupling analysis and a remove-and-expand algorithm that shows better performance than four existing popular multiple-sequence methods.We further show that the results can also be used to improve the prediction accuracy of the single-sequence methods. 展开更多
关键词 RNA secondary structure structure prediction direct coupling analysis
下载PDF
Dynamic thermo-mechanical coupled response of random particulate composites:A statistical two-scale method
20
作者 杨自豪 陈云 +1 位作者 杨志强 马强 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第7期605-616,共12页
This paper focuses on the dynamic thermo-mechanical coupled response of random particulate composite materials. Both the inertia term and coupling term are considered in the dynamic coupled problem. The formulation of... This paper focuses on the dynamic thermo-mechanical coupled response of random particulate composite materials. Both the inertia term and coupling term are considered in the dynamic coupled problem. The formulation of the problem by a statistical second-order two-scale (SSOTS) analysis method and the algorithm procedure based on the finite-element difference method are presented. Numerical results of coupled cases are compared with those of uncoupled cases. It shows that the coupling effects on temperature, thermal flux, displacement, and stresses are very distinct, and the micro- characteristics of particles affect the coupling effect of the random composites. Furthermore, the coupling effect causes a lag in the variations of temperature, thermal flux, displacement, and stresses. 展开更多
关键词 random particulate composites statistical second-order two-scale (SSOTS) analysis method thermo-mechanical coupling effect numerical algorithm
下载PDF
上一页 1 2 59 下一页 到第
使用帮助 返回顶部