Primary percutaneous coronary intervention(PPCI) is the preferred reperfusion therapy for patients presenting with ST-segment elevation myocardial infarction(STEMI) when it can be performed expeditiously and by experi...Primary percutaneous coronary intervention(PPCI) is the preferred reperfusion therapy for patients presenting with ST-segment elevation myocardial infarction(STEMI) when it can be performed expeditiously and by experienced operators. In spite of excellent clinical results this technique is associated with longer delays than thrombolysis and this fact may nullify the benefit of selecting this therapeutic option. Several strategies have been proposed to decrease the temporal delays to deliver PPCI. Among them,prehospital diagnosis and direct transfer to the cath lab,by-passing the emergency department of hospitals,has emerged as anattractive way of diminishing delays. The purpose of this review is to address the effect of direct transfer on time delays and clinical events of patients with STEMI treated by PPCI.展开更多
For the sake of a more accurate shell boundary and calculation of radiation heat transfer in the Directional Solidification(DS) process, a radiation heat transfer model based on the Finite Element Method(FEM)is develo...For the sake of a more accurate shell boundary and calculation of radiation heat transfer in the Directional Solidification(DS) process, a radiation heat transfer model based on the Finite Element Method(FEM)is developed in this study. Key technologies, such as distinguishing boundaries automatically, local matrix and lumped heat capacity matrix, are also stated. In order to analyze the effect of withdrawing rate on DS process,the solidification processes of a complex superalloy turbine blade in the High Rate Solidification(HRS) process with different withdrawing rates are simulated; and by comparing the simulation results, it is found that the most suitable withdrawing rate is determined to be 5.0 mm·min^(-1). Finally, the accuracy and reliability of the radiation heat transfer model are verified, because of the accordance of simulation results with practical process.展开更多
Cyclic voltammetry is employed to demonstrate feasibility of direct electron transfer of glucose oxidase and D amino acid oxidase at a glassy carbon electrode in organic media. The reversible slight conformational ch...Cyclic voltammetry is employed to demonstrate feasibility of direct electron transfer of glucose oxidase and D amino acid oxidase at a glassy carbon electrode in organic media. The reversible slight conformational change of glucose oxidase is observed by changing 0.1 mol/L phosphate buffer to acetonitrile containing 10% v/v of water and 0.05 mol/L tetrabutyalammonium perchlorate, and vice versa.展开更多
TheMoon is the only celestial body that human beings have visited.The design of the Earth-Moon transfer orbits is a critical issue in lunar exploration missions.In the 21st century,new lunar missions including the con...TheMoon is the only celestial body that human beings have visited.The design of the Earth-Moon transfer orbits is a critical issue in lunar exploration missions.In the 21st century,new lunar missions including the construction of the lunar space station,the permanent lunar base,and the Earth-Moon transportation network have been proposed,requiring low-cost,expansive launch windows and a fixed arrival epoch for any launch date within the launch window.The low-energy and low-thrust transfers are promising strategies to satisfy the demands.This review provides a detailed landscape of Earth-Moon transfer trajectory design processes,from the traditional patched conic to the state-of-the-art low-energy and low-thrust methods.Essential mechanisms of the various utilized dynamic models and the characteristics of the different design methods are discussed in hopes of helping readers grasp thebasic overviewof the current Earth-Moon transfer orbitdesignmethods anda deep academic background is unnecessary for the context understanding.展开更多
[Objective] The study aimed to explore the method for directional breeding of a male-sterile line in oval-ecotype Chinese cabbage. [Method] Based on "Multiple Allele Hypothesis of Genic Male Sterile Chinese Cabbage"...[Objective] The study aimed to explore the method for directional breeding of a male-sterile line in oval-ecotype Chinese cabbage. [Method] Based on "Multiple Allele Hypothesis of Genic Male Sterile Chinese Cabbage", an inbred line '06048' of oval ecotype was used as the receptor, and male fertile plant of 'AB12' was used as the donor line. Crossing, backcross, selfing, testcross and sibling were ap- plied to transfer the multiple alleles under the directional genetic model. [Result] Segregation ratio of every generation was consistent with theoretical value. A new male sterile line with 100% male sterility and '06048' horticultural traits was ob- tained successfully, which accomplished the transfer of male sterile multiple allele and horticultural characters of receptor line at the same time. [Conclusion] The re- search verifies that the model of directional transfer is feasible, provides a theoreti- cal basis for the directional transfer of Chinese cabbage with other horticultural traits whose genotype is msms. The model can also be applied to other Brassica crops, to generate genetic male sterile lines with specific botanical traits and high-quality economic traits.展开更多
Background Ni-kshay Poshan Yojana(NPY)is a direct benefit transfer scheme of the Government of India introduced in 2018 to support the additional nutritional requirements of persons with TB(PwTB).Our recent nationwide...Background Ni-kshay Poshan Yojana(NPY)is a direct benefit transfer scheme of the Government of India introduced in 2018 to support the additional nutritional requirements of persons with TB(PwTB).Our recent nationwide evaluation of implementation and utilization of NPY using programmatic data of PwTB from nine randomly selected Indian states,reported a 70%coverage and high median delay in benefit credit.We undertook a qualitative study between January and July 2023,to understand the detailed implementation process of NPY and explore the enablers and barriers to effective implementation and utilization of the NPY scheme.Methods We followed a grounded theory approach to inductively develop theoretical explanations for social phenomena through data generated from multiple sources.We conducted 36 in-depth interviews of national,district and field-level staff of the National Tuberculosis Elimination Programme(NTEP)and NPY beneficiaries from 30 districts across nine states of India,selected using theoretical sampling.An analytical framework developed through inductive coding of a set of six interviews,guided the coding of the subsequent interviews.Categories and themes emerged through constant comparison and the data collection continued until theoretical saturation.Results Stakeholders perceived NPY as a beneficial initiative.Strong political commitment from the state administration,mainstreaming of NTEP work with the district public healthcare delivery system,availability of good geographic and internet connectivity and state-specific grievance redressal mechanisms and innovations were identified as enablers of implementation.However,the complex,multi-level benefit approval process,difficulties in accessing banking services,perceived inadequacy of benefits and overworked human resources in the NTEP were identified as barriers to implementation and utilization.Conclusion The optimal utilization of NPY is enabled by strong political commitment and challenged by its lengthy implementation process and delayed disbursal of benefits.We recommend greater operational simplicity in NPY implementation,integrating NTEP activities with the public health system to reduce the burden on the program staff,and revising the benefit amount more equitably.展开更多
The influence of labor migration on rural household land transfer has been hotly debated in academic circles, which focuses on whether part-time employment leads to land transfer. Using survey data on rural households...The influence of labor migration on rural household land transfer has been hotly debated in academic circles, which focuses on whether part-time employment leads to land transfer. Using survey data on rural households in the Sichuan Province, and applying the theoretical framework of new economics of labor migration, this study explores the influences of labor migration on the direction and scale of land transfer from the perspective of rural household structure. The results indicate that: 1) the quantity of laborers has significant influence on the direction and scale of land transfer. The larger the on-farm labor variable(Labor), the lesser the possibility that land will be rented-out and the amount of land rented out will also be smaller. In addition, there is a greater probability that land will be rented-in and the amount of land rented-in will be greater. 2) The greater the ratio of off-farm laborers to rural household laborers(Off-farm) the greater the possibility that land will be rented-out. In addition the higher the ratio of on-farm laborers to the total household laborers(On-farm), the larger the possibility that land will be rented-in. Meanwhile, if the household has individuals at the age of 64 or older(Old) who are engaged in agriculture, there is a smaller possibility that land will be rentedout. 3) the ratio of part-time laborers to rural household laborers(Pluriactivity) have significant inverse U-shaped influences on the rent-in of land as well as the amount of land rented-in. The inflection points are 33.27% and 14.10%, respectively. Such findings confirm the significance of this study in better understanding the influence of labor migration on rural household land transfer.展开更多
To improve anaerobic digestion(AD)efficiency of rice straw,solid alkaline CaO and the liquid fraction of digestate(LFD)were used as pretreatment agents of rice straw.The results showed that AD performance of rice stra...To improve anaerobic digestion(AD)efficiency of rice straw,solid alkaline CaO and the liquid fraction of digestate(LFD)were used as pretreatment agents of rice straw.The results showed that AD performance of rice straw with CaOLFD pretreatment was optimal in different pretreatment methods of the CaO+LFD,CaOLFD,LFD+CaO,CaO,and LFD.The maximum methane yield(314 ml(g VS)^(-1))and the highest VFAs concentration(14851 mg·L^(-1) on day 3)of the CaOLFD pretreatment group were 81%and 118%higher than that of the control group,respectively.Under the action of solid alkaline CaO,the bacteria of Clostridium,Atopostipes,Sphaerochaeta,Tissierella,Thiopseudomonas,Rikenellaceae,and Sedimentibacter could build up co-cultures with the archaeal of Methanosaeta,Methanobacterium,and Methanosarcina performing direct interspecies electron transfer(DIET)and improving AD performance of rice straw.Therefore,the combined pretreatment using CaO and LFD could not only pretreat rice straw but also stimulate co-cultures of microorganism to establish DIET enhancing AD efficiency.展开更多
Extracellular electron transfer(EET)plays a critical role in bioelectrochemical processes,allowing cou-pling between microorganisms and extracellular solid-state electrodes,metals,or other cells in energy metabolism.P...Extracellular electron transfer(EET)plays a critical role in bioelectrochemical processes,allowing cou-pling between microorganisms and extracellular solid-state electrodes,metals,or other cells in energy metabolism.Previous studies have suggested a role for outer-surface c-type cytochromes in direct metal-to-microbe electron transfer by Geobacter sulfurreducens,a model electroactive bacterium.Here,we ex-amined the possibility of other microbially produced electrical contacts by deleting the gene for PilA,the protein monomer that G.sulfurreducens assembles into electrically conductive protein nanowires(e-pili).Deleting pilA gene inhibited electron extraction from pure iron and 316L stainless steel up to 31%and 81%,respectively more than deleting the gene for the outer-surface cytochrome OmcS.This PilA-deficient phenotype,and the observation that relatively thick biofilms(21.7μm)grew on the metal surfaces at multi-cell distances from the metal surfaces suggest that e-pili contributed significantly to microbial cor-rosion via direct metal-to-microbe electron transfer.These results have implications for the fundamental understanding of electron harvest via e-pili by electroactive microbes,their uses in bioenergy production,as well as in monitoring and mitigation of metal biocorrosion.展开更多
The practicality of electrochemical water-splitting technology relies on the development of novel and efficient bifunctional electrocatalysts capable of facilitating both the hydrogen evolution reaction(HER)and oxygen...The practicality of electrochemical water-splitting technology relies on the development of novel and efficient bifunctional electrocatalysts capable of facilitating both the hydrogen evolution reaction(HER)and oxygen evolution reaction(OER).Black phosphorus(BP)holds tremendous promise for HER and OER electrocatalysis owing to its fully exposed atoms and high carrier mobility.However,the elec-trocatalytic performance of BP is still much lower than the expected theoretical limit,presenting an exciting challenge for further advancements.Herein,we embed electrochemically exfoliated few-layer BP nanosheets in higher Fermi level(EF)of cobalt,nitrogen co-doped carbons to form a new heterojunction(CoNC-BP),as efficient bifunctional electrocatalysts toward HER and OER for the advancement overall water splitting applications.A directed interfacial electron transfer is realized from CoNC to BP,facilitated by the lowering Fermi level(EF).This interfacial electron transfer plays a crucial role in optimizing the adsorption and desorption of active intermediates,while also introducing an abundance of hypervalent Co sites.These factors collectively contribute to the remarkable electrocatalytic activities of HER and OER performance,leading to the efficient performance of the developed CoNC-BP heterojunction in water-splitting applications.This work demonstrates a promising breakthrough that can inspire the design of high-efficiency catalysts.展开更多
Given the increasing number of diabetic patients,rapid and accurate detection of glucose in body fluids is critical.This study developed a direct electrochemical biosensor for glucose based on nitrogen-doped carbon na...Given the increasing number of diabetic patients,rapid and accurate detection of glucose in body fluids is critical.This study developed a direct electrochemical biosensor for glucose based on nitrogen-doped carbon nanocages(NCNCs).NCNCs possess a large specific surface area of 1395 m^(2)·g^(-1),a high N atomic content of 9.37%and good biocompatibility,which is favorable for enzyme loading and electron transfer.The surface average concentration of electroactive glucose oxidase on NCNCs was 2.82×10^(-10)mol·cm^(-2).The NCNC-based direct electrochemical biosensor exhibited a high sensitivity of 13.7μA·(mmol·L^(-1))^(-1)·cm^(-2),rapid response time of 5 s and an impressive electron-transferrate constant(ks)of 1.87 s^(-1).Furthermore,we investigated an NCNC-based direct electron transfer(DET)biosensor for sweat glucose detection,which demonstrated tremendous promise for non-invasive wearable diabetes diagnosis.展开更多
Enhancing the therapeutic effect of existing treatments or developing new non-invasive treatments are important measures to achieve high-efficiency treatment of malignant tumors.Photodynamic therapy(PDT)is an emerging...Enhancing the therapeutic effect of existing treatments or developing new non-invasive treatments are important measures to achieve high-efficiency treatment of malignant tumors.Photodynamic therapy(PDT)is an emerging treatment modality,and the key for achieving high-efficiency PDT is to select light with strong tissue penetration depth and enhance the generation of reactive oxygen species(ROS).Although the upconversion nanoparticles(UCNPs)modified with the photosensitizers could achieve PDT with strong penetration depth under near-infrared light irradiation,the ROS generated by traditional single-pathway PDT is still insufficient.Herein,we developed a novel nanoconjugate(UCNP-Ce6/AIEgen)for dual-pathway reinforced PDT,in which the UCNPs were co-modified with chlorin e6(Ce6)and luminogen with aggregation-induced emission(AIEgen).Due to the presence of AIEgen,UCNP-Ce6/AIEgen could avoid aggregation-caused luminescence quenching in biological water environments and convert upconversion luminescence(UCL)of UCNPs to Ce6-activatable fluorescence.Therefore,under the irradiation of 808 nm laser,UCNP-Ce6/AIEgen can not only undergo direct lanthanide-triplet energy transfer to activate Ce6,but also convert the UCL of UCNPs to the light that can activate Ce6 through Fӧrster resonance energy transfer to generate more ROS,thus promoting tumor cell apoptosis.This work broadens the applications of nanoconjugates of lanthanide-based inorganic materials and organic dyes,and provides a conception for reinforced PDT of tumors.展开更多
Considering that cathode of microbial electrochemical system(MES)is a good electrons source for methane production via direct/indirect electron transfer to electroactive microorganisms,and that Fe(0)is also a confirme...Considering that cathode of microbial electrochemical system(MES)is a good electrons source for methane production via direct/indirect electron transfer to electroactive microorganisms,and that Fe(0)is also a confirmed electron donor for some electroactive microorganisms through metal-microbe direct electron transfer(DET),Fe(0)-cathode was equipped into an MES digester to enhance cathodic methane production.The results of this study indicated that the potential DET participator,Clostridium possibly obtained electrons directly from Fe(0)-cathode via metal-microbe electrons transfer,then transferred electrons directly to the definite DET participators,Methanosarcina/Methanothrix via microbemicrobe electrons transfer for CH_(4)production.In addition,Methanobacterium is another specially enriched methanogen on Fe(0)-cathode,which might obtain electrons directly from Fe(0)-cathode to produce CH_(4) via metal/electrode-microbe DET.The increment of conductivity of cathodic sludge in Fe(0)-cathode MES digester(R1)further confirmed the enrichment of electroactive microorganisms participating in DET process.As a consequence,a higher CH_(4) production(1205–1508 m L/d)and chemical oxygen demand(COD)removal(79.0%-93.8%)were achieved in R1 compared with graphite-cathode MES digester(R2,720–1090 m L/d and 63.6%-85.6%)and the conventional anaerobic digester(R3,384–428 m L/d and 35.2%-41.0%).In addition,energy efficiency calculated indicated that the output energy of CH_(4) production was 8.16 folds of electricity input in Fe(0)-cathode MES digester.展开更多
文摘Primary percutaneous coronary intervention(PPCI) is the preferred reperfusion therapy for patients presenting with ST-segment elevation myocardial infarction(STEMI) when it can be performed expeditiously and by experienced operators. In spite of excellent clinical results this technique is associated with longer delays than thrombolysis and this fact may nullify the benefit of selecting this therapeutic option. Several strategies have been proposed to decrease the temporal delays to deliver PPCI. Among them,prehospital diagnosis and direct transfer to the cath lab,by-passing the emergency department of hospitals,has emerged as anattractive way of diminishing delays. The purpose of this review is to address the effect of direct transfer on time delays and clinical events of patients with STEMI treated by PPCI.
基金financially supported by the Program for New Century Excellent Talents in University(No.NCET-13-0229,NCET-09-0396)the National Science & Technology Key Projects of Numerical Control(No.2012ZX04010-031,2012ZX0412-011)the National High Technology Research and Development Program("863"Program)of China(No.2013031003)
文摘For the sake of a more accurate shell boundary and calculation of radiation heat transfer in the Directional Solidification(DS) process, a radiation heat transfer model based on the Finite Element Method(FEM)is developed in this study. Key technologies, such as distinguishing boundaries automatically, local matrix and lumped heat capacity matrix, are also stated. In order to analyze the effect of withdrawing rate on DS process,the solidification processes of a complex superalloy turbine blade in the High Rate Solidification(HRS) process with different withdrawing rates are simulated; and by comparing the simulation results, it is found that the most suitable withdrawing rate is determined to be 5.0 mm·min^(-1). Finally, the accuracy and reliability of the radiation heat transfer model are verified, because of the accordance of simulation results with practical process.
文摘Cyclic voltammetry is employed to demonstrate feasibility of direct electron transfer of glucose oxidase and D amino acid oxidase at a glassy carbon electrode in organic media. The reversible slight conformational change of glucose oxidase is observed by changing 0.1 mol/L phosphate buffer to acetonitrile containing 10% v/v of water and 0.05 mol/L tetrabutyalammonium perchlorate, and vice versa.
基金supported by the National Key Research and Development Program of China(No.2021YFA0717100)the National Natural Science Foundation of China(Nos.12072270 and U2013206).
文摘TheMoon is the only celestial body that human beings have visited.The design of the Earth-Moon transfer orbits is a critical issue in lunar exploration missions.In the 21st century,new lunar missions including the construction of the lunar space station,the permanent lunar base,and the Earth-Moon transportation network have been proposed,requiring low-cost,expansive launch windows and a fixed arrival epoch for any launch date within the launch window.The low-energy and low-thrust transfers are promising strategies to satisfy the demands.This review provides a detailed landscape of Earth-Moon transfer trajectory design processes,from the traditional patched conic to the state-of-the-art low-energy and low-thrust methods.Essential mechanisms of the various utilized dynamic models and the characteristics of the different design methods are discussed in hopes of helping readers grasp thebasic overviewof the current Earth-Moon transfer orbitdesignmethods anda deep academic background is unnecessary for the context understanding.
基金Supported by National Natural Science Foundation of China(31101551)Yunnan Provincial Natural Science Foundation(2010CD057)Special Fund for Agro-scientific Research in the Public Interest(201003029)~~
文摘[Objective] The study aimed to explore the method for directional breeding of a male-sterile line in oval-ecotype Chinese cabbage. [Method] Based on "Multiple Allele Hypothesis of Genic Male Sterile Chinese Cabbage", an inbred line '06048' of oval ecotype was used as the receptor, and male fertile plant of 'AB12' was used as the donor line. Crossing, backcross, selfing, testcross and sibling were ap- plied to transfer the multiple alleles under the directional genetic model. [Result] Segregation ratio of every generation was consistent with theoretical value. A new male sterile line with 100% male sterility and '06048' horticultural traits was ob- tained successfully, which accomplished the transfer of male sterile multiple allele and horticultural characters of receptor line at the same time. [Conclusion] The re- search verifies that the model of directional transfer is feasible, provides a theoreti- cal basis for the directional transfer of Chinese cabbage with other horticultural traits whose genotype is msms. The model can also be applied to other Brassica crops, to generate genetic male sterile lines with specific botanical traits and high-quality economic traits.
基金funded by the United States Agency for International Development(USAID)supported by Tuberculosis Implementation Framework Agreement(TIFA),implemented through John Snow Research&Training Institute Inc(JSI).
文摘Background Ni-kshay Poshan Yojana(NPY)is a direct benefit transfer scheme of the Government of India introduced in 2018 to support the additional nutritional requirements of persons with TB(PwTB).Our recent nationwide evaluation of implementation and utilization of NPY using programmatic data of PwTB from nine randomly selected Indian states,reported a 70%coverage and high median delay in benefit credit.We undertook a qualitative study between January and July 2023,to understand the detailed implementation process of NPY and explore the enablers and barriers to effective implementation and utilization of the NPY scheme.Methods We followed a grounded theory approach to inductively develop theoretical explanations for social phenomena through data generated from multiple sources.We conducted 36 in-depth interviews of national,district and field-level staff of the National Tuberculosis Elimination Programme(NTEP)and NPY beneficiaries from 30 districts across nine states of India,selected using theoretical sampling.An analytical framework developed through inductive coding of a set of six interviews,guided the coding of the subsequent interviews.Categories and themes emerged through constant comparison and the data collection continued until theoretical saturation.Results Stakeholders perceived NPY as a beneficial initiative.Strong political commitment from the state administration,mainstreaming of NTEP work with the district public healthcare delivery system,availability of good geographic and internet connectivity and state-specific grievance redressal mechanisms and innovations were identified as enablers of implementation.However,the complex,multi-level benefit approval process,difficulties in accessing banking services,perceived inadequacy of benefits and overworked human resources in the NTEP were identified as barriers to implementation and utilization.Conclusion The optimal utilization of NPY is enabled by strong political commitment and challenged by its lengthy implementation process and delayed disbursal of benefits.We recommend greater operational simplicity in NPY implementation,integrating NTEP activities with the public health system to reduce the burden on the program staff,and revising the benefit amount more equitably.
基金financial supports from National Natural Science Foundation of China(Grant Nos.4157152741801221+3 种基金4160161441701622)Sichuan Center for Rural Development Research Project(Grant No.01781912)Ministry of education humanities and social science research youth fund project(No.17YJC630136)
文摘The influence of labor migration on rural household land transfer has been hotly debated in academic circles, which focuses on whether part-time employment leads to land transfer. Using survey data on rural households in the Sichuan Province, and applying the theoretical framework of new economics of labor migration, this study explores the influences of labor migration on the direction and scale of land transfer from the perspective of rural household structure. The results indicate that: 1) the quantity of laborers has significant influence on the direction and scale of land transfer. The larger the on-farm labor variable(Labor), the lesser the possibility that land will be rented-out and the amount of land rented out will also be smaller. In addition, there is a greater probability that land will be rented-in and the amount of land rented-in will be greater. 2) The greater the ratio of off-farm laborers to rural household laborers(Off-farm) the greater the possibility that land will be rented-out. In addition the higher the ratio of on-farm laborers to the total household laborers(On-farm), the larger the possibility that land will be rented-in. Meanwhile, if the household has individuals at the age of 64 or older(Old) who are engaged in agriculture, there is a smaller possibility that land will be rentedout. 3) the ratio of part-time laborers to rural household laborers(Pluriactivity) have significant inverse U-shaped influences on the rent-in of land as well as the amount of land rented-in. The inflection points are 33.27% and 14.10%, respectively. Such findings confirm the significance of this study in better understanding the influence of labor migration on rural household land transfer.
基金supported by the National Key Research&Development Program of Ministry of Science and Technology of the People’s Republic of China(grant number 2018YFC1900901).
文摘To improve anaerobic digestion(AD)efficiency of rice straw,solid alkaline CaO and the liquid fraction of digestate(LFD)were used as pretreatment agents of rice straw.The results showed that AD performance of rice straw with CaOLFD pretreatment was optimal in different pretreatment methods of the CaO+LFD,CaOLFD,LFD+CaO,CaO,and LFD.The maximum methane yield(314 ml(g VS)^(-1))and the highest VFAs concentration(14851 mg·L^(-1) on day 3)of the CaOLFD pretreatment group were 81%and 118%higher than that of the control group,respectively.Under the action of solid alkaline CaO,the bacteria of Clostridium,Atopostipes,Sphaerochaeta,Tissierella,Thiopseudomonas,Rikenellaceae,and Sedimentibacter could build up co-cultures with the archaeal of Methanosaeta,Methanobacterium,and Methanosarcina performing direct interspecies electron transfer(DIET)and improving AD performance of rice straw.Therefore,the combined pretreatment using CaO and LFD could not only pretreat rice straw but also stimulate co-cultures of microorganism to establish DIET enhancing AD efficiency.
基金supported by the National Natu-ral Science Foundation of China(Nos.U2006219 and 52101078)China Baowu Low Carbon Metallurgy Innovation Foundation(No.BWLCF202120)+2 种基金the National Key Research and Development Pro-gram of China(No.2020YFA0907300)the Fundamental Research Funds for the Central Universities of the Ministry of Education of China(Nos.N2102009 and N2002019)the Liaoning Revitaliza-tion Talents Program(No.XLYC1907158).
文摘Extracellular electron transfer(EET)plays a critical role in bioelectrochemical processes,allowing cou-pling between microorganisms and extracellular solid-state electrodes,metals,or other cells in energy metabolism.Previous studies have suggested a role for outer-surface c-type cytochromes in direct metal-to-microbe electron transfer by Geobacter sulfurreducens,a model electroactive bacterium.Here,we ex-amined the possibility of other microbially produced electrical contacts by deleting the gene for PilA,the protein monomer that G.sulfurreducens assembles into electrically conductive protein nanowires(e-pili).Deleting pilA gene inhibited electron extraction from pure iron and 316L stainless steel up to 31%and 81%,respectively more than deleting the gene for the outer-surface cytochrome OmcS.This PilA-deficient phenotype,and the observation that relatively thick biofilms(21.7μm)grew on the metal surfaces at multi-cell distances from the metal surfaces suggest that e-pili contributed significantly to microbial cor-rosion via direct metal-to-microbe electron transfer.These results have implications for the fundamental understanding of electron harvest via e-pili by electroactive microbes,their uses in bioenergy production,as well as in monitoring and mitigation of metal biocorrosion.
基金National Natural Science Foundation of China(Grant No.62004143)Key R&D Program of Hubei Province(Grant No.2022BAA084)+4 种基金Natural Science Foundation of Hubei Province(Grant No.2021CFB133)National Key R&D Program of China(Grant No.2022YFC3902703)Innovation Project of Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education(Grant No.LCX2021003)Open Research Fund of Key Laboratory of Material Chemistry for Energy Conversion and Storage(HUST),Ministry of Education(Grant No.2021JYBKF05)14th Graduate Ed-ucation Innovation Fund of Wuhan Institute of Technology(Grant Nos.CX2022564 and CX2022451).
文摘The practicality of electrochemical water-splitting technology relies on the development of novel and efficient bifunctional electrocatalysts capable of facilitating both the hydrogen evolution reaction(HER)and oxygen evolution reaction(OER).Black phosphorus(BP)holds tremendous promise for HER and OER electrocatalysis owing to its fully exposed atoms and high carrier mobility.However,the elec-trocatalytic performance of BP is still much lower than the expected theoretical limit,presenting an exciting challenge for further advancements.Herein,we embed electrochemically exfoliated few-layer BP nanosheets in higher Fermi level(EF)of cobalt,nitrogen co-doped carbons to form a new heterojunction(CoNC-BP),as efficient bifunctional electrocatalysts toward HER and OER for the advancement overall water splitting applications.A directed interfacial electron transfer is realized from CoNC to BP,facilitated by the lowering Fermi level(EF).This interfacial electron transfer plays a crucial role in optimizing the adsorption and desorption of active intermediates,while also introducing an abundance of hypervalent Co sites.These factors collectively contribute to the remarkable electrocatalytic activities of HER and OER performance,leading to the efficient performance of the developed CoNC-BP heterojunction in water-splitting applications.This work demonstrates a promising breakthrough that can inspire the design of high-efficiency catalysts.
基金financially supported by National Key Research and Development Program of China(No.2021YFA1401103)the National Natural Science Foundation of China(Nos.61825403,61921005 and 61904049)。
文摘Given the increasing number of diabetic patients,rapid and accurate detection of glucose in body fluids is critical.This study developed a direct electrochemical biosensor for glucose based on nitrogen-doped carbon nanocages(NCNCs).NCNCs possess a large specific surface area of 1395 m^(2)·g^(-1),a high N atomic content of 9.37%and good biocompatibility,which is favorable for enzyme loading and electron transfer.The surface average concentration of electroactive glucose oxidase on NCNCs was 2.82×10^(-10)mol·cm^(-2).The NCNC-based direct electrochemical biosensor exhibited a high sensitivity of 13.7μA·(mmol·L^(-1))^(-1)·cm^(-2),rapid response time of 5 s and an impressive electron-transferrate constant(ks)of 1.87 s^(-1).Furthermore,we investigated an NCNC-based direct electron transfer(DET)biosensor for sweat glucose detection,which demonstrated tremendous promise for non-invasive wearable diabetes diagnosis.
基金supported by the financial aid from the Ministry of Science and Technology of China(Nos.2021YFF0701800,and 2022YFB3503700)the National Natural Science Foundation of China(No.22020102003)+2 种基金the International Partnership Program of Chinese Academy of Sciences(No.121522KYSB20190022)Department of Science and Technology of Jilin Province(Nos.20220101063JC,and 20200201423JC)the Youth Innovation Promotion Association of Chinese Academy of Sciences(No.Y201947).
文摘Enhancing the therapeutic effect of existing treatments or developing new non-invasive treatments are important measures to achieve high-efficiency treatment of malignant tumors.Photodynamic therapy(PDT)is an emerging treatment modality,and the key for achieving high-efficiency PDT is to select light with strong tissue penetration depth and enhance the generation of reactive oxygen species(ROS).Although the upconversion nanoparticles(UCNPs)modified with the photosensitizers could achieve PDT with strong penetration depth under near-infrared light irradiation,the ROS generated by traditional single-pathway PDT is still insufficient.Herein,we developed a novel nanoconjugate(UCNP-Ce6/AIEgen)for dual-pathway reinforced PDT,in which the UCNPs were co-modified with chlorin e6(Ce6)and luminogen with aggregation-induced emission(AIEgen).Due to the presence of AIEgen,UCNP-Ce6/AIEgen could avoid aggregation-caused luminescence quenching in biological water environments and convert upconversion luminescence(UCL)of UCNPs to Ce6-activatable fluorescence.Therefore,under the irradiation of 808 nm laser,UCNP-Ce6/AIEgen can not only undergo direct lanthanide-triplet energy transfer to activate Ce6,but also convert the UCL of UCNPs to the light that can activate Ce6 through Fӧrster resonance energy transfer to generate more ROS,thus promoting tumor cell apoptosis.This work broadens the applications of nanoconjugates of lanthanide-based inorganic materials and organic dyes,and provides a conception for reinforced PDT of tumors.
基金the financial support from the National Natural Scientific Foundation of China(No.52000020)the National Natural Scientific Foundation of China(No.21876022)。
文摘Considering that cathode of microbial electrochemical system(MES)is a good electrons source for methane production via direct/indirect electron transfer to electroactive microorganisms,and that Fe(0)is also a confirmed electron donor for some electroactive microorganisms through metal-microbe direct electron transfer(DET),Fe(0)-cathode was equipped into an MES digester to enhance cathodic methane production.The results of this study indicated that the potential DET participator,Clostridium possibly obtained electrons directly from Fe(0)-cathode via metal-microbe electrons transfer,then transferred electrons directly to the definite DET participators,Methanosarcina/Methanothrix via microbemicrobe electrons transfer for CH_(4)production.In addition,Methanobacterium is another specially enriched methanogen on Fe(0)-cathode,which might obtain electrons directly from Fe(0)-cathode to produce CH_(4) via metal/electrode-microbe DET.The increment of conductivity of cathodic sludge in Fe(0)-cathode MES digester(R1)further confirmed the enrichment of electroactive microorganisms participating in DET process.As a consequence,a higher CH_(4) production(1205–1508 m L/d)and chemical oxygen demand(COD)removal(79.0%-93.8%)were achieved in R1 compared with graphite-cathode MES digester(R2,720–1090 m L/d and 63.6%-85.6%)and the conventional anaerobic digester(R3,384–428 m L/d and 35.2%-41.0%).In addition,energy efficiency calculated indicated that the output energy of CH_(4) production was 8.16 folds of electricity input in Fe(0)-cathode MES digester.