Sound multipath propagation is very important for target localization and identification in different acoustical zones of deep water. In order to distinguish the multipath characteristics in deep water, the Northwest ...Sound multipath propagation is very important for target localization and identification in different acoustical zones of deep water. In order to distinguish the multipath characteristics in deep water, the Northwest Pacific Acoustic Experiment was conducted in 2015. A low-frequency horizontal line array towed at the depth of around 150 m on a receiving ship was used to receive the noise radiated by the source ship. During this experiment, a beating-splitting phenomenon in the direct zone was observed through conventional beamforming of the horizontal line array within the frequency band 160 Hz- 360 Hz. In this paper, this phenomenon is explained based on ray theory. In principle, the received signal in the direct zone of deep water arrives from two general paths including a direct one and bottom bounced one, which vary considerably in arrival angles. The split bearings correspond to the contributions of these two paths. The beating-splitting phenomenon is demonstrated by numerical simulations of the bearing-time records and experimental results, and they are well consistent with each other. Then a near-surface source ranging approach based on the arrival angles of direct path and bottom bounced path in the direct zone is presented as an application of bearing splitting and is verified by experimental results. Finally, the applicability of the proposed ranging approach for an underwater source within several hundred meters in depth in the direct zone is also analyzed and demonstrated by simulations.展开更多
In the towed line array sonar system,the tow ship noise is the main factor that affects the sonar performance.Conventional noise cancelling methods assume that the noise is towards the endfire direction of the array.A...In the towed line array sonar system,the tow ship noise is the main factor that affects the sonar performance.Conventional noise cancelling methods assume that the noise is towards the endfire direction of the array.An acoustic experiment employing a towed line array is conducted in the western Pacific Ocean,and a strange bearing-splitting phenomenon of the tow ship noise is observed in the array.The tow ship noise is split into multiple noise signals whose bearings are distributed between 10°and 90°deviating from the endfire direction.The multiple interferences increase the difficulty in recognizing the target for the sonar operator and noise cancellation.Therefore,making the mechanism clear and putting forward the tow ship noise splitting bearing estimation method are imperative.In this paper,the acoustic multi-path structure of the tow ship in deep water is analyzed.Then it is pointed out that the bearing-splitting phenomenon is caused by the main lobe of direct rays and bottom-reflected rays,as well as several side lobes of direct rays.Meanwhile,the indistinguishability between the elevation angle and the bearing angle due to the axial symmetry of a strict horizontal line array causes the bearing to deviate from the endfire direction.Based on the theory above,a method of estimating bearing of the tow ship noise in deep water is proposed.The theoretical analysis results accord with the experimental results,which helps to identify the target and provide correct initial bearing guidance for noise cancelation methods.展开更多
The horizontal-longitudinal correlation of acoustic field for the receiver near the bottom is analyzed by using nu- merical modeling. An approximate analytical solution of horizontal-longitudinal correlation coefficie...The horizontal-longitudinal correlation of acoustic field for the receiver near the bottom is analyzed by using nu- merical modeling. An approximate analytical solution of horizontal-longitudinal correlation coefficient is derived based on the ray method. Combining the characteristic of Lloyd's mirror interference pattern, the variability of acoustic field and its effect on horizontal-longitudinal spatial correlation are discussed. The theoretical pre- diction agrees well with the numerical results. Experimental results confirm the validity of analytical solution. Finally, the applicability of the analytical solution is summarized. The conclusion is beneficial for the design of bottom-moored array and the estimation of integral time for moving source localization.展开更多
A simple, fast and reliable method was developed for the analysis of jinggangmycin A (validamycin A) in commercial formulations. The running buffer used was acetate buffer (100 mmol/L, pH 4.7) with 15 kV as the ap...A simple, fast and reliable method was developed for the analysis of jinggangmycin A (validamycin A) in commercial formulations. The running buffer used was acetate buffer (100 mmol/L, pH 4.7) with 15 kV as the applied voltage. The detection was achieved by using direct UV mode at 200 nm and the detection limit was 0.2 μg/mL. Linearity in the concentration range of 5-500 μg/mL was excellent (RE 〉 0.999). The run-to-run repeatability (n = 3), as expressed by the relative standard deviation (RSD) for migration times and peak areas were less than 0.5% and 3.0% respectively. The mean recovery ranged from 97.2% to 101.4%.展开更多
Based on the results of focal mechanism solutions in southeastern areas of China (south of 34°N and east of 105° E), this article analyzes the correlation of focal mechanism solutions with seismogenic stru...Based on the results of focal mechanism solutions in southeastern areas of China (south of 34°N and east of 105° E), this article analyzes the correlation of focal mechanism solutions with seismogenic structures of moderate strong earthquakes and the direction of potential source zones. The data show that the nodal planes of focal mechanism solutions and the principle stresses in southern China are of predominantly similar directions, most of the solutions for M ≥4.0 earthquakes correspond to the main structure directions as well as the directions of potential source zones. The statistical results of multiple small earthquakes concerning nodal planes and main stress axes are also reliable for determining the direction of potential source zones. According to the analysis of focal mechanism solutions, long-axis direction of isoseismals distribution of aftershocks, geologic structures, and seismic activity in two areas of the Ms6.1 earthquake in the south Yellow Sea in 1996 and the MsS.2 earthquake in Fujian in 1997, the potential source zone division is discussed.展开更多
To achieve the current study, geoelectrical surveys along six (06) profiles of 4 km long in a 100 m × 200 m grid defined according to the triangulation principle in the Tindikala-Boutou (Eastern-Cameroon) area al...To achieve the current study, geoelectrical surveys along six (06) profiles of 4 km long in a 100 m × 200 m grid defined according to the triangulation principle in the Tindikala-Boutou (Eastern-Cameroon) area along the Kadey River have been made through electrical sounding and profiling following Schlumberger array. The instrument is the resistive meter Syscal Junior 48 (IRIS Instrument). The data have been processed and modelled with Res2Dinv and Winsev softwares, and then interpolated with Surfer software. Investigation method used is the Direct Current (DC) method. Interpretations and analyses of results from the investigation method highlight weak zones or conductive discontinuities. The latter has been identified as shear zones within granitic structures of the Precambrian basement, according to the geologic and tectonic background of the area. The structural trend of these shear zones is E-W approximately. The mineralization characterized by conductive zones proves the presence of clay minerals disseminated in weathered quartz vein, which cross the shear zones. The intense activities of gold washers encountered in the studied area are able to attest the presence of clay minerals concentrations.展开更多
Effective and efficient SAR image segmentation has a significant role in coastal zone interpretation. In this paper, a coastal zone segmentation model is proposed based on Potts model. By introducing edge self-adaptio...Effective and efficient SAR image segmentation has a significant role in coastal zone interpretation. In this paper, a coastal zone segmentation model is proposed based on Potts model. By introducing edge self-adaption parameter and modifying noisy data term, the proposed variational model provides a good solution for the coastal zone SAR image with common characteristics of inherent speckle noise and complicated geometrical details. However, the proposed model is difficult to solve due to to its nonlinear, non-convex and non-smooth characteristics. Followed by curve evolution theory and operator splitting method, the minimization problem is reformulated as a constrained minimization problem. A fast alternating minimization iterative scheme is designed to implement coastal zone segmentation. Finally, various two-stage and multiphase experimental results illustrate the advantage of the proposed segmentation model, and indicate the high computation efficiency of designed numerical approximation algorithm.展开更多
剪切破坏区域是岩体结构面上下盘相对运动的主要接触区域,对抗剪强度具有重要影响。鉴于结构面剪切破坏区域与形貌特征的高度非线性关系,本文在分析结构面表面形貌特征及剪切机制的基础上,以粗糙度参数倾向、倾角、曲率、高差和孔径分...剪切破坏区域是岩体结构面上下盘相对运动的主要接触区域,对抗剪强度具有重要影响。鉴于结构面剪切破坏区域与形貌特征的高度非线性关系,本文在分析结构面表面形貌特征及剪切机制的基础上,以粗糙度参数倾向、倾角、曲率、高差和孔径分布来描述结构面表面形貌特征。对结构面试样开展法向应力为1.0 MPa的直剪试验,通过图像分割技术提取剪切破坏区域,利用多种机器学习方法构建结构面剪切破坏区域预测模型,建立结构面粗糙度参数与破坏状态之间的非线性关系,并采用训练准确率和AUC(Area Under Curve)值等指标对模型预测性能进行评估。结果表明所建立的模型中集成装袋树预测性能最好,其次是K最近邻,其训练准确率最高分别可达98.02%和97.38%,AUC值最高分别可达0.78和0.74。通过敏感性分析发现孔径分布对剪切破坏区域的影响最大。本研究对有效分析结构面的剪切破坏机理和准确评价抗剪强度具有重要意义。展开更多
基金Project supported by the Program of One Hundred Talented People of the Chinese Academy of SciencesNational Natural Science Foundation of China(Grant Nos.11434012 and 41561144006)
文摘Sound multipath propagation is very important for target localization and identification in different acoustical zones of deep water. In order to distinguish the multipath characteristics in deep water, the Northwest Pacific Acoustic Experiment was conducted in 2015. A low-frequency horizontal line array towed at the depth of around 150 m on a receiving ship was used to receive the noise radiated by the source ship. During this experiment, a beating-splitting phenomenon in the direct zone was observed through conventional beamforming of the horizontal line array within the frequency band 160 Hz- 360 Hz. In this paper, this phenomenon is explained based on ray theory. In principle, the received signal in the direct zone of deep water arrives from two general paths including a direct one and bottom bounced one, which vary considerably in arrival angles. The split bearings correspond to the contributions of these two paths. The beating-splitting phenomenon is demonstrated by numerical simulations of the bearing-time records and experimental results, and they are well consistent with each other. Then a near-surface source ranging approach based on the arrival angles of direct path and bottom bounced path in the direct zone is presented as an application of bearing splitting and is verified by experimental results. Finally, the applicability of the proposed ranging approach for an underwater source within several hundred meters in depth in the direct zone is also analyzed and demonstrated by simulations.
基金Project supported by the National Defense Basic Science Research Program,China(Grant No.JCKY2016607C009)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.2018025)。
文摘In the towed line array sonar system,the tow ship noise is the main factor that affects the sonar performance.Conventional noise cancelling methods assume that the noise is towards the endfire direction of the array.An acoustic experiment employing a towed line array is conducted in the western Pacific Ocean,and a strange bearing-splitting phenomenon of the tow ship noise is observed in the array.The tow ship noise is split into multiple noise signals whose bearings are distributed between 10°and 90°deviating from the endfire direction.The multiple interferences increase the difficulty in recognizing the target for the sonar operator and noise cancellation.Therefore,making the mechanism clear and putting forward the tow ship noise splitting bearing estimation method are imperative.In this paper,the acoustic multi-path structure of the tow ship in deep water is analyzed.Then it is pointed out that the bearing-splitting phenomenon is caused by the main lobe of direct rays and bottom-reflected rays,as well as several side lobes of direct rays.Meanwhile,the indistinguishability between the elevation angle and the bearing angle due to the axial symmetry of a strict horizontal line array causes the bearing to deviate from the endfire direction.Based on the theory above,a method of estimating bearing of the tow ship noise in deep water is proposed.The theoretical analysis results accord with the experimental results,which helps to identify the target and provide correct initial bearing guidance for noise cancelation methods.
基金Supported by the National Natural Science Foundation of China under Grant No 11174235
文摘The horizontal-longitudinal correlation of acoustic field for the receiver near the bottom is analyzed by using nu- merical modeling. An approximate analytical solution of horizontal-longitudinal correlation coefficient is derived based on the ray method. Combining the characteristic of Lloyd's mirror interference pattern, the variability of acoustic field and its effect on horizontal-longitudinal spatial correlation are discussed. The theoretical pre- diction agrees well with the numerical results. Experimental results confirm the validity of analytical solution. Finally, the applicability of the analytical solution is summarized. The conclusion is beneficial for the design of bottom-moored array and the estimation of integral time for moving source localization.
文摘A simple, fast and reliable method was developed for the analysis of jinggangmycin A (validamycin A) in commercial formulations. The running buffer used was acetate buffer (100 mmol/L, pH 4.7) with 15 kV as the applied voltage. The detection was achieved by using direct UV mode at 200 nm and the detection limit was 0.2 μg/mL. Linearity in the concentration range of 5-500 μg/mL was excellent (RE 〉 0.999). The run-to-run repeatability (n = 3), as expressed by the relative standard deviation (RSD) for migration times and peak areas were less than 0.5% and 3.0% respectively. The mean recovery ranged from 97.2% to 101.4%.
基金The research was supported by the key project entitled"Seismic Safety Evaluation and Seismic Structure Study"under the 10th Five-Year Plan of China EarthquakeAdministration
文摘Based on the results of focal mechanism solutions in southeastern areas of China (south of 34°N and east of 105° E), this article analyzes the correlation of focal mechanism solutions with seismogenic structures of moderate strong earthquakes and the direction of potential source zones. The data show that the nodal planes of focal mechanism solutions and the principle stresses in southern China are of predominantly similar directions, most of the solutions for M ≥4.0 earthquakes correspond to the main structure directions as well as the directions of potential source zones. The statistical results of multiple small earthquakes concerning nodal planes and main stress axes are also reliable for determining the direction of potential source zones. According to the analysis of focal mechanism solutions, long-axis direction of isoseismals distribution of aftershocks, geologic structures, and seismic activity in two areas of the Ms6.1 earthquake in the south Yellow Sea in 1996 and the MsS.2 earthquake in Fujian in 1997, the potential source zone division is discussed.
文摘To achieve the current study, geoelectrical surveys along six (06) profiles of 4 km long in a 100 m × 200 m grid defined according to the triangulation principle in the Tindikala-Boutou (Eastern-Cameroon) area along the Kadey River have been made through electrical sounding and profiling following Schlumberger array. The instrument is the resistive meter Syscal Junior 48 (IRIS Instrument). The data have been processed and modelled with Res2Dinv and Winsev softwares, and then interpolated with Surfer software. Investigation method used is the Direct Current (DC) method. Interpretations and analyses of results from the investigation method highlight weak zones or conductive discontinuities. The latter has been identified as shear zones within granitic structures of the Precambrian basement, according to the geologic and tectonic background of the area. The structural trend of these shear zones is E-W approximately. The mineralization characterized by conductive zones proves the presence of clay minerals disseminated in weathered quartz vein, which cross the shear zones. The intense activities of gold washers encountered in the studied area are able to attest the presence of clay minerals concentrations.
基金supported by the China Postdoctoral Science Foundation under Grant No.2015M571993the Shandong Provincial Natural Science Foundation,China under Grant No.ZR2017MD004+1 种基金the National Natural Science Foundation of China under Grant No.61602269Qingdao Postdoctoral Application Research Funded Project
文摘Effective and efficient SAR image segmentation has a significant role in coastal zone interpretation. In this paper, a coastal zone segmentation model is proposed based on Potts model. By introducing edge self-adaption parameter and modifying noisy data term, the proposed variational model provides a good solution for the coastal zone SAR image with common characteristics of inherent speckle noise and complicated geometrical details. However, the proposed model is difficult to solve due to to its nonlinear, non-convex and non-smooth characteristics. Followed by curve evolution theory and operator splitting method, the minimization problem is reformulated as a constrained minimization problem. A fast alternating minimization iterative scheme is designed to implement coastal zone segmentation. Finally, various two-stage and multiphase experimental results illustrate the advantage of the proposed segmentation model, and indicate the high computation efficiency of designed numerical approximation algorithm.
文摘剪切破坏区域是岩体结构面上下盘相对运动的主要接触区域,对抗剪强度具有重要影响。鉴于结构面剪切破坏区域与形貌特征的高度非线性关系,本文在分析结构面表面形貌特征及剪切机制的基础上,以粗糙度参数倾向、倾角、曲率、高差和孔径分布来描述结构面表面形貌特征。对结构面试样开展法向应力为1.0 MPa的直剪试验,通过图像分割技术提取剪切破坏区域,利用多种机器学习方法构建结构面剪切破坏区域预测模型,建立结构面粗糙度参数与破坏状态之间的非线性关系,并采用训练准确率和AUC(Area Under Curve)值等指标对模型预测性能进行评估。结果表明所建立的模型中集成装袋树预测性能最好,其次是K最近邻,其训练准确率最高分别可达98.02%和97.38%,AUC值最高分别可达0.78和0.74。通过敏感性分析发现孔径分布对剪切破坏区域的影响最大。本研究对有效分析结构面的剪切破坏机理和准确评价抗剪强度具有重要意义。