期刊文献+
共找到1,381篇文章
< 1 2 70 >
每页显示 20 50 100
Analysis of the Emissions and Performance of a Diesel Engine Using Pumpkin Seed Oil Methyl Ester with Different Injection Pressures
1
作者 Surendrababu Kuppusamy Prabhahar Muthuswamy +1 位作者 Muthurajan Kumarasamy Sendilvelan Subramanian 《Fluid Dynamics & Materials Processing》 EI 2023年第4期1003-1014,共12页
Biodiesel fuel is a potential alternative energy source for diesel engines due to its physiochemical characteristics relatively similar to those of traditional diesel fuel.In this study,the performance,emission,and co... Biodiesel fuel is a potential alternative energy source for diesel engines due to its physiochemical characteristics relatively similar to those of traditional diesel fuel.In this study,the performance,emission,and combustion features of a mono cylinder DI diesel engine are assessed using 20%Pumpkin seed methyl ester(PSOME20)and considering varying injection pressures(200,220,240,and 260 bar).The considered Pumpkin seed oil is converted into pumpkin biodiesel by transesterification and then used as fuel.The findings demonstrate that the Brake Thermal Efficiency(BTE)of PSOME20 can be raised by 1.68%,and the carbon monoxide(CO),hydrocarbon(HC),and smoke emanations can be lowered,while oxides of nitrogen(NOx)emissions are increased at an injection pressure(IP)of 240 bar compared to the standard IP of 200 bar.The cylinder pressure and the Heat Release Rate(HRR)become higher at 240 bar,whereas the ignition delay is shortened with respect to PSOME20 at a normal IP of 200 bar. 展开更多
关键词 Pumpkin seed biodiesel PERFORMANCE EMISSION diesel engine injection pressure
下载PDF
Mechanism and optimization of fuel injection parameters on combustion noise of DI diesel engine 被引量:7
2
作者 张庆辉 郝志勇 +2 位作者 郑旭 杨文英 毛杰 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第2期379-393,共15页
Combustion noise takes large proportion in diesel engine noise and the studies of its influence factors play an important role in noise reduction. Engine noise and cylinder pressure measurement experiments were carrie... Combustion noise takes large proportion in diesel engine noise and the studies of its influence factors play an important role in noise reduction. Engine noise and cylinder pressure measurement experiments were carried out. And the improved attenuation curves were obtained, by which the engine noise was predicted. The effect of fuel injection parameters in combustion noise was investigated during the combustion process. At last, the method combining single variable optimization and multivariate combination was introduced to online optimize the combustion noise. The results show that injection parameters can affect the cylinder pressure rise rate and heat release rate, and consequently affect the cylinder pressure load and pressure oscillation to influence the combustion noise. Among these parameters, main injection advance angle has the greatest influence on the combustion noise, while the pilot injection interval time takes the second place, and the pilot injection quantity is of minimal impact. After the optimal design of the combustion noise, the average sound pressure level of the engine is distinctly reduced by 1.0 d B(A) generally. Meanwhile, the power, emission and economy performances are ensured. 展开更多
关键词 diesel engine injection parameters pilot injection combustion noise online optimization
下载PDF
Influence of Diesel Engine Intake Throttle and Late Post Injection Process on the Rise of Temperature in the Diesel Oxidation Catalyst 被引量:5
3
作者 Ke Sun Da Li +1 位作者 Hao Liu Shuzhan Bai 《Fluid Dynamics & Materials Processing》 EI 2020年第3期573-584,共12页
In order to effectively implement DPF(Diesel Particulate Filters)regeneration control,thermal management of exhaust products before and inside Diesel Oxidation Catalyst(DOC)is necessary.In the present study,the Influe... In order to effectively implement DPF(Diesel Particulate Filters)regeneration control,thermal management of exhaust products before and inside Diesel Oxidation Catalyst(DOC)is necessary.In the present study,the Influence of the intake throttle valve and late post injection process on temperature rise inside DOC is analyzed through engine bench tests.The steady experiment results show that adjustment of the intake throttle valve can effectively increase exhaust temperature before DOC;in particular,with intake throttle valve opening at 20%,temperature before DOC can be increased by about 170℃ with respect to the full opening.An increase in the late post injection quantity can produce a significant rise of the temperature inside DOC,however its impact on the exhaust temperature before DOC is relatively limited.As the late post injection quantity increases,Hydrocarbon(HC)emissions also grow;in the present work it is shown that with a proper injection quantity,a considerable temperature increase inside the DOC can be obtained with relatively low HC emission.More specifically,with the intake throttle valve at 30%and DOC reaching ignition temperature as the late post injection quantity is increased,the exhaust temperature after DOC can be made larger than 550℃,adequate for DPF active regeneration. 展开更多
关键词 Exhaust thermal management diesel engine DOC intake throttle late post injection
下载PDF
EFFECTS OF INJECTION STRATEGY ON D.I. DIESEL ENGINE COMBUSTION 被引量:2
4
作者 ZI Xinyun JIANG Dahai +2 位作者 DENG Chenglin OUYANG Minggao YANG Fuyuan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第3期71-74,共4页
Experiments are conducted to develop an understanding of how split injections can affect the combustion and emission characteristics of a D.I. diesel engine with a common-rail injection system. The ratio of the amount... Experiments are conducted to develop an understanding of how split injections can affect the combustion and emission characteristics of a D.I. diesel engine with a common-rail injection system. The ratio of the amount of fuel injected between two injection pulses and the injection interval is varied keeping the injected fuel quantity constant. Results show that under the 70D90-10 injection pattern, the engine achieves the lower NOx-smoke emissions and BSFC compared with the single injection pattern. The heat release rate and the temperature show that the split injections increase the initial premixed burn and retards the diffusion burn. With the balance of these two effects, the maximum in-cylinder temperature decreases while the 50% heat release point is held at almost the same crank angle. Therefore, both NOx emission and BSFC are improved while keeping the smoke emission at the same level. 展开更多
关键词 diesel engine High pressure common rail Split injections EMISSION
下载PDF
Influence of Pre-injection Control Parameters on Main-injection Fuel Quantity for an Electronically Controlled Double-valve Fuel Injection System of Diesel Engine 被引量:3
5
作者 Enzhe Song Liyun Fan Chao Chen Quan Dong Xiuzhen Yun Bai 《Journal of Marine Science and Application》 2013年第3期366-373,共8页
A simulation model of an electronically controlled two solenoid valve fuel injection system for a diesel engine is established in the AMESim environment.The accuracy of the model is validated through comparison with e... A simulation model of an electronically controlled two solenoid valve fuel injection system for a diesel engine is established in the AMESim environment.The accuracy of the model is validated through comparison with experimental data.The influence of pre-injection control parameters on main-injection quantity under different control modes is analyzed.In the spill control valve mode,main-injection fuel quantity decreases gradually and then reaches a stable level because of the increase in multi-injection dwell time.In the needle control valve mode,main-injection fuel quantity increases with rising multi-injection dwell time;this effect becomes more obvious at high-speed revolutions and large main-injection pulse widths.Pre-injection pulse width has no obvious influence on main-injection quantity under the two control modes;the variation in main-injection quantity is in the range of 1 mm3. 展开更多
关键词 diesel engine double-valve fuel injection system pre-injection control parameters main-injection fuel quantity
下载PDF
STRATEGY FOR DIESEL ROTARY ENGINE WITH COMMON RAIL INJECTION SYSTEM 被引量:2
6
作者 WU Jinjun HAI Jingtao +3 位作者 SHI Jianzhong LI Xuesong YANG Qing WANG Shangyong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第3期412-416,共5页
A direct injection low compression ratios diesel rotary engine is designed and studied to find the appropriate application of the electronic controlled high pressure common rail injection system. Current development f... A direct injection low compression ratios diesel rotary engine is designed and studied to find the appropriate application of the electronic controlled high pressure common rail injection system. Current development focuses on the applied fuel injection and ignition strategies, especially concerning the combustion configurations of injectors, ignition source, and combustion chamber. The prototype engine, equipped with Bosch common rail system and high performance electronic control unit (ECU), is designed correspondingly. Studies show that the integration of a common rail injection system and the main and pilot duel injectors configurations, assisted with glow plug ignition device and flexible ECU, represents a promising approach to improve the potential of the low compression ratios diesel rotary engine. Currently the engine can run at 6 kr · min^-1 steadily and the power is about 68 kW/(4 kr ·min^- 1). 展开更多
关键词 diesel rotary engine Common rail injection system Electronic control unit(ECU)
下载PDF
Numerical Investigation of the Effects of Rate-Shaped Main Injection on Combustion and Emission in an OPOC Two-Stroke Diesel Engine
7
作者 Lei Zhang Tiexiong Su +3 位作者 Yunpeng Feng Fukang Ma Yangang Zhang Jun Wang 《Journal of Beijing Institute of Technology》 EI CAS 2019年第2期226-233,共8页
The effects of various split injection strategies on the opposed-piston opposed-cylinder(OPOC)diesel engine combustion and emission characteristics have been studied numerically using AVL-Fire CFD tools.The five rate-... The effects of various split injection strategies on the opposed-piston opposed-cylinder(OPOC)diesel engine combustion and emission characteristics have been studied numerically using AVL-Fire CFD tools.The five rate-shaped main injections were used in split injection strategies.The results show that ignition delay from a rectangular injection rate is the shortest.Maximum pressure of the trapezoid injection rate is the largest.And the NOx emission of the rectangular injection rate is the largest.Meanwhile,the soot emission of the trapezoid injection rate is the least among the five injection rates. 展开更多
关键词 opposed-piston opposed-cylinder(OPOC)diesel engine split injection rated-shape MAIN injection:numerical simulation combustion emissions
下载PDF
Optimization of Injection Timing and Injection Duration of a Diesel Engine Running on Pure Biodiesel SME (Soya Methyl Ester)
8
作者 Abdullah Alghafis Eihab A. Raouf 《Open Journal of Applied Sciences》 2020年第7期486-502,共17页
This study was carried out to predict the impact of injection timing and injection duration on engine brake power and Nitrogen Oxides emissions in a diesel engine using biofuel Soya Methyl Ester (SME). Predictions wer... This study was carried out to predict the impact of injection timing and injection duration on engine brake power and Nitrogen Oxides emissions in a diesel engine using biofuel Soya Methyl Ester (SME). Predictions were accomplished at three different injection timings 10<span style="white-space:nowrap;">°</span>, 5<span style="white-space:nowrap;">°</span> Crank Angle (CA) before Top Dead Center (bTDC) and 0<span style="white-space:nowrap;">° </span>CA at Top Dead Center (TDC) and four injection durations 20<span style="white-space:nowrap;">°</span>, 25<span style="white-space:nowrap;">°</span>, 30<span style="white-space:nowrap;">°</span>, 35<span style="white-space:nowrap;">°</span> CA. The study was conducted using a simulation software (Diesel-RK). The predicted results showed that the power<span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">s</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> produced by all the setups of the different injection timings </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">are</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> almost equal, but they differ in injection durations, e.g. the power at setup (10<span style="white-space:nowrap;">°</span> CA</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">bTDC) duration 20<span style="white-space:nowrap;">°</span> CA and 2500 rpm equal to 52 kW, at setup (5<span style="white-space:nowrap;">°</span> CA</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">bTDC) duration 25<span style="white-space:nowrap;">° </span>CA and same engine speed the power is equal to 51 kW, and at setup (0<span style="white-space:nowrap;">°</span> CA</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">TDC) durations 30<span style="white-space:nowrap;">°</span> the power is equal to 51 kW. The power in all setups are decreased as the injection duration increased, e.g. at setup 0<span style="white-space:nowrap;">°</span> CA TDC durations 25<span style="white-space:nowrap;">°</span>, 35<span style="white-space:nowrap;">°</span>, and 40<span style="white-space:nowrap;">°</span> CA and at 4000 rpm, the brake powers are equal 71, 65, and 59 kW respectively, thus the reduction percentages are 9% and 17% when compared to the 25<span style="white-space:nowrap;">°</span> injection duration. The nitrogen oxides emissions decreased as the injection duration is increased, e.g. the emissions at setup (10<span style="white-space:nowrap;">°</span> CA</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">bTDC) durations 25<span style="white-space:nowrap;">°</span>, 30<span style="white-space:nowrap;">°</span>, and 40<span style="white-space:nowrap;">°</span> CA and at 2500 rpm are equal 852, 589, 293 ppm respectively, the reduction percentages are 30% and 72%. The variations of injection timing and injection duration </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">have </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">taken a weighty influence on engine performance and emissions. The results </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">are</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> considered as a novelty in the field of using pure biofuel Soya Methyl Ester in diesel engine according to our information.</span></span></span> 展开更多
关键词 Pure Biofuel Soya Methyl Ester diesel engine injection Timing injection Duration Optimization
下载PDF
Application of Waste Biomass Pyrolysis Oil in a Direct Injection Diesel Engine: For a Small Scale Non-Grid Electrification
9
作者 Sunbong Lee Lihao Chen +1 位作者 Koji Yoshida Kunio Yoshikawa 《Journal of Energy and Power Engineering》 2015年第11期929-943,共15页
The population which could not access to electricity was around 1.2 billion in 2010 and is distributed in many low developing countries. With the increase in the population and the economic growth in those countries, ... The population which could not access to electricity was around 1.2 billion in 2010 and is distributed in many low developing countries. With the increase in the population and the economic growth in those countries, waste generation is growing rapid especially for the organic and the plastic, and the uncontrolled waste disposal is becoming more serious issues to manage it. The interest on waste to energy is growing by the above drivers. This research was carried out for aiming to the real world adaption at the minimum cost of the pyrolysis oil from waste biomass in a diesel engine, mainly for electricity generation. The proposal of the appropriate adaptable blend ratio was the major scope rather than the optimization of the engine parameters. For the sake of it, the pyrolysis oil of the waste biomass was produced from a gasification pilot plant in Japan and blended with biodiesel at minimum effort. A small single cylinder diesel engine (direct injection) was used for the experiment with regard to full load power-output, exhaust emissions and fuel consumption. 展开更多
关键词 Waste biomass PYROLYSIS BLEND direct injection diesel engine exhaust emissions.
下载PDF
Combustion Characteristics and Emission of a Two-Stroke Compression Ignition Engine with Two-Stage Injection
10
作者 宋军 吕兴才 +1 位作者 李孝禄 黄震 《Journal of Shanghai Jiaotong university(Science)》 EI 2007年第1期53-60,共8页
In order to study the effect of two-stage injection on two-stroke diesel engines, a well characterized research engine equipped with electronically controlled common rail system and scavenging system was constructed. ... In order to study the effect of two-stage injection on two-stroke diesel engines, a well characterized research engine equipped with electronically controlled common rail system and scavenging system was constructed. Through analysis of combustion and emissions, two-stage injection shows its advantages. Compared with the standard injection, it produces less emissions, while compared with single early injection, it expands engine operation range. Further experiments were carried out to study the influence of several injection control parameters on two-stage injection. The fuel in the first injection is used for forming homogeneous mixture. The fuel in the second injection keeps combustion, and it is the main source of smoke emissions. NO_x is formed in both combustion process caused by these two injections, and there is an optimum fuel allocation ration to produce minimum NO_x. The cylinder pressure decreases, and the combustion is depressed with the increasing of scavenging pressure. By optimizing the injection control parameters of two-stage injection, NO_x and smoke can be reduced beyond 30% simultaneously. 展开更多
关键词 two-stage injection TWO-STROKE diesel engine COMBUSTION EMISSION
下载PDF
Complete Modeling for Systems of a Marine Diesel Engine 被引量:6
11
作者 Hassan Moussa Nahim Rafic Younes +1 位作者 Chadi Nohra Mustapha Ouladsine 《Journal of Marine Science and Application》 CSCD 2015年第1期93-104,共12页
This paper presents a simulator model of a marine diesel engine based on physical, semi-physical, mathematical and thermodynamic equations, which allows fast predictive simulations The whole engine system is divided i... This paper presents a simulator model of a marine diesel engine based on physical, semi-physical, mathematical and thermodynamic equations, which allows fast predictive simulations The whole engine system is divided into several functional blocks: cooling, lubrication, air, injection, combustion and emissions. The sub-models and dynamic characteristics of individual blocks are established according to engine working principles equations and experimental data collected from a marine diesel engine test bench for SIMB Company under the reference 6M26SRP1. The overall engine system dynamics is expressed as a set of simultaneous algebraic and differential equations using sub-blocks and S-Functions of Matlab/Simulink. The simulation of this model, implemented on Matlab/Simulink has been validated and can be used to obtain engine performance, pressure, temperature, efficiency, heat release, crank angle, fuel rate, emissions at different sub-blocks. The simulator will be used, in future work, to study the engine performance in faulty conditions, and can be used to assist marine engineers in fault diagnosis and estimation (FDI) as well as designers to predict the behavior of the cooling system, lubrication system, injection system, combustion, emissions, in order to optimize the dimensions of different components. This program is a platform for fault simulator, to investigate the impact on sub-blocks engine's output of changing values for faults parameters such as: faulty fuel injector, leaky cylinder, worn fuel pump, broken piston rings, a dirty turbocharger, dirty air filter, dirty air cooler, air leakage, water leakage, oil leakage and contamination, fouling of heat exchanger, pumps wear, failure of injectors (and many others). 展开更多
关键词 marine diesel engine engine system cooling system lubrication system air system injection system combustion system emissions system fault diagnosis and estimation (FDI)
下载PDF
Effects of different combustion modes on the thermal efficiency and emissions of a diesel pilot-ignited natural gas engine under low-medium loads 被引量:1
12
作者 JIN Shou-ying LI Jin-ze +2 位作者 ZI Zhen-yuan LIU Ya-long WU Bin-yang 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第7期2213-2224,共12页
Research on dual-fuel(DF)engines has become increasingly important as engine manufacturers seek to reduce carbon dioxide emissions.There are significant advantages of using diesel pilot-ignited natural gas engines as ... Research on dual-fuel(DF)engines has become increasingly important as engine manufacturers seek to reduce carbon dioxide emissions.There are significant advantages of using diesel pilot-ignited natural gas engines as DF engines.However,different combustion modes exist due to variations in the formation of the mixture.This research used a simulation model and numerical simulations to explore the combustion characteristics of high-pressure direct injection(HPDI),partially premixed compression ignition(PPCI),and double pilot injection premixed compression ignition(DPPCI)combustion modes under a low-medium load.The results revealed that the DPPCI combustion mode provides higher gross indicated thermal efficiency and more acceptable total hydrocarbon(THC)emission levels than the other modes.Due to its relatively good performance,an experimental study was conducted on the DPPCI mode engine to evaluate the impact of the diesel dual-injection strategy on the combustion process.In the DPPCI mode,a delay in the second pilot ignition injection time increased THC emissions(a maximum value of 4.27g/(kW·h)),decreased the emission of nitrogen oxides(a maximum value of 7.64 g/(kW·h)),increased and then subsequently decreased the gross indicated thermal efficiency values,which reached 50.4%under low-medium loads. 展开更多
关键词 diesel pilot-ignited natural gas engine direct injection of natural gas combustion mode thermal efficiency EMISSIONS
下载PDF
Test and Analysis for Spraying Ammonia in Diesel Engine
13
作者 周华祥 刘敬平 +4 位作者 贺力克 陈方 申奇志 骆锐 周正 《Defence Technology(防务技术)》 SCIE EI CAS 2011年第4期193-196,共4页
A certain amount of ammonia reducer were directly injected into the 4102BZLQ Diesel engine's combustion chamber when the combustion temperature decreases to 1573-1073K, NOx generated could be reduced to 1.11g/(kW&... A certain amount of ammonia reducer were directly injected into the 4102BZLQ Diesel engine's combustion chamber when the combustion temperature decreases to 1573-1073K, NOx generated could be reduced to 1.11g/(kW·h). Based on PRF combustion mechanism, NO was tested by using the heavy-duty diesel engine test cycle of ESC thirteen conditions[1], the ammonia spray angle and amount were tested and optimized in different conditions. The test results show that the thermal efficiency of Diesel engine does not decrease while NO exhaust decreases. 展开更多
关键词 power machinery engineering diesel engine direct injection of ammonium TEST analysis
下载PDF
Single Zone, Zero Dimensional Model of Diesel Multiple-Injection
14
作者 Ugochukwu Charles Ngwaka Chidebere Diyoke Nnamdi Anosike 《Energy and Power Engineering》 2016年第9期297-312,共17页
A detailed single zone, zero dimensional model of diesel multiple-injection system was developed from first principle, for compression, combustion and expansion processes for direct injection diesel engine. Equilibriu... A detailed single zone, zero dimensional model of diesel multiple-injection system was developed from first principle, for compression, combustion and expansion processes for direct injection diesel engine. Equilibrium equation of Extended Zeldolvich Mechanism (EZM) for NO<sub>x</sub> formation was incorporated to predict NO<sub>x</sub> emission. A different approach was assumed for the equilibrium temperature. An approach of using the average cycle temperature within NO<sub>x</sub> formation region was used in the EZM equilibrium equation. The model codes were implemented in MATLAB. This model is developed to investigate the effects of both single and multiple-pulse fuel injection strategies on engine performance and NO<sub>x</sub> emissions. The results obtained from the model were validated with experimental data available in the literature. Results obtained showed that the use of average cycle temperature within the NO<sub>x</sub> formation temperature region could be useful in predicting NO<sub>x</sub> formation with reasonable degree of accuracy. Injection timing, mass ratio of injected fuel, and dwell between pulses have significant effects on the NO<sub>x</sub> emission and engine performance. The results also show that as the number of pulses increases, NO<sub>x</sub> emission and engine performance decrease. For optimal balance between NO<sub>x</sub> and engine performance, mass of the pilot injection should be between 10 and 25% of the total mass of fuel used per cycle. 展开更多
关键词 Multiple injection diesel engine Emission
下载PDF
Investigation on combustion and emission characteristics of diesel polyoxymethylene dimethyl ethers blend fuels with exhaust gas recirculation and double injection strategy
15
作者 Xin Su Rui Su +4 位作者 Nan Gao Hao Chen Zhenhua Ji Hongming Xu Biao Wang 《Journal of Traffic and Transportation Engineering(English Edition)》 EI CSCD 2024年第4期614-630,共17页
As a kind of renewable and high oxygen content fuel,polyoxymethylene dimethyl ether(PODE)can be added in diesel to realize energy saving and emissions reduction.To evaluate the combustion and emission characteristics ... As a kind of renewable and high oxygen content fuel,polyoxymethylene dimethyl ether(PODE)can be added in diesel to realize energy saving and emissions reduction.To evaluate the combustion and emission characteristics of a diesel engine fueled with diesel and diesel/PODE mixtures,exhaust gas recirculation(EGR)and main-pilot injection strategies with various injection timings were applied.PODE was blended with diesel by volume to form mixtures which were marked as D100(pure diesel),D90P10(90%diesel+10%PODE),and D80P20(80%diesel+20%PODE).The results showed that the ignition delay(ID)and combustion duration(CD)of D80P20 were the shortest because of the highest cetane number(CN)and high oxygen content of PODE,indicating more concentrated heat release.At low and medium loads,D80P20 achieved the highest peak heat release ratio(PHRR)and peak combustion temperature(PCT)among the three fuels,and it was 14.3%and 3.6%higher than those of D100.PODE blending with diesel can significantly reduce particulate matter(PM)and D80P20 has the lowest PM emissions at all loads.Compared with D100,both PM and nitrogen oxide(NO_(x))emissions of PODE blends decreased simultaneously with 20%EGR at all loads.With the increase of pilot-main interval,the ID and CD of all test fuels increased,while the NO_(x)and PM emissions decreased.The conclusions of the present research provide a state of the application in light-duty engines fueled with diesel/PODE blends in future work. 展开更多
关键词 Polyoxymethylene dimethyl ethers diesel engine NOx Particulate number Pilot plus main injections
原文传递
Measurement and analysis of cycle fuel injection quantity for electronic unit pump
16
作者 张长岭 黄印玉 +1 位作者 王沛 张峥 《Journal of Measurement Science and Instrumentation》 CAS 2014年第4期74-78,共5页
The cycle fuel injection quantity is accurately measured for electronic unit pump (EUP) operating at high, middle and low speeds by using displacement method based on EFS instantaneous mono-injector qualifier. On th... The cycle fuel injection quantity is accurately measured for electronic unit pump (EUP) operating at high, middle and low speeds by using displacement method based on EFS instantaneous mono-injector qualifier. On the basis of the experi- mental data about fuel injection quantity and fuel pressure, the variation of inconsistency in fuel injection quantity of EUP and the influence factors in different operating conditions are concluded. The results show that the inconsistency is lowest in maximum torque condition, while on the start and maximum power conditions, it is higher. 展开更多
关键词 diesel engine fuel injection quantity electronic unit pump (EUP)
下载PDF
An experimental study on RP-3 jet fuel injection on a common rail injection system
17
作者 ZHAO Tong-bin WU Yi-sheng +2 位作者 DUAN Yao-zong HUANG Zhen HAN Dong 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第7期2179-2188,共10页
RP-3 jet fuel could be an alternative fuel for diesel engines.In this study,the injection characteristics of RP-3jet fuel under single and split injection strategies were investigated and compared with diesel fuel.The... RP-3 jet fuel could be an alternative fuel for diesel engines.In this study,the injection characteristics of RP-3jet fuel under single and split injection strategies were investigated and compared with diesel fuel.The experimental results indicate that RP-3 jet fuel has slightly shorter injection delay time than diesel fuel,but this difference is negligible in actual engine operations.Further,although the lower density and viscosity of RP-3 jet fuel lead to higher volumetric injection rates and cycle-based injection quantities,the cycle-based injection mass and the mass injection rates at the stable injection stage of RP-3 jet fuel are close to or slightly lower than those of diesel fuel.Based on these experimental observations,it could be concluded that fuel physical properties are the secondary factor influencing the injection characteristics in both single and split injection strategies,as RP-3 jet fuel and diesel fuel are taken for comparison. 展开更多
关键词 RP-3 jet fuel diesel engine single injection pilot-main injection common rail injection system
下载PDF
Mathematical Model for the Injector of a Common Rail Fuel-Injection System 被引量:1
18
作者 Simon Marcic1] Milan Marcic Zdravko Praunseis 《Engineering(科研)》 2015年第6期307-321,共15页
The paper describes a Diesel fuel injection process. Computer simulation was carried out together with measurement of the Common Rail accumulator fuel-injection system. The computer simulation enables the observation ... The paper describes a Diesel fuel injection process. Computer simulation was carried out together with measurement of the Common Rail accumulator fuel-injection system. The computer simulation enables the observation of the phenomena from rail pressure, being the input data for injection parameters calculations, to the injection rate. By means of computer simulation, the pressure values in specific sections of the injection nozzle may be computed, the needle lift, injection rate, total injected fuel, time lag from injector current to first evidence of injection process and other time-lags between various phases of the injection process. The injection rate provides input data for spray computer simulation. Measurements of injection and combustion were carried out within a transparent research engine. This engine is a single-cylinder transparent engine based on the AUDI V6 engine, equipped with a Bosch Common Rail Injection System. The comparison between the computed and measured injection parameters showed good matching. 展开更多
关键词 diesel engine Fuel injection System
下载PDF
大缸径柴油机燃烧系统优化模拟 被引量:1
19
作者 李成 田华 +2 位作者 黄永仲 隆武强 陈秉智 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2024年第1期25-31,共7页
为提高某缸径200 mm船用发电柴油机的燃油经济性,本文设计了活塞燃烧室和燃油喷射系统的升级方案并进行了模拟优化。升级方案提高了压缩比和燃油喷射压力,采用大径深比浅ω燃烧室配合158°喷油夹角喷油嘴。对不同方案下发动机的缸... 为提高某缸径200 mm船用发电柴油机的燃油经济性,本文设计了活塞燃烧室和燃油喷射系统的升级方案并进行了模拟优化。升级方案提高了压缩比和燃油喷射压力,采用大径深比浅ω燃烧室配合158°喷油夹角喷油嘴。对不同方案下发动机的缸内工作过程进行了计算流体力学模拟,计算了高压指示功和放热率相位,分析了缸内温度、反应过量空气系数和速度分布及演化。模拟结果表明:升级方案能够提高发动机热效率。增加喷孔数并减小孔径,可以在保持NOx排放基本不变的条件下提高高压指示功4.5%,降低碳烟排放约60%。采用“平顶”浅ω燃烧室与158°喷油夹角喷雾配合,油气混合气快速进入余隙并形成逆时针的漩涡流动,能够加速油气混合和燃烧过程,提高热效率。 展开更多
关键词 柴油机 燃油经济性 燃烧室 燃油喷射 模拟 优化 热效率 氮氧化物 碳烟
下载PDF
临界温度下循环喷油量对柴油机冷起动和排放特性的影响 被引量:1
20
作者 雷基林 李道硕 +6 位作者 王东方 杨朗建 陈俊霖 刘康 宋国富 孙亮 陈丽琼 《农业工程学报》 EI CAS CSCD 北大核心 2024年第10期247-254,共8页
为探明循环喷油量对小型农用柴油机冷起动特性和排放性能的影响规律,同时寻求其临界温度下的最佳循环喷油量,该研究以一款直列双缸高压共轨柴油发动机为研究对象,利用环境模拟舱整机试验平台,通过多次预试验测得海拔2000 m下,该机不开... 为探明循环喷油量对小型农用柴油机冷起动特性和排放性能的影响规律,同时寻求其临界温度下的最佳循环喷油量,该研究以一款直列双缸高压共轨柴油发动机为研究对象,利用环境模拟舱整机试验平台,通过多次预试验测得海拔2000 m下,该机不开启预热装置能够成功起动的临界温度为-5℃。在此工况下,采用3次喷射方式,通过改变主喷油量研究循环喷油量对该机冷起动特性和排放性能的影响。结果表明:较大或较小的循环喷油量均会导致柴油机冷起动时间增加,甚至起动失败;随着循环喷油量增大,冷起动时间先减小后增加,循环喷油量为20 mg时冷起动时间最短,且HC、CO排放峰值均最低,分别为12984和3008 mg/L;增大或减少循环喷油量均会导致HC和CO排放峰值增加。循环喷油量较大时,CO排放峰值显著增加,并且峰值出现时刻提前。改变循环喷油量对NOx排放峰值有较大影响,循环喷油量为30 mg时NOx排放峰值最小,为368 mg/L。综合考虑,海拔高度2000 m,环境温度-5℃工况下该柴油机起动的最佳循环喷油量为20 mg。研究结果可为柴油机冷起动特性和排放优化提供支撑。 展开更多
关键词 柴油机 排放 冷起动 循环喷油量
下载PDF
上一页 1 2 70 下一页 到第
使用帮助 返回顶部