In this paper, a design method for ocean wave permanent magnet synchronous generator(PMSG)is proposed with new performance criteria to obtain better output performance at the cost of less permanent magnet material. Be...In this paper, a design method for ocean wave permanent magnet synchronous generator(PMSG)is proposed with new performance criteria to obtain better output performance at the cost of less permanent magnet material. Besides, a simple equivalent analytical geometry method is put forward to calculate the sizes of permanent magnets. Based on geometric and electromagnetic models, four types of rotor structures are compared, i.e., embedded, tangential, tile surface mount and convex surface mount structures. The designs and comparisons of machine are performed with the same permanent magnet volume. Moreover, the influences of mechanical pole-arc coefficient of tile surface mount PMSG on electrical efficiency, output power, material corrosion, core loss, and torque ripple are investigated. Finite-element analysis method is applied to verify the results using Ansoft/Maxwell.展开更多
The present study was carried out in order to track the maximum power point in a variable speed turbine by minimizing electromechanical torque changes using a sliding mode control strategy. In this strategy, first, th...The present study was carried out in order to track the maximum power point in a variable speed turbine by minimizing electromechanical torque changes using a sliding mode control strategy. In this strategy, first, the rotor speed is set at an optimal point for different wind speeds. As a result of which, the tip speed ratio reaches an optimal point, mechanical power coefficient is maximized, and wind turbine produces its maximum power and mechanical torque. Then, the maximum mechanical torque is tracked using electromechanical torque. In this technique, tracking error integral of maximum mechanical torque, the error, and the derivative of error are used as state variables. During changes in wind speed, sliding mode control is designed to absorb the maximum energy from the wind and minimize the response time of maximum power point tracking(MPPT). In this method, the actual control input signal is formed from a second order integral operation of the original sliding mode control input signal. The result of the second order integral in this model includes control signal integrity, full chattering attenuation, and prevention from large fluctuations in the power generator output. The simulation results, calculated by using MATLAB/m-file software, have shown the effectiveness of the proposed control strategy for wind energy systems based on the permanent magnet synchronous generator(PMSG).展开更多
This paper reviews the modularity techniques in the stator manufacture of permanent magnet machines for different applications.Some basic concepts of modular machines are firstly introduced.Modular machines for severa...This paper reviews the modularity techniques in the stator manufacture of permanent magnet machines for different applications.Some basic concepts of modular machines are firstly introduced.Modular machines for several typical applications are then described in details,including domestic appliances,automobiles and electric vehicles,more electric aircrafts and civic applications,wind power generators,etc.Besides,the influence of manufacture tolerance gaps and flux barriers on the electromagnetic performance is discussed.展开更多
Making full use of wind power is one of the main purposes of the wind turbine generator control. Conventional hill climbing search (HCS) method can realize the maximum power point tracking (MPPT). However, the ste...Making full use of wind power is one of the main purposes of the wind turbine generator control. Conventional hill climbing search (HCS) method can realize the maximum power point tracking (MPPT). However, the step size of HCS method is constant so that it cannot consider both steady-state response and dynamic response. A fuzzy logical control (FLC) algorithm is proposed to solve this problem in this paper, which can track the maximum power point (MPP) quickly and smoothly. To evaluate MPPT algorithms, four performance indices are also proposed in this paper. They are the energy captured by wind turbine, the maximum power-point tracking time when wind speed changes slowly, the fluctuation magnitude of real power during steady state, and the energy captured by wind turbine when wind speed changes fast. Three cases are designed and simulated in MATLAB/Simulink respectively. The comparison of the three MPPT strategies concludes that the proposed fuzzy logical control algorithm is more superior to the conventional HCS algorithms.展开更多
Wind turbine is a key device to realize the utilization of wind energy,and it has been highly valued by all countries.But the mechanical gear transmission of the existing wind power device has the disadvantages of hig...Wind turbine is a key device to realize the utilization of wind energy,and it has been highly valued by all countries.But the mechanical gear transmission of the existing wind power device has the disadvantages of high vibration and noise,high failure rate,and short service time.Magneticfield modulation electromagnetic gear transmission is a new non-contact transmission method.However,the conventional modulation magnetic gear has low torque density and torque defects with largefluctuations.In order to overcome the gear transmis-sion problems of the existing semi-direct drive wind power generation machinery and improve the electromag-netic performance of the traditional magnetic gear transmission,this paper proposes a new transmission scheme of a non-contact semi-direct drive wind generator with a surface mount Halbach array modulated mag-netic gear method,and considers the electromagnetic properties of the semi-direct drive modulation magnetic gear of the wind turbine.Thefinite element software is used to construct the model of the surface-mounted Halbach array magnetic gear and the conventional gear,analyzed the distribution of magneticfield lines of the two magnetic gears,calculated the air gap magneticflux density of the inner and outer air gap,and obtained the main harmonics of the inner and outer air gap magnetic density;calculated the static torque and steady-state operating torque of the inner and outer rotors in the model,compared the air gapflux density,harmonics and torque of the magnetic gears.The simulation results show that the magneticfield modulation type mag-netic gear of the surface mount Halbach array magnetic gear method improves the magnetic induction wave-form of the inner and outer air gap,reduces the pulse torquefluctuation,and has a 60%higher static torque.Applying it to semi-direct drive wind power generation equipment not only overcomes the shortcomings of mechanical gears,but also has higher electromagnetic performance.Therefore,the surface-mounted Halbach array modulated magnetic gear can be used to replace the mechanical gearbox in the semi-direct drive wind power generation equipment.展开更多
In the early development of the wind energy, the majority of the wind turbines have been operated at constant speed. Subsequently, the number of variable-speed wind turbines installed in wind farms has increased. In t...In the early development of the wind energy, the majority of the wind turbines have been operated at constant speed. Subsequently, the number of variable-speed wind turbines installed in wind farms has increased. In this paper, a comparative performance of fixed and variable speed wind generators with Pitch angle control has been presented. The first is based on a squirrel cage Induction Generator (IG) of 315 kW rated power, connected directly to the grid. The second incorporated a Permanent Magnet Synchronous Generator (PMSG) of 750 kW rated power. The performances of each studied wind generator are evaluated by simulation works and variable speed operation is highlighted as preferred mode of operation.展开更多
The paper deals with automatic reactive power control of an isolated wind-diesel hybrid power system. The power is generated by diesel engine and wind turbine as prime movers with electrical power conversion by perman...The paper deals with automatic reactive power control of an isolated wind-diesel hybrid power system. The power is generated by diesel engine and wind turbine as prime movers with electrical power conversion by permanent-magnet synchronous generator (PMSG) and permanent-magnet induction generator (PMIG) respectively. The mathematical model of the system developed is based on reactive power flow equations. The paper investigates the dynamic performance of the hybrid system for 1% step increase in reactive power load with 1% step increase in input wind power.展开更多
In this paper,the method for the nonlinear control design of a permanent magnet synchronous generator based-wind energy conversion system(WECS)is proposed in order to obtain robustness against disturbances and harvest...In this paper,the method for the nonlinear control design of a permanent magnet synchronous generator based-wind energy conversion system(WECS)is proposed in order to obtain robustness against disturbances and harvest a maximum power from a typical stochastic wind environment.The technique overcomes both the problem of nonlinearity and the uncertainty of the parameter compared to such classical control designs based on traditional control techniques.The method is based on the differential geometric feedback linearization technique(DGT)and the Lyapunov theory.The results obtained show the effectiveness and performance of the proposed approach.展开更多
This paper presents a simukaneous multi- objective optimization of a direct-drive permanent magnet synchronous generator and a three-blade horizontal-axis wind turbine for a large scale wind energy conversion system. ...This paper presents a simukaneous multi- objective optimization of a direct-drive permanent magnet synchronous generator and a three-blade horizontal-axis wind turbine for a large scale wind energy conversion system. Analytical models of the generator and the turbine are used along with the cost model for optimization. Three important characteristics of the system i.e.,the total cost of the generator and blades, the annual energy output and the total mass of generator and blades are chosen as objective functions for a multi-objective optimization. Genetic algorithm (GA) is then employed to optimize the value of eight design parameters including seven generator parameters and a turbine parameter resulting in a set of Pareto optimal solutions. Four optimal solutions are then selected by applying some practical restrictions on the Pareto front. One of these optimal designs is chosen for finite element verification. A circuit-fed coupled time stepping finite element method is then performed to evaluate the no-load and the full load performance analysis of the system including the generator, a rectifier and a resistive load. The results obtained by the finite element analysis (FEA) verify the accuracy of the analytical model and the proposed method.展开更多
A wind energy conversion system(WECS)based on a permanent magnet synchronous generator(PMSG)is an effective solution for renewable energy generation in modern power systems.The main advantages of PMSG include high per...A wind energy conversion system(WECS)based on a permanent magnet synchronous generator(PMSG)is an effective solution for renewable energy generation in modern power systems.The main advantages of PMSG include high performance at high and low speeds,minimal control effort owing to lower rotor inertia,self-excitation,high reliability,and simplicity of structure compared with induction generators.However,the intermittent nature of wind energy implies that maximum efficiency is not obtained from this system.Accordingly,maximum power point tracking(MPPT)in wind turbine systems has been proposed to address this problem.Traditional MPPT strategies suffer from severe output power fluctuations,low efficiency,and significant ripples in turbine rotation speed.This paper presents a novel MPPT control strategy based on fuzzy logic control(FLC)and model predictive control(MPC)to extract the maximum power from a PMSG-WECS and control the machine-side and grid-side converters.The simulation results obtained from Matlab/Simulink confirm the superiority of the control model in eliminating the output power fluctuations of the wind generators and accurately tracking the maximum power point.A comparative study between conventional MPPT and control methods is also conducted.展开更多
This paper presents a comprehensive overview study of the DDPMSG (direct driven permanent magnet synchronous generator) for wind energy generation system. Wind turbine controls are provided. The PMSG (permanent mag...This paper presents a comprehensive overview study of the DDPMSG (direct driven permanent magnet synchronous generator) for wind energy generation system. Wind turbine controls are provided. The PMSG (permanent magnet synchronous generator) is introduced as construction and model. Configurations of different power converters are presented for use with DDPMSG in wind systems at variable speed operation and maximum power capture. Control techniques for the system are discussed for both machine-side and grid-side in details. Grid integration is provided with focus on how to insure power quality of the system and the performance at disturbances.展开更多
A novel fault ride-through strategy for wind turbines,based on permanent magnet synchronous generator,has been proposed.The proposed strategy analytically formulates the reference current signals,disregarding grid fau...A novel fault ride-through strategy for wind turbines,based on permanent magnet synchronous generator,has been proposed.The proposed strategy analytically formulates the reference current signals,disregarding grid fault type and utilizes the whole system capacity to inject the reactive current required by grid codes and deliver maximum possible active power to support grid frequency and avoid generation loss.All this has been reached by taking the grid-side converter’s phase current limit into account.The strategy is compatible with different countries’grid codes and prevents pulsating active power injection,in an unbalanced grid condition.Model predictive current controller is applied to handling rapid transients.During faults,the energy storage system maintains DC-link voltage,which causes voltage fluctuations to be eliminated,significantly.A fault ride-through strategy was proposed for PMSG-based wind turbines,neglecting fault characteristics,second,reaching maximum possible grid support in faulty grid conditions,while avoiding over-current and third,considerable reduction in energy storage system size and power rating.Inspiring simulations have been carried out through MATLAB/SIMULINK to validate the feasibility and competency of the proposed fault ride-through method and efficiency of the entire control system.展开更多
In this study, we investigated the torque characteristics of large low-speed direct-drive permanent magnet synchronous generators with stator radial ventilating air ducts for offshore wind power applications. Magnet s...In this study, we investigated the torque characteristics of large low-speed direct-drive permanent magnet synchronous generators with stator radial ventilating air ducts for offshore wind power applications. Magnet shape optimization was used first to improve the torque characteristics using two-dimensional finite element analysis(FEA) in a permanent magnet synchronous generator with a common stator. The rotor step skewing technique was then employed to suppress the impacts of mechanical tolerances and defects, which further improved the torque quality of the machine. Comprehensive three-dimensional FEA was used to evaluate accurately the overall effects of stator radial ventilating air ducts and rotor step skewing on torque features. The influences of the radial ventilating ducts in the stator on torque characteristics, such as torque pulsation and average torque in the machine with and without rotor step skewing techniques, were comprehensively investigated using three-dimensional FEA. The results showed that stator radial ventilating air ducts could not only reduce the average torque but also increase the torque ripple in the machine. Furthermore, the torque ripple of the machine under certain load conditions may even be increased by rotor step skewing despite a reduction in cogging torque.展开更多
This paper proposes a design and implementation of the bi-directional DC-DC converter for Wind Energy Conversion System. The proposed project consists of boost DC/DC converter, bi-directional DC/DC converter (BDC), pe...This paper proposes a design and implementation of the bi-directional DC-DC converter for Wind Energy Conversion System. The proposed project consists of boost DC/DC converter, bi-directional DC/DC converter (BDC), permanent magnet DC generator and batteries. A DC-DC boost converter is interface with proposed wind system to step up the initial generator voltage and maintain constant output voltage. The fluctuation nature of wind makes them unsuitable for standalone operation. To overcome the drawbacks an energy storage device is used in the proposed system to compensate the fluctuations and to maintain a smooth and continuous power flow in all operating modes to load. Bi-directional DC-DC converter (BDC) is capable of transforming energy between two DC buses. It can operate as a boost converter which supplies energy to the load when the wind generator output power is greater than the required load power. It also operates in buck mode which charges from DC bus when output power is less than the required load power. The proposed converter reduces the component losses and increases the performance of the overall system. The complete system is implemented in MATLAB/SIMULINK and verified with hardware.展开更多
This paper proposes a residue theorem based soft sliding mode control strategy for a permanent magnet synchronous generator(PMSG)based wind power generation system(WPGS),to achieve the maximum energy conversion and im...This paper proposes a residue theorem based soft sliding mode control strategy for a permanent magnet synchronous generator(PMSG)based wind power generation system(WPGS),to achieve the maximum energy conversion and improved in the system dynamic performance.The main idea is to set a soft dynamic boundary for the controlled variables around a reference point.Thus the controlled variables would lie on a point inside the boundary.The convergence of the operating point is ensured by following the Forward Euler method.The proposed control has been verified via simulation and experiments,compared with conventional sliding mode control(SMC)and proportional integral(PI)control.展开更多
在“双碳”背景下,风电作为零碳电力和新能源发电的主力军,在助力社会全面绿色低碳转型方面发挥了关键性作用。在保证发电稳定的前提下实现风能的最大化利用,提升风力发电系统发电量至为重要。文中针对永磁同一步风力发电系统的最大功...在“双碳”背景下,风电作为零碳电力和新能源发电的主力军,在助力社会全面绿色低碳转型方面发挥了关键性作用。在保证发电稳定的前提下实现风能的最大化利用,提升风力发电系统发电量至为重要。文中针对永磁同一步风力发电系统的最大功率跟踪(maximum power point tracking, MPPT)问题进行研究。首先建立了永磁同步风力发电系统的机理仿真模型,用两电平双PWM全功率换流器连接风力发电机与电网。然后基于以上模型,分别设计了整数阶PI控制器、分数阶PI"控制器、模糊分数阶PP控制器以实现MPPT控制。最后对以上控制策略进行了仿真研究。结果表明,无论在阶跃风速还是随机风速下,模糊分数阶PU控制器相较于其他两种均具有更出色的MPPT性能与更强的鲁棒性。展开更多
基金Supported by the National Natural Science Foundation of China(No.51577124)Tianjin Research Program of Application Foundation and Advanced Technology(No.15JCZDJC32100)
文摘In this paper, a design method for ocean wave permanent magnet synchronous generator(PMSG)is proposed with new performance criteria to obtain better output performance at the cost of less permanent magnet material. Besides, a simple equivalent analytical geometry method is put forward to calculate the sizes of permanent magnets. Based on geometric and electromagnetic models, four types of rotor structures are compared, i.e., embedded, tangential, tile surface mount and convex surface mount structures. The designs and comparisons of machine are performed with the same permanent magnet volume. Moreover, the influences of mechanical pole-arc coefficient of tile surface mount PMSG on electrical efficiency, output power, material corrosion, core loss, and torque ripple are investigated. Finite-element analysis method is applied to verify the results using Ansoft/Maxwell.
文摘The present study was carried out in order to track the maximum power point in a variable speed turbine by minimizing electromechanical torque changes using a sliding mode control strategy. In this strategy, first, the rotor speed is set at an optimal point for different wind speeds. As a result of which, the tip speed ratio reaches an optimal point, mechanical power coefficient is maximized, and wind turbine produces its maximum power and mechanical torque. Then, the maximum mechanical torque is tracked using electromechanical torque. In this technique, tracking error integral of maximum mechanical torque, the error, and the derivative of error are used as state variables. During changes in wind speed, sliding mode control is designed to absorb the maximum energy from the wind and minimize the response time of maximum power point tracking(MPPT). In this method, the actual control input signal is formed from a second order integral operation of the original sliding mode control input signal. The result of the second order integral in this model includes control signal integrity, full chattering attenuation, and prevention from large fluctuations in the power generator output. The simulation results, calculated by using MATLAB/m-file software, have shown the effectiveness of the proposed control strategy for wind energy systems based on the permanent magnet synchronous generator(PMSG).
文摘This paper reviews the modularity techniques in the stator manufacture of permanent magnet machines for different applications.Some basic concepts of modular machines are firstly introduced.Modular machines for several typical applications are then described in details,including domestic appliances,automobiles and electric vehicles,more electric aircrafts and civic applications,wind power generators,etc.Besides,the influence of manufacture tolerance gaps and flux barriers on the electromagnetic performance is discussed.
基金supported by the National High Technology Research and Development Program of China under Grant No.2011AA05S113Major State Basic Research Development Program under Grant No.2012CB215106+1 种基金Science and Technology Plan Program in Zhejiang Province under Grant No.2009C34013National Science and Technology Supporting Plan Project under Grant No.2009BAG12A09
文摘Making full use of wind power is one of the main purposes of the wind turbine generator control. Conventional hill climbing search (HCS) method can realize the maximum power point tracking (MPPT). However, the step size of HCS method is constant so that it cannot consider both steady-state response and dynamic response. A fuzzy logical control (FLC) algorithm is proposed to solve this problem in this paper, which can track the maximum power point (MPP) quickly and smoothly. To evaluate MPPT algorithms, four performance indices are also proposed in this paper. They are the energy captured by wind turbine, the maximum power-point tracking time when wind speed changes slowly, the fluctuation magnitude of real power during steady state, and the energy captured by wind turbine when wind speed changes fast. Three cases are designed and simulated in MATLAB/Simulink respectively. The comparison of the three MPPT strategies concludes that the proposed fuzzy logical control algorithm is more superior to the conventional HCS algorithms.
基金supported by the National Natural Science Foundation of China(Grant No.51765020)the Natural Science Foundation of Jiangxi Province(Grant No.20161BAB206153).
文摘Wind turbine is a key device to realize the utilization of wind energy,and it has been highly valued by all countries.But the mechanical gear transmission of the existing wind power device has the disadvantages of high vibration and noise,high failure rate,and short service time.Magneticfield modulation electromagnetic gear transmission is a new non-contact transmission method.However,the conventional modulation magnetic gear has low torque density and torque defects with largefluctuations.In order to overcome the gear transmis-sion problems of the existing semi-direct drive wind power generation machinery and improve the electromag-netic performance of the traditional magnetic gear transmission,this paper proposes a new transmission scheme of a non-contact semi-direct drive wind generator with a surface mount Halbach array modulated mag-netic gear method,and considers the electromagnetic properties of the semi-direct drive modulation magnetic gear of the wind turbine.Thefinite element software is used to construct the model of the surface-mounted Halbach array magnetic gear and the conventional gear,analyzed the distribution of magneticfield lines of the two magnetic gears,calculated the air gap magneticflux density of the inner and outer air gap,and obtained the main harmonics of the inner and outer air gap magnetic density;calculated the static torque and steady-state operating torque of the inner and outer rotors in the model,compared the air gapflux density,harmonics and torque of the magnetic gears.The simulation results show that the magneticfield modulation type mag-netic gear of the surface mount Halbach array magnetic gear method improves the magnetic induction wave-form of the inner and outer air gap,reduces the pulse torquefluctuation,and has a 60%higher static torque.Applying it to semi-direct drive wind power generation equipment not only overcomes the shortcomings of mechanical gears,but also has higher electromagnetic performance.Therefore,the surface-mounted Halbach array modulated magnetic gear can be used to replace the mechanical gearbox in the semi-direct drive wind power generation equipment.
文摘In the early development of the wind energy, the majority of the wind turbines have been operated at constant speed. Subsequently, the number of variable-speed wind turbines installed in wind farms has increased. In this paper, a comparative performance of fixed and variable speed wind generators with Pitch angle control has been presented. The first is based on a squirrel cage Induction Generator (IG) of 315 kW rated power, connected directly to the grid. The second incorporated a Permanent Magnet Synchronous Generator (PMSG) of 750 kW rated power. The performances of each studied wind generator are evaluated by simulation works and variable speed operation is highlighted as preferred mode of operation.
文摘The paper deals with automatic reactive power control of an isolated wind-diesel hybrid power system. The power is generated by diesel engine and wind turbine as prime movers with electrical power conversion by permanent-magnet synchronous generator (PMSG) and permanent-magnet induction generator (PMIG) respectively. The mathematical model of the system developed is based on reactive power flow equations. The paper investigates the dynamic performance of the hybrid system for 1% step increase in reactive power load with 1% step increase in input wind power.
文摘In this paper,the method for the nonlinear control design of a permanent magnet synchronous generator based-wind energy conversion system(WECS)is proposed in order to obtain robustness against disturbances and harvest a maximum power from a typical stochastic wind environment.The technique overcomes both the problem of nonlinearity and the uncertainty of the parameter compared to such classical control designs based on traditional control techniques.The method is based on the differential geometric feedback linearization technique(DGT)and the Lyapunov theory.The results obtained show the effectiveness and performance of the proposed approach.
文摘This paper presents a simukaneous multi- objective optimization of a direct-drive permanent magnet synchronous generator and a three-blade horizontal-axis wind turbine for a large scale wind energy conversion system. Analytical models of the generator and the turbine are used along with the cost model for optimization. Three important characteristics of the system i.e.,the total cost of the generator and blades, the annual energy output and the total mass of generator and blades are chosen as objective functions for a multi-objective optimization. Genetic algorithm (GA) is then employed to optimize the value of eight design parameters including seven generator parameters and a turbine parameter resulting in a set of Pareto optimal solutions. Four optimal solutions are then selected by applying some practical restrictions on the Pareto front. One of these optimal designs is chosen for finite element verification. A circuit-fed coupled time stepping finite element method is then performed to evaluate the no-load and the full load performance analysis of the system including the generator, a rectifier and a resistive load. The results obtained by the finite element analysis (FEA) verify the accuracy of the analytical model and the proposed method.
文摘A wind energy conversion system(WECS)based on a permanent magnet synchronous generator(PMSG)is an effective solution for renewable energy generation in modern power systems.The main advantages of PMSG include high performance at high and low speeds,minimal control effort owing to lower rotor inertia,self-excitation,high reliability,and simplicity of structure compared with induction generators.However,the intermittent nature of wind energy implies that maximum efficiency is not obtained from this system.Accordingly,maximum power point tracking(MPPT)in wind turbine systems has been proposed to address this problem.Traditional MPPT strategies suffer from severe output power fluctuations,low efficiency,and significant ripples in turbine rotation speed.This paper presents a novel MPPT control strategy based on fuzzy logic control(FLC)and model predictive control(MPC)to extract the maximum power from a PMSG-WECS and control the machine-side and grid-side converters.The simulation results obtained from Matlab/Simulink confirm the superiority of the control model in eliminating the output power fluctuations of the wind generators and accurately tracking the maximum power point.A comparative study between conventional MPPT and control methods is also conducted.
文摘This paper presents a comprehensive overview study of the DDPMSG (direct driven permanent magnet synchronous generator) for wind energy generation system. Wind turbine controls are provided. The PMSG (permanent magnet synchronous generator) is introduced as construction and model. Configurations of different power converters are presented for use with DDPMSG in wind systems at variable speed operation and maximum power capture. Control techniques for the system are discussed for both machine-side and grid-side in details. Grid integration is provided with focus on how to insure power quality of the system and the performance at disturbances.
文摘A novel fault ride-through strategy for wind turbines,based on permanent magnet synchronous generator,has been proposed.The proposed strategy analytically formulates the reference current signals,disregarding grid fault type and utilizes the whole system capacity to inject the reactive current required by grid codes and deliver maximum possible active power to support grid frequency and avoid generation loss.All this has been reached by taking the grid-side converter’s phase current limit into account.The strategy is compatible with different countries’grid codes and prevents pulsating active power injection,in an unbalanced grid condition.Model predictive current controller is applied to handling rapid transients.During faults,the energy storage system maintains DC-link voltage,which causes voltage fluctuations to be eliminated,significantly.A fault ride-through strategy was proposed for PMSG-based wind turbines,neglecting fault characteristics,second,reaching maximum possible grid support in faulty grid conditions,while avoiding over-current and third,considerable reduction in energy storage system size and power rating.Inspiring simulations have been carried out through MATLAB/SIMULINK to validate the feasibility and competency of the proposed fault ride-through method and efficiency of the entire control system.
基金Project supported by the National Natural Science Foundation of China(No.51377140) the National Basic Research Program(973)of China(No.2013CB035604)
文摘In this study, we investigated the torque characteristics of large low-speed direct-drive permanent magnet synchronous generators with stator radial ventilating air ducts for offshore wind power applications. Magnet shape optimization was used first to improve the torque characteristics using two-dimensional finite element analysis(FEA) in a permanent magnet synchronous generator with a common stator. The rotor step skewing technique was then employed to suppress the impacts of mechanical tolerances and defects, which further improved the torque quality of the machine. Comprehensive three-dimensional FEA was used to evaluate accurately the overall effects of stator radial ventilating air ducts and rotor step skewing on torque features. The influences of the radial ventilating ducts in the stator on torque characteristics, such as torque pulsation and average torque in the machine with and without rotor step skewing techniques, were comprehensively investigated using three-dimensional FEA. The results showed that stator radial ventilating air ducts could not only reduce the average torque but also increase the torque ripple in the machine. Furthermore, the torque ripple of the machine under certain load conditions may even be increased by rotor step skewing despite a reduction in cogging torque.
文摘This paper proposes a design and implementation of the bi-directional DC-DC converter for Wind Energy Conversion System. The proposed project consists of boost DC/DC converter, bi-directional DC/DC converter (BDC), permanent magnet DC generator and batteries. A DC-DC boost converter is interface with proposed wind system to step up the initial generator voltage and maintain constant output voltage. The fluctuation nature of wind makes them unsuitable for standalone operation. To overcome the drawbacks an energy storage device is used in the proposed system to compensate the fluctuations and to maintain a smooth and continuous power flow in all operating modes to load. Bi-directional DC-DC converter (BDC) is capable of transforming energy between two DC buses. It can operate as a boost converter which supplies energy to the load when the wind generator output power is greater than the required load power. It also operates in buck mode which charges from DC bus when output power is less than the required load power. The proposed converter reduces the component losses and increases the performance of the overall system. The complete system is implemented in MATLAB/SIMULINK and verified with hardware.
基金This study has been funded by the Royal Commission for Jubail and Yanbu,Saudi Arabia and the University of Liverpool,UK.
文摘This paper proposes a residue theorem based soft sliding mode control strategy for a permanent magnet synchronous generator(PMSG)based wind power generation system(WPGS),to achieve the maximum energy conversion and improved in the system dynamic performance.The main idea is to set a soft dynamic boundary for the controlled variables around a reference point.Thus the controlled variables would lie on a point inside the boundary.The convergence of the operating point is ensured by following the Forward Euler method.The proposed control has been verified via simulation and experiments,compared with conventional sliding mode control(SMC)and proportional integral(PI)control.
文摘在“双碳”背景下,风电作为零碳电力和新能源发电的主力军,在助力社会全面绿色低碳转型方面发挥了关键性作用。在保证发电稳定的前提下实现风能的最大化利用,提升风力发电系统发电量至为重要。文中针对永磁同一步风力发电系统的最大功率跟踪(maximum power point tracking, MPPT)问题进行研究。首先建立了永磁同步风力发电系统的机理仿真模型,用两电平双PWM全功率换流器连接风力发电机与电网。然后基于以上模型,分别设计了整数阶PI控制器、分数阶PI"控制器、模糊分数阶PP控制器以实现MPPT控制。最后对以上控制策略进行了仿真研究。结果表明,无论在阶跃风速还是随机风速下,模糊分数阶PU控制器相较于其他两种均具有更出色的MPPT性能与更强的鲁棒性。