In this paper,we investigate spacelike graphs defined over a domain Ω⊂M^(n) in the Lorentz manifold M^(n)×ℝ with the metric−ds^(2)+σ,where M^(n) is a complete Riemannian n-manifold with the metricσ,Ωhas piece...In this paper,we investigate spacelike graphs defined over a domain Ω⊂M^(n) in the Lorentz manifold M^(n)×ℝ with the metric−ds^(2)+σ,where M^(n) is a complete Riemannian n-manifold with the metricσ,Ωhas piecewise smooth boundary,and ℝ denotes the Euclidean 1-space.We prove an interesting stability result for translating spacelike graphs in M^(n)×ℝ under a conformal transformation.展开更多
Given a graph g=( V,A ) , we define a space of subgraphs M with the binary operation of union and the unique decomposition property into blocks. This space allows us to discuss a notion of minimal subgraphs (minimal c...Given a graph g=( V,A ) , we define a space of subgraphs M with the binary operation of union and the unique decomposition property into blocks. This space allows us to discuss a notion of minimal subgraphs (minimal coalitions) that are of interest for the game. Additionally, a partition of the game is defined in terms of the gain of each block, and subsequently, a solution to the game is defined based on distributing to each player (node and edge) present in each block a payment proportional to their contribution to the coalition.展开更多
Graph Neural Networks(GNNs)play a significant role in tasks related to homophilic graphs.Traditional GNNs,based on the assumption of homophily,employ low-pass filters for neighboring nodes to achieve information aggre...Graph Neural Networks(GNNs)play a significant role in tasks related to homophilic graphs.Traditional GNNs,based on the assumption of homophily,employ low-pass filters for neighboring nodes to achieve information aggregation and embedding.However,in heterophilic graphs,nodes from different categories often establish connections,while nodes of the same category are located further apart in the graph topology.This characteristic poses challenges to traditional GNNs,leading to issues of“distant node modeling deficiency”and“failure of the homophily assumption”.In response,this paper introduces the Spatial-Frequency domain Adaptive Heterophilic Graph Neural Networks(SFA-HGNN),which integrates adaptive embedding mechanisms for both spatial and frequency domains to address the aforementioned issues.Specifically,for the first problem,we propose the“Distant Spatial Embedding Module”,aiming to select and aggregate distant nodes through high-order randomwalk transition probabilities to enhance modeling capabilities.For the second issue,we design the“Proximal Frequency Domain Embedding Module”,constructing adaptive filters to separate high and low-frequency signals of nodes,and introduce frequency-domain guided attention mechanisms to fuse the relevant information,thereby reducing the noise introduced by the failure of the homophily assumption.We deploy the SFA-HGNN on six publicly available heterophilic networks,achieving state-of-the-art results in four of them.Furthermore,we elaborate on the hyperparameter selection mechanism and validate the performance of each module through experimentation,demonstrating a positive correlation between“node structural similarity”,“node attribute vector similarity”,and“node homophily”in heterophilic networks.展开更多
Recommendation Information Systems(RIS)are pivotal in helping users in swiftly locating desired content from the vast amount of information available on the Internet.Graph Convolution Network(GCN)algorithms have been ...Recommendation Information Systems(RIS)are pivotal in helping users in swiftly locating desired content from the vast amount of information available on the Internet.Graph Convolution Network(GCN)algorithms have been employed to implement the RIS efficiently.However,the GCN algorithm faces limitations in terms of performance enhancement owing to the due to the embedding value-vanishing problem that occurs during the learning process.To address this issue,we propose a Weighted Forwarding method using the GCN(WF-GCN)algorithm.The proposed method involves multiplying the embedding results with different weights for each hop layer during graph learning.By applying the WF-GCN algorithm,which adjusts weights for each hop layer before forwarding to the next,nodes with many neighbors achieve higher embedding values.This approach facilitates the learning of more hop layers within the GCN framework.The efficacy of the WF-GCN was demonstrated through its application to various datasets.In the MovieLens dataset,the implementation of WF-GCN in LightGCN resulted in significant performance improvements,with recall and NDCG increasing by up to+163.64%and+132.04%,respectively.Similarly,in the Last.FM dataset,LightGCN using WF-GCN enhanced with WF-GCN showed substantial improvements,with the recall and NDCG metrics rising by up to+174.40%and+169.95%,respectively.Furthermore,the application of WF-GCN to Self-supervised Graph Learning(SGL)and Simple Graph Contrastive Learning(SimGCL)also demonstrated notable enhancements in both recall and NDCG across these datasets.展开更多
Graph Convolutional Neural Networks(GCNs)have been widely used in various fields due to their powerful capabilities in processing graph-structured data.However,GCNs encounter significant challenges when applied to sca...Graph Convolutional Neural Networks(GCNs)have been widely used in various fields due to their powerful capabilities in processing graph-structured data.However,GCNs encounter significant challenges when applied to scale-free graphs with power-law distributions,resulting in substantial distortions.Moreover,most of the existing GCN models are shallow structures,which restricts their ability to capture dependencies among distant nodes and more refined high-order node features in scale-free graphs with hierarchical structures.To more broadly and precisely apply GCNs to real-world graphs exhibiting scale-free or hierarchical structures and utilize multi-level aggregation of GCNs for capturing high-level information in local representations,we propose the Hyperbolic Deep Graph Convolutional Neural Network(HDGCNN),an end-to-end deep graph representation learning framework that can map scale-free graphs from Euclidean space to hyperbolic space.In HDGCNN,we define the fundamental operations of deep graph convolutional neural networks in hyperbolic space.Additionally,we introduce a hyperbolic feature transformation method based on identity mapping and a dense connection scheme based on a novel non-local message passing framework.In addition,we present a neighborhood aggregation method that combines initial structural featureswith hyperbolic attention coefficients.Through the above methods,HDGCNN effectively leverages both the structural features and node features of graph data,enabling enhanced exploration of non-local structural features and more refined node features in scale-free or hierarchical graphs.Experimental results demonstrate that HDGCNN achieves remarkable performance improvements over state-ofthe-art GCNs in node classification and link prediction tasks,even when utilizing low-dimensional embedding representations.Furthermore,when compared to shallow hyperbolic graph convolutional neural network models,HDGCNN exhibits notable advantages and performance enhancements.展开更多
The growing prevalence of knowledge reasoning using knowledge graphs(KGs)has substantially improved the accuracy and efficiency of intelligent medical diagnosis.However,current models primarily integrate electronic me...The growing prevalence of knowledge reasoning using knowledge graphs(KGs)has substantially improved the accuracy and efficiency of intelligent medical diagnosis.However,current models primarily integrate electronic medical records(EMRs)and KGs into the knowledge reasoning process,ignoring the differing significance of various types of knowledge in EMRs and the diverse data types present in the text.To better integrate EMR text information,we propose a novel intelligent diagnostic model named the Graph ATtention network incorporating Text representation in knowledge reasoning(GATiT),which comprises text representation,subgraph construction,knowledge reasoning,and diagnostic classification.In the text representation process,GATiT uses a pre-trained model to obtain text representations of the EMRs and additionally enhances embeddings by including chief complaint information and numerical information in the input.In the subgraph construction process,GATiT constructs text subgraphs and disease subgraphs from the KG,utilizing EMR text and the disease to be diagnosed.To differentiate the varying importance of nodes within the subgraphs features such as node categories,relevance scores,and other relevant factors are introduced into the text subgraph.Themessage-passing strategy and attention weight calculation of the graph attention network are adjusted to learn these features in the knowledge reasoning process.Finally,in the diagnostic classification process,the interactive attention-based fusion method integrates the results of knowledge reasoning with text representations to produce the final diagnosis results.Experimental results on multi-label and single-label EMR datasets demonstrate the model’s superiority over several state-of-theart methods.展开更多
As a core part of battlefield situational awareness,air target intention recognition plays an important role in modern air operations.Aiming at the problems of insufficient feature extraction and misclassification in ...As a core part of battlefield situational awareness,air target intention recognition plays an important role in modern air operations.Aiming at the problems of insufficient feature extraction and misclassification in intention recognition,this paper designs an air target intention recognition method(KGTLIR)based on Knowledge Graph and Deep Learning.Firstly,the intention recognition model based on Deep Learning is constructed to mine the temporal relationship of intention features using dilated causal convolution and the spatial relationship of intention features using a graph attention mechanism.Meanwhile,the accuracy,recall,and F1-score after iteration are introduced to dynamically adjust the sample weights to reduce the probability of misclassification.After that,an intention recognition model based on Knowledge Graph is constructed to predict the probability of the occurrence of different intentions of the target.Finally,the results of the two models are fused by evidence theory to obtain the target’s operational intention.Experiments show that the intention recognition accuracy of the KGTLIRmodel can reach 98.48%,which is not only better than most of the air target intention recognition methods,but also demonstrates better interpretability and trustworthiness.展开更多
Let R be a commutative ring with identity and M an R-module. In this paper, we relate a graph to M, say Γ(M), provided tsshat when M=R, Γ(M)is exactly the classic zero-divisor graph.
The prediction for Multivariate Time Series(MTS)explores the interrelationships among variables at historical moments,extracts their relevant characteristics,and is widely used in finance,weather,complex industries an...The prediction for Multivariate Time Series(MTS)explores the interrelationships among variables at historical moments,extracts their relevant characteristics,and is widely used in finance,weather,complex industries and other fields.Furthermore,it is important to construct a digital twin system.However,existing methods do not take full advantage of the potential properties of variables,which results in poor predicted accuracy.In this paper,we propose the Adaptive Fused Spatial-Temporal Graph Convolutional Network(AFSTGCN).First,to address the problem of the unknown spatial-temporal structure,we construct the Adaptive Fused Spatial-Temporal Graph(AFSTG)layer.Specifically,we fuse the spatial-temporal graph based on the interrelationship of spatial graphs.Simultaneously,we construct the adaptive adjacency matrix of the spatial-temporal graph using node embedding methods.Subsequently,to overcome the insufficient extraction of disordered correlation features,we construct the Adaptive Fused Spatial-Temporal Graph Convolutional(AFSTGC)module.The module forces the reordering of disordered temporal,spatial and spatial-temporal dependencies into rule-like data.AFSTGCN dynamically and synchronously acquires potential temporal,spatial and spatial-temporal correlations,thereby fully extracting rich hierarchical feature information to enhance the predicted accuracy.Experiments on different types of MTS datasets demonstrate that the model achieves state-of-the-art single-step and multi-step performance compared with eight other deep learning models.展开更多
In this paper, we investigate a blow-up phenomenon for a semilinear parabolic system on locally finite graphs. Under some appropriate assumptions on the curvature condition CDE’(n,0), the polynomial volume growth of ...In this paper, we investigate a blow-up phenomenon for a semilinear parabolic system on locally finite graphs. Under some appropriate assumptions on the curvature condition CDE’(n,0), the polynomial volume growth of degree m, the initial values, and the exponents in absorption terms, we prove that every non-negative solution of the semilinear parabolic system blows up in a finite time. Our current work extends the results achieved by Lin and Wu (Calc Var Partial Differ Equ, 2017, 56: Art 102) and Wu (Rev R Acad Cien Serie A Mat, 2021, 115: Art 133).展开更多
Blockchain technology,with its attributes of decentralization,immutability,and traceability,has emerged as a powerful catalyst for enhancing traditional industries in terms of optimizing business processes.However,tra...Blockchain technology,with its attributes of decentralization,immutability,and traceability,has emerged as a powerful catalyst for enhancing traditional industries in terms of optimizing business processes.However,transaction performance and scalability has become the main challenges hindering the widespread adoption of blockchain.Due to its inability to meet the demands of high-frequency trading,blockchain cannot be adopted in many scenarios.To improve the transaction capacity,researchers have proposed some on-chain scaling technologies,including lightning networks,directed acyclic graph technology,state channels,and shardingmechanisms,inwhich sharding emerges as a potential scaling technology.Nevertheless,excessive cross-shard transactions and uneven shard workloads prevent the sharding mechanism from achieving the expected aim.This paper proposes a graphbased sharding scheme for public blockchain to efficiently balance the transaction distribution.Bymitigating crossshard transactions and evening-out workloads among shards,the scheme reduces transaction confirmation latency and enhances the transaction capacity of the blockchain.Therefore,the scheme can achieve a high-frequency transaction as well as a better blockchain scalability.Experiments results show that the scheme effectively reduces the cross-shard transaction ratio to a range of 35%-56%and significantly decreases the transaction confirmation latency to 6 s in a blockchain with no more than 25 shards.展开更多
In this paper, we propose a novel anomaly detection method for data centers based on a combination of graphstructure and abnormal attention mechanism. The method leverages the sensor monitoring data from targetpower s...In this paper, we propose a novel anomaly detection method for data centers based on a combination of graphstructure and abnormal attention mechanism. The method leverages the sensor monitoring data from targetpower substations to construct multidimensional time series. These time series are subsequently transformed intograph structures, and corresponding adjacency matrices are obtained. By incorporating the adjacency matricesand additional weights associated with the graph structure, an aggregation matrix is derived. The aggregationmatrix is then fed into a pre-trained graph convolutional neural network (GCN) to extract graph structure features.Moreover, both themultidimensional time series segments and the graph structure features are inputted into a pretrainedanomaly detectionmodel, resulting in corresponding anomaly detection results that help identify abnormaldata. The anomaly detection model consists of a multi-level encoder-decoder module, wherein each level includesa transformer encoder and decoder based on correlation differences. The attention module in the encoding layeradopts an abnormal attention module with a dual-branch structure. Experimental results demonstrate that ourproposed method significantly improves the accuracy and stability of anomaly detection.展开更多
This research investigates the comparative efficacy of generating zero divisor graphs (ZDGs) of the ring of integers ℤ<sub>n</sub> modulo n using MAPLE algorithm. Zero divisor graphs, pivotal in the study ...This research investigates the comparative efficacy of generating zero divisor graphs (ZDGs) of the ring of integers ℤ<sub>n</sub> modulo n using MAPLE algorithm. Zero divisor graphs, pivotal in the study of ring theory, depict relationships between elements of a ring that multiply to zero. The paper explores the development and implementation of algorithms in MAPLE for constructing these ZDGs. The comparative study aims to discern the strengths, limitations, and computational efficiency of different MAPLE algorithms for creating zero divisor graphs offering insights for mathematicians, researchers, and computational enthusiasts involved in ring theory and mathematical computations.展开更多
Feature matching plays a key role in computer vision. However, due to the limitations of the descriptors, the putative matches are inevitably contaminated by massive outliers.This paper attempts to tackle the outlier ...Feature matching plays a key role in computer vision. However, due to the limitations of the descriptors, the putative matches are inevitably contaminated by massive outliers.This paper attempts to tackle the outlier filtering problem from two aspects. First, a robust and efficient graph interaction model,is proposed, with the assumption that matches are correlated with each other rather than independently distributed. To this end, we construct a graph based on the local relationships of matches and formulate the outlier filtering task as a binary labeling energy minimization problem, where the pairwise term encodes the interaction between matches. We further show that this formulation can be solved globally by graph cut algorithm. Our new formulation always improves the performance of previous localitybased method without noticeable deterioration in processing time,adding a few milliseconds. Second, to construct a better graph structure, a robust and geometrically meaningful topology-aware relationship is developed to capture the topology relationship between matches. The two components in sum lead to topology interaction matching(TIM), an effective and efficient method for outlier filtering. Extensive experiments on several large and diverse datasets for multiple vision tasks including general feature matching, as well as relative pose estimation, homography and fundamental matrix estimation, loop-closure detection, and multi-modal image matching, demonstrate that our TIM is more competitive than current state-of-the-art methods, in terms of generality, efficiency, and effectiveness. The source code is publicly available at http://github.com/YifanLu2000/TIM.展开更多
Utilizing graph neural networks for knowledge embedding to accomplish the task of knowledge graph completion(KGC)has become an important research area in knowledge graph completion.However,the number of nodes in the k...Utilizing graph neural networks for knowledge embedding to accomplish the task of knowledge graph completion(KGC)has become an important research area in knowledge graph completion.However,the number of nodes in the knowledge graph increases exponentially with the depth of the tree,whereas the distances of nodes in Euclidean space are second-order polynomial distances,whereby knowledge embedding using graph neural networks in Euclidean space will not represent the distances between nodes well.This paper introduces a novel approach called hyperbolic hierarchical graph attention network(H2GAT)to rectify this limitation.Firstly,the paper conducts knowledge representation in the hyperbolic space,effectively mitigating the issue of exponential growth of nodes with tree depth and consequent information loss.Secondly,it introduces a hierarchical graph atten-tion mechanism specifically designed for the hyperbolic space,allowing for enhanced capture of the network structure inherent in the knowledge graph.Finally,the efficacy of the proposed H2GAT model is evaluated on benchmark datasets,namely WN18RR and FB15K-237,thereby validating its effectiveness.The H2GAT model achieved 0.445,0.515,and 0.586 in the Hits@1,Hits@3 and Hits@10 metrics respectively on the WN18RR dataset and 0.243,0.367 and 0.518 on the FB15K-237 dataset.By incorporating hyperbolic space embedding and hierarchical graph attention,the H2GAT model successfully addresses the limitations of existing hyperbolic knowledge embedding models,exhibiting its competence in knowledge graph completion tasks.展开更多
The fast-paced development of blockchain technology is evident.Yet,the security concerns of smart contracts represent a significant challenge to the stability and dependability of the entire blockchain ecosystem.Conve...The fast-paced development of blockchain technology is evident.Yet,the security concerns of smart contracts represent a significant challenge to the stability and dependability of the entire blockchain ecosystem.Conventional smart contract vulnerability detection primarily relies on static analysis tools,which are less efficient and accurate.Although deep learning methods have improved detection efficiency,they are unable to fully utilize the static relationships within contracts.Therefore,we have adopted the advantages of the above two methods,combining feature extraction mode of tools with deep learning techniques.Firstly,we have constructed corresponding feature extraction mode for different vulnerabilities,which are used to extract feature graphs from the source code of smart contracts.Then,the node features in feature graphs are fed into a graph convolutional neural network for training,and the edge features are processed using a method that combines attentionmechanismwith gated units.Ultimately,the revised node features and edge features are concatenated through amulti-head attentionmechanism.The result of the splicing is a global representation of the entire feature graph.Our method was tested on three types of data:Timestamp vulnerabilities,reentrancy vulnerabilities,and access control vulnerabilities,where the F1 score of our method reaches 84.63%,92.55%,and 61.36%.The results indicate that our method surpasses most others in detecting smart contract vulnerabilities.展开更多
In the tobacco industry,insider employee attack is a thorny problem that is difficult to detect.To solve this issue,this paper proposes an insider threat detection method based on heterogeneous graph embedding.First,t...In the tobacco industry,insider employee attack is a thorny problem that is difficult to detect.To solve this issue,this paper proposes an insider threat detection method based on heterogeneous graph embedding.First,the interrelationships between logs are fully considered,and log entries are converted into heterogeneous graphs based on these relationships.Second,the heterogeneous graph embedding is adopted and each log entry is represented as a low-dimensional feature vector.Then,normal logs and malicious logs are classified into different clusters by clustering algorithm to identify malicious logs.Finally,the effectiveness and superiority of the method is verified through experiments on the CERT dataset.The experimental results show that this method has better performance compared to some baseline methods.展开更多
基金supported in part by the NSFC(11801496,11926352)the Fok Ying-Tung Education Foundation(China)the Hubei Key Laboratory of Applied Mathematics(Hubei University).
文摘In this paper,we investigate spacelike graphs defined over a domain Ω⊂M^(n) in the Lorentz manifold M^(n)×ℝ with the metric−ds^(2)+σ,where M^(n) is a complete Riemannian n-manifold with the metricσ,Ωhas piecewise smooth boundary,and ℝ denotes the Euclidean 1-space.We prove an interesting stability result for translating spacelike graphs in M^(n)×ℝ under a conformal transformation.
文摘Given a graph g=( V,A ) , we define a space of subgraphs M with the binary operation of union and the unique decomposition property into blocks. This space allows us to discuss a notion of minimal subgraphs (minimal coalitions) that are of interest for the game. Additionally, a partition of the game is defined in terms of the gain of each block, and subsequently, a solution to the game is defined based on distributing to each player (node and edge) present in each block a payment proportional to their contribution to the coalition.
基金supported by the Fundamental Research Funds for the Central Universities(Grant No.2022JKF02039).
文摘Graph Neural Networks(GNNs)play a significant role in tasks related to homophilic graphs.Traditional GNNs,based on the assumption of homophily,employ low-pass filters for neighboring nodes to achieve information aggregation and embedding.However,in heterophilic graphs,nodes from different categories often establish connections,while nodes of the same category are located further apart in the graph topology.This characteristic poses challenges to traditional GNNs,leading to issues of“distant node modeling deficiency”and“failure of the homophily assumption”.In response,this paper introduces the Spatial-Frequency domain Adaptive Heterophilic Graph Neural Networks(SFA-HGNN),which integrates adaptive embedding mechanisms for both spatial and frequency domains to address the aforementioned issues.Specifically,for the first problem,we propose the“Distant Spatial Embedding Module”,aiming to select and aggregate distant nodes through high-order randomwalk transition probabilities to enhance modeling capabilities.For the second issue,we design the“Proximal Frequency Domain Embedding Module”,constructing adaptive filters to separate high and low-frequency signals of nodes,and introduce frequency-domain guided attention mechanisms to fuse the relevant information,thereby reducing the noise introduced by the failure of the homophily assumption.We deploy the SFA-HGNN on six publicly available heterophilic networks,achieving state-of-the-art results in four of them.Furthermore,we elaborate on the hyperparameter selection mechanism and validate the performance of each module through experimentation,demonstrating a positive correlation between“node structural similarity”,“node attribute vector similarity”,and“node homophily”in heterophilic networks.
基金This work was supported by the Kyonggi University Research Grant 2022.
文摘Recommendation Information Systems(RIS)are pivotal in helping users in swiftly locating desired content from the vast amount of information available on the Internet.Graph Convolution Network(GCN)algorithms have been employed to implement the RIS efficiently.However,the GCN algorithm faces limitations in terms of performance enhancement owing to the due to the embedding value-vanishing problem that occurs during the learning process.To address this issue,we propose a Weighted Forwarding method using the GCN(WF-GCN)algorithm.The proposed method involves multiplying the embedding results with different weights for each hop layer during graph learning.By applying the WF-GCN algorithm,which adjusts weights for each hop layer before forwarding to the next,nodes with many neighbors achieve higher embedding values.This approach facilitates the learning of more hop layers within the GCN framework.The efficacy of the WF-GCN was demonstrated through its application to various datasets.In the MovieLens dataset,the implementation of WF-GCN in LightGCN resulted in significant performance improvements,with recall and NDCG increasing by up to+163.64%and+132.04%,respectively.Similarly,in the Last.FM dataset,LightGCN using WF-GCN enhanced with WF-GCN showed substantial improvements,with the recall and NDCG metrics rising by up to+174.40%and+169.95%,respectively.Furthermore,the application of WF-GCN to Self-supervised Graph Learning(SGL)and Simple Graph Contrastive Learning(SimGCL)also demonstrated notable enhancements in both recall and NDCG across these datasets.
基金supported by the National Natural Science Foundation of China-China State Railway Group Co.,Ltd.Railway Basic Research Joint Fund (Grant No.U2268217)the Scientific Funding for China Academy of Railway Sciences Corporation Limited (No.2021YJ183).
文摘Graph Convolutional Neural Networks(GCNs)have been widely used in various fields due to their powerful capabilities in processing graph-structured data.However,GCNs encounter significant challenges when applied to scale-free graphs with power-law distributions,resulting in substantial distortions.Moreover,most of the existing GCN models are shallow structures,which restricts their ability to capture dependencies among distant nodes and more refined high-order node features in scale-free graphs with hierarchical structures.To more broadly and precisely apply GCNs to real-world graphs exhibiting scale-free or hierarchical structures and utilize multi-level aggregation of GCNs for capturing high-level information in local representations,we propose the Hyperbolic Deep Graph Convolutional Neural Network(HDGCNN),an end-to-end deep graph representation learning framework that can map scale-free graphs from Euclidean space to hyperbolic space.In HDGCNN,we define the fundamental operations of deep graph convolutional neural networks in hyperbolic space.Additionally,we introduce a hyperbolic feature transformation method based on identity mapping and a dense connection scheme based on a novel non-local message passing framework.In addition,we present a neighborhood aggregation method that combines initial structural featureswith hyperbolic attention coefficients.Through the above methods,HDGCNN effectively leverages both the structural features and node features of graph data,enabling enhanced exploration of non-local structural features and more refined node features in scale-free or hierarchical graphs.Experimental results demonstrate that HDGCNN achieves remarkable performance improvements over state-ofthe-art GCNs in node classification and link prediction tasks,even when utilizing low-dimensional embedding representations.Furthermore,when compared to shallow hyperbolic graph convolutional neural network models,HDGCNN exhibits notable advantages and performance enhancements.
基金supported in part by the Science and Technology Innovation 2030-“New Generation of Artificial Intelligence”Major Project(No.2021ZD0111000)Henan Provincial Science and Technology Research Project(No.232102211039).
文摘The growing prevalence of knowledge reasoning using knowledge graphs(KGs)has substantially improved the accuracy and efficiency of intelligent medical diagnosis.However,current models primarily integrate electronic medical records(EMRs)and KGs into the knowledge reasoning process,ignoring the differing significance of various types of knowledge in EMRs and the diverse data types present in the text.To better integrate EMR text information,we propose a novel intelligent diagnostic model named the Graph ATtention network incorporating Text representation in knowledge reasoning(GATiT),which comprises text representation,subgraph construction,knowledge reasoning,and diagnostic classification.In the text representation process,GATiT uses a pre-trained model to obtain text representations of the EMRs and additionally enhances embeddings by including chief complaint information and numerical information in the input.In the subgraph construction process,GATiT constructs text subgraphs and disease subgraphs from the KG,utilizing EMR text and the disease to be diagnosed.To differentiate the varying importance of nodes within the subgraphs features such as node categories,relevance scores,and other relevant factors are introduced into the text subgraph.Themessage-passing strategy and attention weight calculation of the graph attention network are adjusted to learn these features in the knowledge reasoning process.Finally,in the diagnostic classification process,the interactive attention-based fusion method integrates the results of knowledge reasoning with text representations to produce the final diagnosis results.Experimental results on multi-label and single-label EMR datasets demonstrate the model’s superiority over several state-of-theart methods.
基金funded by the Project of the National Natural Science Foundation of China,Grant Number 72071209.
文摘As a core part of battlefield situational awareness,air target intention recognition plays an important role in modern air operations.Aiming at the problems of insufficient feature extraction and misclassification in intention recognition,this paper designs an air target intention recognition method(KGTLIR)based on Knowledge Graph and Deep Learning.Firstly,the intention recognition model based on Deep Learning is constructed to mine the temporal relationship of intention features using dilated causal convolution and the spatial relationship of intention features using a graph attention mechanism.Meanwhile,the accuracy,recall,and F1-score after iteration are introduced to dynamically adjust the sample weights to reduce the probability of misclassification.After that,an intention recognition model based on Knowledge Graph is constructed to predict the probability of the occurrence of different intentions of the target.Finally,the results of the two models are fused by evidence theory to obtain the target’s operational intention.Experiments show that the intention recognition accuracy of the KGTLIRmodel can reach 98.48%,which is not only better than most of the air target intention recognition methods,but also demonstrates better interpretability and trustworthiness.
文摘Let R be a commutative ring with identity and M an R-module. In this paper, we relate a graph to M, say Γ(M), provided tsshat when M=R, Γ(M)is exactly the classic zero-divisor graph.
基金supported by the China Scholarship Council and the CERNET Innovation Project under grant No.20170111.
文摘The prediction for Multivariate Time Series(MTS)explores the interrelationships among variables at historical moments,extracts their relevant characteristics,and is widely used in finance,weather,complex industries and other fields.Furthermore,it is important to construct a digital twin system.However,existing methods do not take full advantage of the potential properties of variables,which results in poor predicted accuracy.In this paper,we propose the Adaptive Fused Spatial-Temporal Graph Convolutional Network(AFSTGCN).First,to address the problem of the unknown spatial-temporal structure,we construct the Adaptive Fused Spatial-Temporal Graph(AFSTG)layer.Specifically,we fuse the spatial-temporal graph based on the interrelationship of spatial graphs.Simultaneously,we construct the adaptive adjacency matrix of the spatial-temporal graph using node embedding methods.Subsequently,to overcome the insufficient extraction of disordered correlation features,we construct the Adaptive Fused Spatial-Temporal Graph Convolutional(AFSTGC)module.The module forces the reordering of disordered temporal,spatial and spatial-temporal dependencies into rule-like data.AFSTGCN dynamically and synchronously acquires potential temporal,spatial and spatial-temporal correlations,thereby fully extracting rich hierarchical feature information to enhance the predicted accuracy.Experiments on different types of MTS datasets demonstrate that the model achieves state-of-the-art single-step and multi-step performance compared with eight other deep learning models.
基金supported by the Zhejiang Provincial Natural Science Foundation of China(LY21A010016)the National Natural Science Foundation of China(11901550).
文摘In this paper, we investigate a blow-up phenomenon for a semilinear parabolic system on locally finite graphs. Under some appropriate assumptions on the curvature condition CDE’(n,0), the polynomial volume growth of degree m, the initial values, and the exponents in absorption terms, we prove that every non-negative solution of the semilinear parabolic system blows up in a finite time. Our current work extends the results achieved by Lin and Wu (Calc Var Partial Differ Equ, 2017, 56: Art 102) and Wu (Rev R Acad Cien Serie A Mat, 2021, 115: Art 133).
基金supported by Shandong Provincial Key Research and Development Program of China(2021CXGC010107,2020CXGC010107)the Shandong Provincial Natural Science Foundation of China(ZR2020KF035)the New 20 Project of Higher Education of Jinan,China(202228017).
文摘Blockchain technology,with its attributes of decentralization,immutability,and traceability,has emerged as a powerful catalyst for enhancing traditional industries in terms of optimizing business processes.However,transaction performance and scalability has become the main challenges hindering the widespread adoption of blockchain.Due to its inability to meet the demands of high-frequency trading,blockchain cannot be adopted in many scenarios.To improve the transaction capacity,researchers have proposed some on-chain scaling technologies,including lightning networks,directed acyclic graph technology,state channels,and shardingmechanisms,inwhich sharding emerges as a potential scaling technology.Nevertheless,excessive cross-shard transactions and uneven shard workloads prevent the sharding mechanism from achieving the expected aim.This paper proposes a graphbased sharding scheme for public blockchain to efficiently balance the transaction distribution.Bymitigating crossshard transactions and evening-out workloads among shards,the scheme reduces transaction confirmation latency and enhances the transaction capacity of the blockchain.Therefore,the scheme can achieve a high-frequency transaction as well as a better blockchain scalability.Experiments results show that the scheme effectively reduces the cross-shard transaction ratio to a range of 35%-56%and significantly decreases the transaction confirmation latency to 6 s in a blockchain with no more than 25 shards.
基金the Science and Technology Project of China Southern Power Grid Company,Ltd.(031200KK52200003)the National Natural Science Foundation of China(Nos.62371253,52278119).
文摘In this paper, we propose a novel anomaly detection method for data centers based on a combination of graphstructure and abnormal attention mechanism. The method leverages the sensor monitoring data from targetpower substations to construct multidimensional time series. These time series are subsequently transformed intograph structures, and corresponding adjacency matrices are obtained. By incorporating the adjacency matricesand additional weights associated with the graph structure, an aggregation matrix is derived. The aggregationmatrix is then fed into a pre-trained graph convolutional neural network (GCN) to extract graph structure features.Moreover, both themultidimensional time series segments and the graph structure features are inputted into a pretrainedanomaly detectionmodel, resulting in corresponding anomaly detection results that help identify abnormaldata. The anomaly detection model consists of a multi-level encoder-decoder module, wherein each level includesa transformer encoder and decoder based on correlation differences. The attention module in the encoding layeradopts an abnormal attention module with a dual-branch structure. Experimental results demonstrate that ourproposed method significantly improves the accuracy and stability of anomaly detection.
文摘This research investigates the comparative efficacy of generating zero divisor graphs (ZDGs) of the ring of integers ℤ<sub>n</sub> modulo n using MAPLE algorithm. Zero divisor graphs, pivotal in the study of ring theory, depict relationships between elements of a ring that multiply to zero. The paper explores the development and implementation of algorithms in MAPLE for constructing these ZDGs. The comparative study aims to discern the strengths, limitations, and computational efficiency of different MAPLE algorithms for creating zero divisor graphs offering insights for mathematicians, researchers, and computational enthusiasts involved in ring theory and mathematical computations.
基金supported by the National Natural Science Foundation of China (62276192)。
文摘Feature matching plays a key role in computer vision. However, due to the limitations of the descriptors, the putative matches are inevitably contaminated by massive outliers.This paper attempts to tackle the outlier filtering problem from two aspects. First, a robust and efficient graph interaction model,is proposed, with the assumption that matches are correlated with each other rather than independently distributed. To this end, we construct a graph based on the local relationships of matches and formulate the outlier filtering task as a binary labeling energy minimization problem, where the pairwise term encodes the interaction between matches. We further show that this formulation can be solved globally by graph cut algorithm. Our new formulation always improves the performance of previous localitybased method without noticeable deterioration in processing time,adding a few milliseconds. Second, to construct a better graph structure, a robust and geometrically meaningful topology-aware relationship is developed to capture the topology relationship between matches. The two components in sum lead to topology interaction matching(TIM), an effective and efficient method for outlier filtering. Extensive experiments on several large and diverse datasets for multiple vision tasks including general feature matching, as well as relative pose estimation, homography and fundamental matrix estimation, loop-closure detection, and multi-modal image matching, demonstrate that our TIM is more competitive than current state-of-the-art methods, in terms of generality, efficiency, and effectiveness. The source code is publicly available at http://github.com/YifanLu2000/TIM.
基金the Beijing Municipal Science and Technology Program(No.Z231100001323004).
文摘Utilizing graph neural networks for knowledge embedding to accomplish the task of knowledge graph completion(KGC)has become an important research area in knowledge graph completion.However,the number of nodes in the knowledge graph increases exponentially with the depth of the tree,whereas the distances of nodes in Euclidean space are second-order polynomial distances,whereby knowledge embedding using graph neural networks in Euclidean space will not represent the distances between nodes well.This paper introduces a novel approach called hyperbolic hierarchical graph attention network(H2GAT)to rectify this limitation.Firstly,the paper conducts knowledge representation in the hyperbolic space,effectively mitigating the issue of exponential growth of nodes with tree depth and consequent information loss.Secondly,it introduces a hierarchical graph atten-tion mechanism specifically designed for the hyperbolic space,allowing for enhanced capture of the network structure inherent in the knowledge graph.Finally,the efficacy of the proposed H2GAT model is evaluated on benchmark datasets,namely WN18RR and FB15K-237,thereby validating its effectiveness.The H2GAT model achieved 0.445,0.515,and 0.586 in the Hits@1,Hits@3 and Hits@10 metrics respectively on the WN18RR dataset and 0.243,0.367 and 0.518 on the FB15K-237 dataset.By incorporating hyperbolic space embedding and hierarchical graph attention,the H2GAT model successfully addresses the limitations of existing hyperbolic knowledge embedding models,exhibiting its competence in knowledge graph completion tasks.
基金the Gansu Province Higher Education Institutions Industrial Support Program:Security Situational Awareness with Artificial Intelligence and Blockchain Technology.Project Number(2020C-29).
文摘The fast-paced development of blockchain technology is evident.Yet,the security concerns of smart contracts represent a significant challenge to the stability and dependability of the entire blockchain ecosystem.Conventional smart contract vulnerability detection primarily relies on static analysis tools,which are less efficient and accurate.Although deep learning methods have improved detection efficiency,they are unable to fully utilize the static relationships within contracts.Therefore,we have adopted the advantages of the above two methods,combining feature extraction mode of tools with deep learning techniques.Firstly,we have constructed corresponding feature extraction mode for different vulnerabilities,which are used to extract feature graphs from the source code of smart contracts.Then,the node features in feature graphs are fed into a graph convolutional neural network for training,and the edge features are processed using a method that combines attentionmechanismwith gated units.Ultimately,the revised node features and edge features are concatenated through amulti-head attentionmechanism.The result of the splicing is a global representation of the entire feature graph.Our method was tested on three types of data:Timestamp vulnerabilities,reentrancy vulnerabilities,and access control vulnerabilities,where the F1 score of our method reaches 84.63%,92.55%,and 61.36%.The results indicate that our method surpasses most others in detecting smart contract vulnerabilities.
基金Supported by the National Natural Science Foundation of China(No.62203390)the Science and Technology Project of China TobaccoZhejiang Industrial Co.,Ltd(No.ZJZY2022E004)。
文摘In the tobacco industry,insider employee attack is a thorny problem that is difficult to detect.To solve this issue,this paper proposes an insider threat detection method based on heterogeneous graph embedding.First,the interrelationships between logs are fully considered,and log entries are converted into heterogeneous graphs based on these relationships.Second,the heterogeneous graph embedding is adopted and each log entry is represented as a low-dimensional feature vector.Then,normal logs and malicious logs are classified into different clusters by clustering algorithm to identify malicious logs.Finally,the effectiveness and superiority of the method is verified through experiments on the CERT dataset.The experimental results show that this method has better performance compared to some baseline methods.