One of the essential points of the direct-method single-wavelength anomalous diffraction (SAD) phasing for proteins is to express the bimodal SAD phase distribution by the sum of two Gaussian functions peaked respec...One of the essential points of the direct-method single-wavelength anomalous diffraction (SAD) phasing for proteins is to express the bimodal SAD phase distribution by the sum of two Gaussian functions peaked respectively at φh″+|△φh| and φh″-|△φh|. The probability for △φh being positive (P+) can be derived based on the Cochran distribution in direct methods. Hence the SAD phase ambiguity can be resolved by multiplying the Gaussian function peaked at φh″+|△φh| with P+ and multiplying the Gaussian function peaked at φh″-|△φh| with P_ (=1- P+). The direct-method SAD h phasing has been proved powerful in breaking SAD phase ambiguities, in particular when anomalous-scattering signals are weak. However, the approximation of bimodal phase distributions by the sum of two Gaussian functions introduces considerable errors. In this paper we show that a much better approximation can be achieved by replacing the two Gaussian functions with two von Mises distributions. Test results showed that this leads to significant improvement on the efficiency of direct-method SAD-phasing.展开更多
随着移动机器人技术不断发展,里程计技术已经成为移动机器人实现环境感知的关键技术,其发展水平对提高机器人的自主化和智能化具有重要意义。首先,系统阐述了同步定位与地图构建(Simultaneous localization and mapping,SLAM)中激光SLA...随着移动机器人技术不断发展,里程计技术已经成为移动机器人实现环境感知的关键技术,其发展水平对提高机器人的自主化和智能化具有重要意义。首先,系统阐述了同步定位与地图构建(Simultaneous localization and mapping,SLAM)中激光SLAM和视觉SLAM的发展近况,阐述了经典SLAM框架及其数学描述,简要介绍了3类常见相机的相机模型及其视觉里程计的数学描述。其次,分别对传统视觉里程计和深度学习里程计的研究进展进行系统阐述。对比分析了近10年来各类里程计算法的优势与不足。另外,对比分析了7种常用数据集的性能。最后,从精度、鲁棒性、数据集、多模态等方面总结了里程计技术面临的问题,从提高算法实时性、鲁棒性等方面展望了视觉里程计的发展趋势为:更加智能化、小型化新型传感器的发展;与无监督学习融合;语义表达技术的提高;集群机器人协同技术的发展。展开更多
针对目标函数中包含耦合函数H(x,y)的非凸非光滑极小化问题,提出了一种线性惯性交替乘子方向法(Linear Inertial Alternating Direction Method of Multipliers,LIADMM)。为了方便子问题的求解,对目标函数中的耦合函数H(x,y)进行线性化...针对目标函数中包含耦合函数H(x,y)的非凸非光滑极小化问题,提出了一种线性惯性交替乘子方向法(Linear Inertial Alternating Direction Method of Multipliers,LIADMM)。为了方便子问题的求解,对目标函数中的耦合函数H(x,y)进行线性化处理,并在x-子问题中引入惯性效应。在适当的假设条件下,建立了算法的全局收敛性;同时引入满足Kurdyka-Lojasiewicz不等式的辅助函数,验证了算法的强收敛性。通过两个数值实验表明,引入惯性效应的算法比没有惯性效应的算法收敛性能更好。展开更多
针对工业机械设备实时监测中不可控因素导致的振动信号数据缺失问题,提出一种基于自适应二次临近项交替方向乘子算法(adaptive quadratic proximity-alternating direction method of multipliers, AQ-ADMM)的压缩感知缺失信号重构方法...针对工业机械设备实时监测中不可控因素导致的振动信号数据缺失问题,提出一种基于自适应二次临近项交替方向乘子算法(adaptive quadratic proximity-alternating direction method of multipliers, AQ-ADMM)的压缩感知缺失信号重构方法。AQ-ADMM算法在经典交替方向乘子算法算法迭代过程中添加二次临近项,且能够自适应选取惩罚参数。首先在数据中心建立信号参考数据库用于构造初始字典,然后将K-奇异值分解(K-singular value decomposition, K-SVD)字典学习算法和AQ-ADMM算法结合重构缺失信号。对仿真信号和两种真实轴承信号数据集添加高斯白噪声后作为样本,试验结果表明当信号压缩率在50%~70%时,所提方法性能指标明显优于其它传统方法,在重构信号的同时实现了对含缺失数据机械振动信号的快速精确修复。展开更多
多园区综合能源微电网系统交互需要解决每个微电网之间的协调优化调度的问题,文中通过引入交互耦合功率变量解耦的方法,来求解园区内微电网之间交互的电功率,将集中求解的复杂问题转换为各微电网之间相互合作而且可以内部管理的优化问题...多园区综合能源微电网系统交互需要解决每个微电网之间的协调优化调度的问题,文中通过引入交互耦合功率变量解耦的方法,来求解园区内微电网之间交互的电功率,将集中求解的复杂问题转换为各微电网之间相互合作而且可以内部管理的优化问题,于是文中考虑采用同步式交替向乘子法(alternating direction method of multipliers,ADMM)分布式求解方法来实现各个园区微电网系统的成本关系分配,系统只需要求解分布式优化方案所需的信息,可以最大限度地降低运行成本,同时为了保证多园区微电网系统的低碳运行和降低环境成本,在考虑单个电热冷综合能源微电网系统的基础上,采用碳捕集设备和电转气装置以及配合阶梯碳交易机制的方法,更进一步降低系统碳排放;最后,通过仿真算例来验证所提方法和模型的有效性。展开更多
基金Project supported by the Innovation Foundation of the Chinese Academy of Sciences and by the National Basic Research Program of China(Grant No.2002CB713801)
文摘One of the essential points of the direct-method single-wavelength anomalous diffraction (SAD) phasing for proteins is to express the bimodal SAD phase distribution by the sum of two Gaussian functions peaked respectively at φh″+|△φh| and φh″-|△φh|. The probability for △φh being positive (P+) can be derived based on the Cochran distribution in direct methods. Hence the SAD phase ambiguity can be resolved by multiplying the Gaussian function peaked at φh″+|△φh| with P+ and multiplying the Gaussian function peaked at φh″-|△φh| with P_ (=1- P+). The direct-method SAD h phasing has been proved powerful in breaking SAD phase ambiguities, in particular when anomalous-scattering signals are weak. However, the approximation of bimodal phase distributions by the sum of two Gaussian functions introduces considerable errors. In this paper we show that a much better approximation can be achieved by replacing the two Gaussian functions with two von Mises distributions. Test results showed that this leads to significant improvement on the efficiency of direct-method SAD-phasing.
文摘随着移动机器人技术不断发展,里程计技术已经成为移动机器人实现环境感知的关键技术,其发展水平对提高机器人的自主化和智能化具有重要意义。首先,系统阐述了同步定位与地图构建(Simultaneous localization and mapping,SLAM)中激光SLAM和视觉SLAM的发展近况,阐述了经典SLAM框架及其数学描述,简要介绍了3类常见相机的相机模型及其视觉里程计的数学描述。其次,分别对传统视觉里程计和深度学习里程计的研究进展进行系统阐述。对比分析了近10年来各类里程计算法的优势与不足。另外,对比分析了7种常用数据集的性能。最后,从精度、鲁棒性、数据集、多模态等方面总结了里程计技术面临的问题,从提高算法实时性、鲁棒性等方面展望了视觉里程计的发展趋势为:更加智能化、小型化新型传感器的发展;与无监督学习融合;语义表达技术的提高;集群机器人协同技术的发展。
文摘随着高分辨率对地观测要求的不断提高,合成孔径雷达(Synthetic Aperture Radar,SAR)的应用将越来越广泛。针对高分辨率SAR成像存在数据量大、存储难度高、计算时间长等问题,目前常用的解决方法是在SAR成像模型中引入压缩感知(Compressed Sensing,CS)的方法降低采样率和数据量。通常使用单一的正则化作为约束条件,可以抑制点目标旁瓣,实现点目标特征增强,但是观测场景中可能存在多种目标类型,因此使用单一正则化约束难以满足多种特征增强的要求。本文提出了一种基于复合正则化的稀疏高分辨SAR成像方法,通过压缩感知降低数据量,并使用多种正则化的线性组合作为约束条件,增强观测场景中不同类型目标的特征,实现复杂场景中高分辨率对地观测的要求。该方法在稀疏SAR成像模型中引入非凸正则化和全变分(Total Variation,TV)正则化作为约束条件,减小稀疏重构误差、增强区域目标的特征,降低噪声对成像结果的影响,提高成像质量;采用改进的交替方向乘子法(Alternating Direction Method of Multipliers,ADMM)实现复合正则化约束的求解,减少计算时间、快速重构图像;使用方位距离解耦算子代替观测矩阵及其共轭转置,进一步降低计算复杂度。仿真和实测数据实验表明,本文所提算法可以对点目标和区域目标进行特征增强,减小计算复杂度,提高收敛性能,实现快速高分辨的图像重构。
文摘针对目标函数中包含耦合函数H(x,y)的非凸非光滑极小化问题,提出了一种线性惯性交替乘子方向法(Linear Inertial Alternating Direction Method of Multipliers,LIADMM)。为了方便子问题的求解,对目标函数中的耦合函数H(x,y)进行线性化处理,并在x-子问题中引入惯性效应。在适当的假设条件下,建立了算法的全局收敛性;同时引入满足Kurdyka-Lojasiewicz不等式的辅助函数,验证了算法的强收敛性。通过两个数值实验表明,引入惯性效应的算法比没有惯性效应的算法收敛性能更好。
文摘针对工业机械设备实时监测中不可控因素导致的振动信号数据缺失问题,提出一种基于自适应二次临近项交替方向乘子算法(adaptive quadratic proximity-alternating direction method of multipliers, AQ-ADMM)的压缩感知缺失信号重构方法。AQ-ADMM算法在经典交替方向乘子算法算法迭代过程中添加二次临近项,且能够自适应选取惩罚参数。首先在数据中心建立信号参考数据库用于构造初始字典,然后将K-奇异值分解(K-singular value decomposition, K-SVD)字典学习算法和AQ-ADMM算法结合重构缺失信号。对仿真信号和两种真实轴承信号数据集添加高斯白噪声后作为样本,试验结果表明当信号压缩率在50%~70%时,所提方法性能指标明显优于其它传统方法,在重构信号的同时实现了对含缺失数据机械振动信号的快速精确修复。
文摘多园区综合能源微电网系统交互需要解决每个微电网之间的协调优化调度的问题,文中通过引入交互耦合功率变量解耦的方法,来求解园区内微电网之间交互的电功率,将集中求解的复杂问题转换为各微电网之间相互合作而且可以内部管理的优化问题,于是文中考虑采用同步式交替向乘子法(alternating direction method of multipliers,ADMM)分布式求解方法来实现各个园区微电网系统的成本关系分配,系统只需要求解分布式优化方案所需的信息,可以最大限度地降低运行成本,同时为了保证多园区微电网系统的低碳运行和降低环境成本,在考虑单个电热冷综合能源微电网系统的基础上,采用碳捕集设备和电转气装置以及配合阶梯碳交易机制的方法,更进一步降低系统碳排放;最后,通过仿真算例来验证所提方法和模型的有效性。