The sustainability of rice production continues to be a subject of uncertainty and inquiry attributed to shifts in climatic conditions. In light of the impending climate change crisis and the high labor and water cost...The sustainability of rice production continues to be a subject of uncertainty and inquiry attributed to shifts in climatic conditions. In light of the impending climate change crisis and the high labor and water costs accompanying it, direct-seeded rice(DSR) is unquestionably one of the most practical solutions. Despite its resource and climate-friendly advantages, early maturing rice faces weed competitiveness and seedling establishment challenges. Resolving these issues is crucial for promoting its wider adoption among farmers, presenting it as a more effective sustainable rice cultivation method globally. Diverse traditional and contemporary breeding methods are employed to mitigate the limitations of the DSR approach, leveraging advanced techniques such as speed breeding and genome editing. Focusing on key traits like mesocotyl length elongation, early seedling vigor, root system architecture, and weed competitiveness holds promise for transformative improvements in DSR adaptation at a broader scale within farming communities. This review aims to summarize how these features contribute to increased crop production in DSR conditions and explore the research efforts focusing on enhancing DSR adaptation through these traits. Emphasizing the pivotal role of these game-changing traits in DSR adaptation, our analysis sheds light on their potential transformative impact and offers valuable insights for advancing DSR practices.展开更多
In this study, through vitro culturing anthers of 7 F1 progenies of early Japonica rice in cold region on medium with different Fe2+ contents, it was found that Fe2+ content generated greater impacts on the induction ...In this study, through vitro culturing anthers of 7 F1 progenies of early Japonica rice in cold region on medium with different Fe2+ contents, it was found that Fe2+ content generated greater impacts on the induction rate and green plantlet differentiation. The result demonstrated that if Fe2+ increased from 32 to 40 mg/kg, the induction rate of early Japonica rice anther culture in N6 culture media was more then 1.4 times higher than that in N6 culture media containing 5.6 mg/kg Fe2+. In this concentration range, the induction rate increased with the increase of Fe2+ content, while if the concentration was over this concentration range, the induction rate decreased with the increase of Fe2+, showing single peak distribution. When the Fe2+ was 40 mg/kg in differentiation medium, the differentiation rate decreased dramatically. The green plantlet differentiations of callus which were induced on culture media containing 32-40 mg/kg Fe2+ were different, when they were cultured on MS culture media, and 85.7% materials could increase green plantlet productivity to about 7.8%. Therefore, increasing Fe2+in induction media properly could increase anther culture efficiency of early Japonica rice in cold region.展开更多
[Objective]The paper was to study the effect of tiller-inhibitor on the growth and yield formation of super early rice Jinyou 458.[Method] Two treatments including spraying tiller-inhibitor(TI) and spraying water(C...[Objective]The paper was to study the effect of tiller-inhibitor on the growth and yield formation of super early rice Jinyou 458.[Method] Two treatments including spraying tiller-inhibitor(TI) and spraying water(CK) at the SN-n stage were set in the test,the effect of tiller-inhibitor on yield and its components,leaf and plant morphology,field microclimate at booting stage and quality characteristics of rice population were studied.[Result] Spraying tiller-inhibitor could effectively reduce the occurrence of invalid and inefficient tillers,increase the proportion of high effective tillers(tiller with 4 or more leaves) in tiller composition at the maximal tiller stage.The panicle length,spikelets per panicle,spikelets density,number of secondary branches and the secondary spikelets,seed setting rate of rice plant sprayed with tiller-inhibitor were significantly higher than CK.Meanwhile,spraying tiller-inhibitor could increase plant height,biomass weight and leaf area index of rice population during middle and late stages of rice growing,improve the leaf temperature of top three leaves and the light transmittance of rice population at the booting stage,increase the leaf SPAD value,thus enhance photosynthetic capacity of rice plants.It also showed the characteristics of elongating the internode of rice plant and decreasing the stem thickness,etc.[Conclusion] The panicle-bearing rate of stems and tillers,effective panicles,spikelets per panicle,seed setting rate and 1 000-grain weight had coordinately increased after spraying tiller-inhibitor,thus increased the yield.展开更多
[Objective] The aim was to explore effects of FCMP compound fertilizer on growth, development and yield of early rice. [Method] Based on lower-graded phos- phate resource, effects of FCMP compound fertilizers on yield...[Objective] The aim was to explore effects of FCMP compound fertilizer on growth, development and yield of early rice. [Method] Based on lower-graded phos- phate resource, effects of FCMP compound fertilizers on yield and growth of early rice in a field were researched. [Result] FCMP compound fertilizers 0, 1 and 2 en- hanced rice yield, increasing by 21.86%, 20.25% and 13.46%, compared with the rice applied with conventional fertilizer; number of productive ears and grain number per ear in unit area were improved by FCMP compound fertilizer, for example, the two factors achieved the highest with FCMP compound fertilizer 1, increasing by 11.70% and 19.63%. Furthermore, FCMP compound fertilizer promoted plant height and tiller number, maintained high photosynthetic efficiency, enhanced lodging-resis- tance and guaranteed stable and high yield. [Conclusion] The research is of theoret- ical and practical significance for further exploration of production techniques and application of FCMP compound fertilizer.展开更多
Using a split plot design, super high-yielding early rice "Zhongjiazao 17"and "Ganxin 203" and super high-yielding late rice "Ganxin 688" and "Wufengy-ouT025" were taken...Using a split plot design, super high-yielding early rice "Zhongjiazao 17"and "Ganxin 203" and super high-yielding late rice "Ganxin 688" and "Wufengy-ouT025" were taken as materials with planting density the same at 312 000 hil s/hm2, to explore the effects of RS/IS (Ratio of row spacing to intrarow row spacing) on yield, top three leaves morphological features and its relationship of them in 2011 and 2012. The results showed that, whether early or late rice, biomass, accumula-tion and apparent utilizing rate of nitrogen were lower in RS/IS5.0 (40.0 cm ×8.0 cm) treatment, but yield of rice was higher in RS/IS2.0 (25.0 cm ×12.8 cm) treatment;grain numbers per spike of rice was more in RS/IS2.8 (30.0 cm×10.7 cm) treatment, and thousand-grain weight of rice was higher in RS/IS1.3 (20.0 cm×16.0 cm) treat-ment. For 4 varieties of early or late rice aforementioned, basal angle, opening an-gle and leaf area of 2nd leaf from top were larger in RS/IS5.0 treatment, and basal angle and opening angle were smal er in RS/IS2.0 treatment and leaf area smal er in RS/IS1.3 treatment.展开更多
The effects of rice transplanters' transplanting settings(plant spacing and finger sticking area) on rice yield were investigated in two early-season rice cultivars:hybrid rice cultivar(Zhuliangyou 819) and conv...The effects of rice transplanters' transplanting settings(plant spacing and finger sticking area) on rice yield were investigated in two early-season rice cultivars:hybrid rice cultivar(Zhuliangyou 819) and conventional rice cultivar(Zhongjiazao 17).The results showed that,different transplanting settings resulted in different numbers of transplanted basic seedlings,and the rice yield was significantly correlated with the number of transplanted basic seedlings.The number of transplanted basic seedlings increased with the decrease of plant spacing and the increase of finger sticking area.The rate of lost hills of machine transplanting decreased with the increase of finger sticking area.The leaf area index and amount of dry matter accumulation were highly correlated with the number of transplanted basic seedlings.The average yield of the rice transplanted with a plant spacing of11.5 cm was higher than that with a plant spacing of 13.8 cm.In the field transplanted with the rice under the plant spacing of 13.8 cm,the rice yield increased with the increase of finger sticking area,and the finger sticking area of 2.23 cm2 showed the highest rice yield of 8 174.16 kg/hm2 of Zhuliangyou 819 and 7 925.54kg/hm2 of Zhongjiaozao17.In the field transplanted with the rice under the plant spacing of 11.5 cm,the rice yield was the highest with the finger sticking area of 1.83 cm2,and then decreased with the large finger sticking area.Under the plant spacing of 11.5 cm,the highest rice yields of Zhuliangyou 819 and Zhongjiaozao17 were 8 492.94 kg/hm2 and 8 000.23 kg/hm2,respectively.Therefore,the preferred machine transplanting settings for double-season early rice are a plant spacing of11.5 cm and a finger sticking area of 1.83 cm2,while the finger sticking area should be increased to 2.23 cm2 for conventional rice cultivars.展开更多
Super early hybrid rice Luliangyou 996 was the materials for this experiment. This paper focused on the influences of different nitrogen rates on blast resistance and grain yield. Studies suggested that with the incre...Super early hybrid rice Luliangyou 996 was the materials for this experiment. This paper focused on the influences of different nitrogen rates on blast resistance and grain yield. Studies suggested that with the increase of nitrogen rate,there were no distinct changes in the sick grain rate and sickness index, but the fifth grade of panicle blast rate rose gradually. When the nitrogen was too much(270 kg/hm^2), the sick grain rate and sickness index were the highest. The yield rose along with the addition of nitrogen if the amount of applied nitrogen was within the range of 0 to 180 kg/hm^2, and the yield would decrease with the addition of nitrogen if the amount of applied nitrogen was over 180 kg/hm^2. Considering the sickness, output and economic benefit of rice, it is better to applied 90 to 135 kg/hm^2 of nitrogen for Luliangyou 996.展开更多
Octenyl succinic anhydride (OSA) modified early Indica rice starch was prepared in aqueous slurry systems using response surface methodology. The paste properties of the OSA starch were also investigated. Results in...Octenyl succinic anhydride (OSA) modified early Indica rice starch was prepared in aqueous slurry systems using response surface methodology. The paste properties of the OSA starch were also investigated. Results indicated that the suitable parameters for the preparation of OSA starch from early Indica rice starch were as follows: reaction period 4 h, reaction temperature 33.4℃, pH of reaction system 8.4, concentration of starch slurry 36.8% (in proportion to water, w/w), amount of OSA 3% (in proportion to starch, w/w). The degree of substitution was 0.0188 and the reaction efficiency was 81.0%. The results of paste properties showed that with increased OSA modification, the starch derivatives had higher paste clarity, decreased retrogradation and better freeze-thaw stability.展开更多
Early seedling vigor(ESV)is a major breeding target in rice,especially under direct seeding.To identify quantitative trait locus(QTL)affecting ESV,a recombinant inbred line population derived from a cross between 0242...Early seedling vigor(ESV)is a major breeding target in rice,especially under direct seeding.To identify quantitative trait locus(QTL)affecting ESV,a recombinant inbred line population derived from a cross between 02428 and YZX,two cultivars differing in vigor during early seedling growth,was used for QTL analysis.Nine traits associated with ESV were examined using a high-density map.Of 16 additive loci identified,three were detected in two generations and thus considered stable.Four epistatic interactions were detected,one of which was repeated in two generations.Further analysis of the pyramiding effect of the three stable QTL showed that the phenotypic value could be effectively improved with an increasing number of QTL.These results were combined with results from our previous QTL analysis of the germination index.The lines G58 and G182 combined all the favourable alleles of all three stable QTL for ESV and three QTL for germination speed.These two lines showed rapid germination and strong ESV.A total of 37 candidate differentially expressed genes were obtained from the regions of the three stable QTL by analysis of the dynamic transcriptomic expression profile during the seedling growth period of the two parents.The QTL are targets for ESV breeding and the candidate genes await functional validation.This study provides a theoretical basis and a genetic resource for the breeding of directseeded rice.展开更多
The objective of this study was to investigate the effects of different nutri-ent application models on the contents of chlorophyl and carotenoid in the functional leaves of early rice. Using rice cultivar Xiangzaoxia...The objective of this study was to investigate the effects of different nutri-ent application models on the contents of chlorophyl and carotenoid in the functional leaves of early rice. Using rice cultivar Xiangzaoxian45 as experimental materials, the experiment was performed by designing 6 treatments, i.e., T1 (fertilization without nitrogen), T2(local conventional fertilization), T3(fertilization for high yield and high effi-ciency), T4 (fertilization for super high yield), T5 (fertilization application for super high yield and high efficiency A) and T6 (fertilization application for super high yield and high efficiency B) in two experimental plots Yiyang and Xiangyin. The results showed that T3 respectively increased the contents of chlorophyl and carotenoid at fil ing stage by 29.27%, 38.20% and 13.16%, 30.12% in Yiyang and Xiangyin, as wel as yield of early rice by 4.20%, 4.80% to T2 on the condition of saving 20% ni-trogen fertilizer. Additional y, T5 and T6 on the condition of saving 16.7% nitrogen fertilizer by T4 increased the contents of chlorophyl and carotenoid of fil ing stage by 53.91%, 53.73% and 35.95%, 37.47% in Yiyang and Xiangyin, as wel as yield of early rice by 16.60%, 18.75% to T2 in Yiyang; increased the contents of chlorophyl and carotenoid at fil ing stage by 57.82%, 56.80% and 54.88%, 57.03% in Yiyang and Xiangyin, as wel as yield of early rice 10.10%, 6.75% to T2 in Xiangyin. More-over, there was a significant correlation or an extremely significant correlation be-tween yield and the contents of chlorophyl and carotenoid at different soil fertility level (P〈0.05 or P〈0.01). Therefore, nutrient application plays an important role in the contents of chlorophyl and carotenoid in the functional leaves of early rice.展开更多
Deep placement of nitrogen fertilizer is a key strategy for improving nitrogen use efficiency. A two-year field experiment was conducted during the early rice growing seasons(March–July) of 2016 and 2017.The experime...Deep placement of nitrogen fertilizer is a key strategy for improving nitrogen use efficiency. A two-year field experiment was conducted during the early rice growing seasons(March–July) of 2016 and 2017.The experimental treatments comprised two rice cultivars: Wufengyou 615(WFY 615) and Yuxiangyouzhan(YXYZ), and three N treatments: mechanical deep placement of all fertilizers as basal dose at 10 cm soil depth(one-time deep-placement fertilization, namely OTDP fertilization);manual surface broadcast(the common farmer practice) of 40% N fertilizer at one day before sowing(basal fertilizer)followed by broadcast application of 30% each at tillering and panicle initiation stages;and no fertilizer application at any growth stage as a control. One-time deep-placement fertilization increased grain yield of both rice cultivars by 11.8%–19.6%, total nitrogen accumulation by 10.3%–13.1%, nitrogen grain production efficiency by 29.7%–31.5%, nitrogen harvest index by 27.8%–30.0%, nitrogen agronomic efficiency by 71.3%–77.2%, and nitrogen recovery efficiency by 42.4%–56.7% for both rice cultivars, compared with the multiple-broadcast treatment. One-time deep-placement fertilization reduced CH4-induced global warming potential(GWP) by 20.7%–25.3%, N2O-induced GWP by 7.2%–12.3%, and total GWP by 14.7%–22.9% for both rice cultivars relative to the multiple-broadcast treatment. The activities of glutamine synthetase and nitrate reductase were increased at both panicle-initiation and heading stages in both rice cultivars following one-time deep-placement fertilization treatment. Larger leaf area index at heading stage and more favorable root morphological traits expressed as larger total root length, mean root diameter, and total root volume per hill were also observed. One-time deep-placement fertilization could be an effective strategy for increasing grain yield and nitrogen use efficiency and lowering greenhouse-gas emissions under mechanical direct-seeded cropping systems.展开更多
Deep placement of controlled-release fertilizer increases nitrogen (N) use efficiency in rice planting but is expensive. Few studies on direct-seeded rice have examined the effects of deep placement of conventional fe...Deep placement of controlled-release fertilizer increases nitrogen (N) use efficiency in rice planting but is expensive. Few studies on direct-seeded rice have examined the effects of deep placement of conventional fertilizer. With prilled urea serving as N fertilizer, a two-year field experiment with two N rates (120 and 195 kg/hm2) and four basal N application treatments (B50, all fertilizer was broadcast with 50% as basal N;D50, D70 and D100 corresponded to 50%, 70% and 100% of N deeply placed as basal N, respectively) were conducted in direct-seeded rice in 2013 and 2014. Soil N distribution and plant N uptake were analyzed. The results showed that deep placement of basal N significantly increased total N concentrations in soil. Significantly greater soil N concentrations were observed in D100 compared with B50 at 0, 6 and 12 cm (lateral distance) from the fertilizer application point both at mid-tillering and heading stages. D100 presented the highest values of dry matter and N accumulation from seeding to mid-tillering stages, but it presented the lowest values from heading to maturity stages and the lowest grain yield for no sufficient N supply at the reproductive stage. The grain yield of D50 was the highest, however, no significant difference was observed in grain yield, N agronomic efficiency or N recovery efficiency between D70 and D50, or between D70 and B50, while D70 was more labor saving than D50 for only one topdressing was applied in D70 compared with twice in other treatments. The above results indicated that 70% of fertilizer-N deeply placed as a basal fertilizer and 30% of fertilizer-N topdressed as a panicle fertilizer constituted an ideal approach for direct-seeded rice. This recommendation was further verified through on-farm demonstration experiments in 2015, in which D70 produced in similar grain yields as B50 did.展开更多
Dry direct-seeded rice grown in raised beds is becoming an important practice in the wheat–rice rotation system in China.However,little information has been available on the effect of various irrigation regimes on gr...Dry direct-seeded rice grown in raised beds is becoming an important practice in the wheat–rice rotation system in China.However,little information has been available on the effect of various irrigation regimes on grain yield,water productivity(WP),nitrogen use efficiency(NUE),and greenhouse gas emission in this practice.This study investigated the question using two rice cultivars in 2015 and 2016 grown in soil with wheat straw incorporated into it.Rice seeds were directly seeded into raised beds,which were maintained under aerobic conditions during the early seedling period.Three irrigation regimes:continuous flooding(CF),alternate wetting and drying(AWD),and furrow irrigation(FI),were applied from 4.5-leaf-stage to maturity.Compared with CF,both AWD and FI significantly increased grain yield,WP,and internal NUE,with greater increases under the FI regime.The two cultivars showed the same tendency in both years.Both AWD and FI markedly increased soil redox potential,root and shoot biomass,root oxidation activity,leaf photosynthetic NUE,and harvest index and markedly decreased global warming potential,owing to substantial reduction in seasonalThe results demonstrate that adoption of either AWD or FI could increase grain yield and resource-use efficiency and reduce environmental risks in dry direct-seeded rice grown on raised beds with wheat straw incorporation in the wheat–rice rotation system.展开更多
Direct seeding of rice has become a main planting method due to the low labor input and high economic benefit in South China.Dry direct seeding(DDS)has been widely used for single-season rice planting establishment.Ho...Direct seeding of rice has become a main planting method due to the low labor input and high economic benefit in South China.Dry direct seeding(DDS)has been widely used for single-season rice planting establishment.However,few studies have examined the performance of early-season indica rice under mechanical dry direct seeding.A two-year field experiment was conducted with two indica rice cultivars(i.e.,Zhongjiazao 17 and Zhuliangyou 819)to study lodging characteristics and grain yield formation under DDS,flooded direct seeding(FDS)and wet direct seeding(WDS)patterns.The results showed that the annual grain yield in DDS was higher by 14.42–26.34%for cultivar ZLY819 and 6.64–24.58%for cultivar ZJZ17 than in WDS and FDS,respectively,and these increases were mainly attributed to the improvement of the panicles.The DDS pattern significantly increased the seedling emergence rate of early indica rice cultivars,and increased total dry weight and crop growth rate.Meanwhile,shorter basal internodes,better stem diameter and stem wall thickness and lower lodging index were found in DDS in contrast to FDS and WDS.In particular,DDS improved the stem lodging resistance.Our results suggested that the appropriate direct seeding method was beneficial for improving the grain yield and lodging resistance of early indica rice.展开更多
Dry direct-seeded rice(DDR) sown using a multifunctional seeder that performs synchronous rotary tillage and sowing has received increased attention because it is highly efficient,relatively cheap,and environmentally ...Dry direct-seeded rice(DDR) sown using a multifunctional seeder that performs synchronous rotary tillage and sowing has received increased attention because it is highly efficient,relatively cheap,and environmentally friendly.However,this method of rice production may produce lower yields in a rice–wheat rotation system because of its poor seedling establishment.To address this problem,we performed field experiments to determine the rice yield at five seedling density levels(B1,B2,B3,B4,and B5=100,190,280,370,and 460 seedlings m-2,respectively) and clarify the physiological basis of yield formation.We selected a representative high-quality rice variety and a multifunctional seeder that used in a typical rice–wheat rotation area in 2016 and 2018.The proportion of main stem panicle increased with increasing seedling density.There was a parabolic relationship between yield and seedling density,and the maximum yield(9.34-9.47 t ha-1) was obtained under B3.The maximum yield was associated with a higher total spikelet number m-2 and greater biomass accumulation from heading to maturity.The higher total spikelet number m-2 under B3 was attributed to an increase in panicle number m-2 compared with B1 and B2.Although the panicle numbers also increased under B4 and B5,these increases were insufficient to compensate for the reduced spikelet numbers per panicle.Lower biomass,smaller leaf area,and lower N uptake per plant from the stem elongation stage to the heading stage were partially responsible for the smaller panicle size at higher seedling density levels such as B5.The higher biomass accumulation under B3 was ascribed to the increases in the photosynthetic rate of the top three leaves m-2 of land,crop growth rate,net assimilation rate,and leaf area index.Furthermore,the B3 rice population was marked by a higher grain–leaf ratio,as well as a lower export ratio and transport ratio of biomass per stem-sheath.A quadratic function predicted that 260-290 seedlings m-2 is the optimum seedling density for achieving maximum yield.Together,these results suggested that appropriately increasing the seedling density,and thereby increasing the proportion of panicles formed by the main stem,is an effective approach for obtaining a higher yield in DDR sown using a multifunctional seeder in a rice–wheat rotation system.展开更多
Nitrogen(N) and seeding rates are important factors affecting grain yield and N use efficiency(NUE) in directseeded rice. However, these factors have not been adequately investigated on direct-seeded and double-season...Nitrogen(N) and seeding rates are important factors affecting grain yield and N use efficiency(NUE) in directseeded rice. However, these factors have not been adequately investigated on direct-seeded and double-season rice(DDR) in Central China. The objective of this study was to evaluate the effects of various N and seeding rates on the grain yield and NUE of an ultrashort-duration variety grown under DDR. Field experiments were conducted in 2018 in Wuxue County and 2019 in Qichun County, Hubei Province, China with four N rates and three seeding rates.The results showed that the grain yield of the ultrashort-duration variety ranged from 6.32 to 8.23 t ha–1with a total growth duration of 85 to 97 days across all treatments with N application. Grain yield was increased significantly by N application in most cases, but seeding rate had an inconsistent effect on grain yield. Furthermore, the response of grain yield to the N rates was much higher than the response to seeding rates. The moderate N rates of 100–150 and 70–120 kg N ha–1in the early and late seasons, respectively, could fully express the yield potential of the ultrashort-duration variety grown under DDR. Remarkably higher N responses and agronomic NUE levels were achieved in the early-season rice compared with the late-season rice due to the difference in indigenous soil N supply capacity(INS) between the two seasons. Seasonal differences in INS and N response should be considered when crop management practices are optimized for achieving high grain yield and NUE in ultrashort-duration variety grown under DDR.展开更多
The mechanism of early generation stability (EGS) in rice was studied via genetic analysis. Three types of crosses were made, namely between EGS varieties, EGS and conventional rice variety, and conventional rice va...The mechanism of early generation stability (EGS) in rice was studied via genetic analysis. Three types of crosses were made, namely between EGS varieties, EGS and conventional rice variety, and conventional rice varieties. The genetic analysis was based on the stable lines in F2 population. The stable lines may appear from some combinations of EGS rice crossing with each other and EGS rice crossing with conventional varieties at different frequencies, but stable lines didn't appear in conventional varieties crossing with conventional varieties. Genetic analysis results indicated that the EGS phenomena should just exist in special rice materials, and the frequency of stable lines was closely related to the EGS traits of parents. The EGS traits were neither qualitative nor quantitative traits, and they were controlled by neither dominant genes nor recessive genes. The EGS traits might be inherited by F1 single plant, and the traits of F3 and F4 were corresponded to those of F2 population, i.e. F3 and F4 lines derived from non-segregating F2 showed uniform agronomic traits, and those from segregating F2.did not. The agronomic traits of EGS lines were consistent with those of F1 single plant. On the other hand, when EGS lines occurred, the segregating lines in Mendelian manner were also observed in all F2 population of the same combination. It was suggested that the reason why the stable strains occurred might be a special factor to control (open/close) gene at the beginning of cell division in zygote, resulting in closing mitosis and opening somatic reduction. The somatic reduction of zygote resulted in recombination and homozygosity forming in F1 single plant, and some lines with uniform agronomic traits were observed in some lines of F2 population.展开更多
Due to climate change, extreme heat stress events have become more frequent, adversely affecting rice yield and grain quality. The accumulation and translocation of dry matter and nitrogen substances are essential for...Due to climate change, extreme heat stress events have become more frequent, adversely affecting rice yield and grain quality. The accumulation and translocation of dry matter and nitrogen substances are essential for rice yield and grain quality. To assess the impact of high temperature stress(HTS) at the early panicle initiation(EPI) stage on the accumulation, transportation, and distribution of dry matter and nitrogen substances in various organs of rice, as well as the resulting effects on rice yield and grain quality, pot experiments were conducted using an indica rice cultivar Yangdao 6(YD6) and a japonica rice cultivar Jinxiangyu 1(JXY1) under both normal temperature(32 ℃/26 ℃) and high temperature(38 ℃/29 ℃) conditions. The results indicated that exposure to HTS at the EPI stage significantly decreased rice yield by reducing spikelet number per panicle, grain-filling rate, and grain weight. However, it improved the nutritional quality of rice grains by increasing protein and amylose contents. The reduction in nitrogen and dry matter accumulation accounted for the changes in spikelet number per panicle, grain-filling rate, and grain size. Under HTS, the decrease in nitrogen accumulation accompanied by the reduction in dry matter may be due to the down-regulation of leaf net photosynthesis and senescence, as evidenced by the decrease in nitrogen content. Furthermore, the decrease in sink size limited the translocation of dry matter and nitrogen substances to grains, which was closely related to the reduction in grain weight and the deterioration of grain quality. These findings significantly contribute to our understanding of the mechanisms of HTS on grain yield and quality formation from the perspective of dry matter and nitrogen accumulation and translocation. Further efforts are needed to improve the adaptability of rice varieties to climate change in the near future.展开更多
Soil-emitted nitrous oxide(N2O) and nitric oxide(NO) in crop production are harmful nitrogen(N) emissions that may contribute both directly and indirectly to global warming. Application of nitrification inhibitors, su...Soil-emitted nitrous oxide(N2O) and nitric oxide(NO) in crop production are harmful nitrogen(N) emissions that may contribute both directly and indirectly to global warming. Application of nitrification inhibitors, such as dicyandiamide(DCD), and urea deep placement(UDP), are considered effective approaches to reduce these emissions. This study investigated the effects of DCD and UDP, compared to urea and potassium nitrate, on emissions, nitrogen use efficiency and grain yields under direct-seeded rice. High-frequency measurements of N2O and NO emissions were conducted using the automated closed chamber method throughout the crop-growing season and during the ratoon crop. Both UDP and DCD were effective in reducing N2O emissions by 95% and 73%, respectively. The highest emission factor(1.53% of applied N) was observed in urea, while the lowest was in UDP(0.08%). Emission peaks were mainly associated with fertilization events and appeared within one to two weeks of fertilization. Those emission peaks contributed to 65%–98% of the total seasonal emissions. Residual effects of fertilizer treatments on the N2O emissions from the ratoon crop were not significant;however, the urea treatment contributed 2%, whereas UDP contributed to 44% of the total annual emissions. On the other hand, cumulative NO emissions were not significant in either the rice or ratoon crops. UDP and DCD increased grain yields by 16%–19% and N recovery efficiency by 30%–40% over urea. The results suggested that the use of DCD and UDP could mitigate N2O emissions and increase grain yields and nitrogen use efficiency under direct-seeded rice condition.展开更多
基金supported by the Indian Council of Agricultural Research-International Rice Research Institute Collaborative Project, India (Grant No. OXX4928)。
文摘The sustainability of rice production continues to be a subject of uncertainty and inquiry attributed to shifts in climatic conditions. In light of the impending climate change crisis and the high labor and water costs accompanying it, direct-seeded rice(DSR) is unquestionably one of the most practical solutions. Despite its resource and climate-friendly advantages, early maturing rice faces weed competitiveness and seedling establishment challenges. Resolving these issues is crucial for promoting its wider adoption among farmers, presenting it as a more effective sustainable rice cultivation method globally. Diverse traditional and contemporary breeding methods are employed to mitigate the limitations of the DSR approach, leveraging advanced techniques such as speed breeding and genome editing. Focusing on key traits like mesocotyl length elongation, early seedling vigor, root system architecture, and weed competitiveness holds promise for transformative improvements in DSR adaptation at a broader scale within farming communities. This review aims to summarize how these features contribute to increased crop production in DSR conditions and explore the research efforts focusing on enhancing DSR adaptation through these traits. Emphasizing the pivotal role of these game-changing traits in DSR adaptation, our analysis sheds light on their potential transformative impact and offers valuable insights for advancing DSR practices.
基金Supported by National Key Technology R&D Program(2006BAD01A01-6)~~
文摘In this study, through vitro culturing anthers of 7 F1 progenies of early Japonica rice in cold region on medium with different Fe2+ contents, it was found that Fe2+ content generated greater impacts on the induction rate and green plantlet differentiation. The result demonstrated that if Fe2+ increased from 32 to 40 mg/kg, the induction rate of early Japonica rice anther culture in N6 culture media was more then 1.4 times higher than that in N6 culture media containing 5.6 mg/kg Fe2+. In this concentration range, the induction rate increased with the increase of Fe2+ content, while if the concentration was over this concentration range, the induction rate decreased with the increase of Fe2+, showing single peak distribution. When the Fe2+ was 40 mg/kg in differentiation medium, the differentiation rate decreased dramatically. The green plantlet differentiations of callus which were induced on culture media containing 32-40 mg/kg Fe2+ were different, when they were cultured on MS culture media, and 85.7% materials could increase green plantlet productivity to about 7.8%. Therefore, increasing Fe2+in induction media properly could increase anther culture efficiency of early Japonica rice in cold region.
基金Supported by High Yield and High Efficiency Technology Project of National Food Production(2006BAD02A04)National Agricultural Technology Support Program(2007BAD87B08)+2 种基金Doctoral Starting Fund of Jiangxi Academy of Agricultural Sciences(2009Dr.-1)Subject Leader Plan of Jiangxi ProvincePostdoctoral Starting Fund of Chinese Academy of Agricultural Sciences~~
文摘[Objective]The paper was to study the effect of tiller-inhibitor on the growth and yield formation of super early rice Jinyou 458.[Method] Two treatments including spraying tiller-inhibitor(TI) and spraying water(CK) at the SN-n stage were set in the test,the effect of tiller-inhibitor on yield and its components,leaf and plant morphology,field microclimate at booting stage and quality characteristics of rice population were studied.[Result] Spraying tiller-inhibitor could effectively reduce the occurrence of invalid and inefficient tillers,increase the proportion of high effective tillers(tiller with 4 or more leaves) in tiller composition at the maximal tiller stage.The panicle length,spikelets per panicle,spikelets density,number of secondary branches and the secondary spikelets,seed setting rate of rice plant sprayed with tiller-inhibitor were significantly higher than CK.Meanwhile,spraying tiller-inhibitor could increase plant height,biomass weight and leaf area index of rice population during middle and late stages of rice growing,improve the leaf temperature of top three leaves and the light transmittance of rice population at the booting stage,increase the leaf SPAD value,thus enhance photosynthetic capacity of rice plants.It also showed the characteristics of elongating the internode of rice plant and decreasing the stem thickness,etc.[Conclusion] The panicle-bearing rate of stems and tillers,effective panicles,spikelets per panicle,seed setting rate and 1 000-grain weight had coordinately increased after spraying tiller-inhibitor,thus increased the yield.
文摘[Objective] The aim was to explore effects of FCMP compound fertilizer on growth, development and yield of early rice. [Method] Based on lower-graded phos- phate resource, effects of FCMP compound fertilizers on yield and growth of early rice in a field were researched. [Result] FCMP compound fertilizers 0, 1 and 2 en- hanced rice yield, increasing by 21.86%, 20.25% and 13.46%, compared with the rice applied with conventional fertilizer; number of productive ears and grain number per ear in unit area were improved by FCMP compound fertilizer, for example, the two factors achieved the highest with FCMP compound fertilizer 1, increasing by 11.70% and 19.63%. Furthermore, FCMP compound fertilizer promoted plant height and tiller number, maintained high photosynthetic efficiency, enhanced lodging-resis- tance and guaranteed stable and high yield. [Conclusion] The research is of theoret- ical and practical significance for further exploration of production techniques and application of FCMP compound fertilizer.
基金Supported by National Key Technology Research and Development Program of China(2012BAD15B03)the Youth Innovation Fund of Jiangxi Academy of Agricultural Sciences(2010-CQN004)~~
文摘Using a split plot design, super high-yielding early rice "Zhongjiazao 17"and "Ganxin 203" and super high-yielding late rice "Ganxin 688" and "Wufengy-ouT025" were taken as materials with planting density the same at 312 000 hil s/hm2, to explore the effects of RS/IS (Ratio of row spacing to intrarow row spacing) on yield, top three leaves morphological features and its relationship of them in 2011 and 2012. The results showed that, whether early or late rice, biomass, accumula-tion and apparent utilizing rate of nitrogen were lower in RS/IS5.0 (40.0 cm ×8.0 cm) treatment, but yield of rice was higher in RS/IS2.0 (25.0 cm ×12.8 cm) treatment;grain numbers per spike of rice was more in RS/IS2.8 (30.0 cm×10.7 cm) treatment, and thousand-grain weight of rice was higher in RS/IS1.3 (20.0 cm×16.0 cm) treat-ment. For 4 varieties of early or late rice aforementioned, basal angle, opening an-gle and leaf area of 2nd leaf from top were larger in RS/IS5.0 treatment, and basal angle and opening angle were smal er in RS/IS2.0 treatment and leaf area smal er in RS/IS1.3 treatment.
文摘The effects of rice transplanters' transplanting settings(plant spacing and finger sticking area) on rice yield were investigated in two early-season rice cultivars:hybrid rice cultivar(Zhuliangyou 819) and conventional rice cultivar(Zhongjiazao 17).The results showed that,different transplanting settings resulted in different numbers of transplanted basic seedlings,and the rice yield was significantly correlated with the number of transplanted basic seedlings.The number of transplanted basic seedlings increased with the decrease of plant spacing and the increase of finger sticking area.The rate of lost hills of machine transplanting decreased with the increase of finger sticking area.The leaf area index and amount of dry matter accumulation were highly correlated with the number of transplanted basic seedlings.The average yield of the rice transplanted with a plant spacing of11.5 cm was higher than that with a plant spacing of 13.8 cm.In the field transplanted with the rice under the plant spacing of 13.8 cm,the rice yield increased with the increase of finger sticking area,and the finger sticking area of 2.23 cm2 showed the highest rice yield of 8 174.16 kg/hm2 of Zhuliangyou 819 and 7 925.54kg/hm2 of Zhongjiaozao17.In the field transplanted with the rice under the plant spacing of 11.5 cm,the rice yield was the highest with the finger sticking area of 1.83 cm2,and then decreased with the large finger sticking area.Under the plant spacing of 11.5 cm,the highest rice yields of Zhuliangyou 819 and Zhongjiaozao17 were 8 492.94 kg/hm2 and 8 000.23 kg/hm2,respectively.Therefore,the preferred machine transplanting settings for double-season early rice are a plant spacing of11.5 cm and a finger sticking area of 1.83 cm2,while the finger sticking area should be increased to 2.23 cm2 for conventional rice cultivars.
基金Supported by the Scientific and Technological Program in Loudi(2014-1)Key Lab of Hunan UniversitiesKey subjects of the Twelfth-five Year Plan in Hunan~~
文摘Super early hybrid rice Luliangyou 996 was the materials for this experiment. This paper focused on the influences of different nitrogen rates on blast resistance and grain yield. Studies suggested that with the increase of nitrogen rate,there were no distinct changes in the sick grain rate and sickness index, but the fifth grade of panicle blast rate rose gradually. When the nitrogen was too much(270 kg/hm^2), the sick grain rate and sickness index were the highest. The yield rose along with the addition of nitrogen if the amount of applied nitrogen was within the range of 0 to 180 kg/hm^2, and the yield would decrease with the addition of nitrogen if the amount of applied nitrogen was over 180 kg/hm^2. Considering the sickness, output and economic benefit of rice, it is better to applied 90 to 135 kg/hm^2 of nitrogen for Luliangyou 996.
基金Project (No. 2003C12009) supported by the Science and TechnologyMinistry of Zhejiang Province, China
文摘Octenyl succinic anhydride (OSA) modified early Indica rice starch was prepared in aqueous slurry systems using response surface methodology. The paste properties of the OSA starch were also investigated. Results indicated that the suitable parameters for the preparation of OSA starch from early Indica rice starch were as follows: reaction period 4 h, reaction temperature 33.4℃, pH of reaction system 8.4, concentration of starch slurry 36.8% (in proportion to water, w/w), amount of OSA 3% (in proportion to starch, w/w). The degree of substitution was 0.0188 and the reaction efficiency was 81.0%. The results of paste properties showed that with increased OSA modification, the starch derivatives had higher paste clarity, decreased retrogradation and better freeze-thaw stability.
基金This research was supported by the Breeding New Varieties of Rice Suitable for Light and Simple Cultivation and Mechanized Production Project(2017YFD0100104)the Research and Development Plan for Key Areas in Guangdong Province(2018B020206002)+1 种基金the China Agriculture Research System(CARS-01-17)Special thanks are due to the South China Agricultural University Doctoral Innovative Talents(Domestic Training)Cultivation Program(CX2019N044)。
文摘Early seedling vigor(ESV)is a major breeding target in rice,especially under direct seeding.To identify quantitative trait locus(QTL)affecting ESV,a recombinant inbred line population derived from a cross between 02428 and YZX,two cultivars differing in vigor during early seedling growth,was used for QTL analysis.Nine traits associated with ESV were examined using a high-density map.Of 16 additive loci identified,three were detected in two generations and thus considered stable.Four epistatic interactions were detected,one of which was repeated in two generations.Further analysis of the pyramiding effect of the three stable QTL showed that the phenotypic value could be effectively improved with an increasing number of QTL.These results were combined with results from our previous QTL analysis of the germination index.The lines G58 and G182 combined all the favourable alleles of all three stable QTL for ESV and three QTL for germination speed.These two lines showed rapid germination and strong ESV.A total of 37 candidate differentially expressed genes were obtained from the regions of the three stable QTL by analysis of the dynamic transcriptomic expression profile during the seedling growth period of the two parents.The QTL are targets for ESV breeding and the candidate genes await functional validation.This study provides a theoretical basis and a genetic resource for the breeding of directseeded rice.
基金Supported by Special Fund for Agro-scientific Research in the Public Interest(201103003)National "Twelfth Five-Year" Plan for Science & Technology Support(2012BAD15B04)+1 种基金Innovation Platform of Open Fund Project for Universities in Hunan Province(13K061)Natural Science Foundation of Hunan Province(12JJ6016)~~
文摘The objective of this study was to investigate the effects of different nutri-ent application models on the contents of chlorophyl and carotenoid in the functional leaves of early rice. Using rice cultivar Xiangzaoxian45 as experimental materials, the experiment was performed by designing 6 treatments, i.e., T1 (fertilization without nitrogen), T2(local conventional fertilization), T3(fertilization for high yield and high effi-ciency), T4 (fertilization for super high yield), T5 (fertilization application for super high yield and high efficiency A) and T6 (fertilization application for super high yield and high efficiency B) in two experimental plots Yiyang and Xiangyin. The results showed that T3 respectively increased the contents of chlorophyl and carotenoid at fil ing stage by 29.27%, 38.20% and 13.16%, 30.12% in Yiyang and Xiangyin, as wel as yield of early rice by 4.20%, 4.80% to T2 on the condition of saving 20% ni-trogen fertilizer. Additional y, T5 and T6 on the condition of saving 16.7% nitrogen fertilizer by T4 increased the contents of chlorophyl and carotenoid of fil ing stage by 53.91%, 53.73% and 35.95%, 37.47% in Yiyang and Xiangyin, as wel as yield of early rice by 16.60%, 18.75% to T2 in Yiyang; increased the contents of chlorophyl and carotenoid at fil ing stage by 57.82%, 56.80% and 54.88%, 57.03% in Yiyang and Xiangyin, as wel as yield of early rice 10.10%, 6.75% to T2 in Xiangyin. More-over, there was a significant correlation or an extremely significant correlation be-tween yield and the contents of chlorophyl and carotenoid at different soil fertility level (P〈0.05 or P〈0.01). Therefore, nutrient application plays an important role in the contents of chlorophyl and carotenoid in the functional leaves of early rice.
基金supported by the Key-Area Research and Development Program of Guangdong Province(2019B020221003)National Natural Science Foundation of Guangdong Province(008175187004)National Natural Science Foundation of China(31471442)。
文摘Deep placement of nitrogen fertilizer is a key strategy for improving nitrogen use efficiency. A two-year field experiment was conducted during the early rice growing seasons(March–July) of 2016 and 2017.The experimental treatments comprised two rice cultivars: Wufengyou 615(WFY 615) and Yuxiangyouzhan(YXYZ), and three N treatments: mechanical deep placement of all fertilizers as basal dose at 10 cm soil depth(one-time deep-placement fertilization, namely OTDP fertilization);manual surface broadcast(the common farmer practice) of 40% N fertilizer at one day before sowing(basal fertilizer)followed by broadcast application of 30% each at tillering and panicle initiation stages;and no fertilizer application at any growth stage as a control. One-time deep-placement fertilization increased grain yield of both rice cultivars by 11.8%–19.6%, total nitrogen accumulation by 10.3%–13.1%, nitrogen grain production efficiency by 29.7%–31.5%, nitrogen harvest index by 27.8%–30.0%, nitrogen agronomic efficiency by 71.3%–77.2%, and nitrogen recovery efficiency by 42.4%–56.7% for both rice cultivars, compared with the multiple-broadcast treatment. One-time deep-placement fertilization reduced CH4-induced global warming potential(GWP) by 20.7%–25.3%, N2O-induced GWP by 7.2%–12.3%, and total GWP by 14.7%–22.9% for both rice cultivars relative to the multiple-broadcast treatment. The activities of glutamine synthetase and nitrate reductase were increased at both panicle-initiation and heading stages in both rice cultivars following one-time deep-placement fertilization treatment. Larger leaf area index at heading stage and more favorable root morphological traits expressed as larger total root length, mean root diameter, and total root volume per hill were also observed. One-time deep-placement fertilization could be an effective strategy for increasing grain yield and nitrogen use efficiency and lowering greenhouse-gas emissions under mechanical direct-seeded cropping systems.
基金supported by the National Key Research and Development Program of China(Grant No.2016YFD0300108)the National Natural Science Foundation of China(Grant Nos.31671630 and 31371581)the National Rice Industry Technology System(CARS-01-04A)in China
文摘Deep placement of controlled-release fertilizer increases nitrogen (N) use efficiency in rice planting but is expensive. Few studies on direct-seeded rice have examined the effects of deep placement of conventional fertilizer. With prilled urea serving as N fertilizer, a two-year field experiment with two N rates (120 and 195 kg/hm2) and four basal N application treatments (B50, all fertilizer was broadcast with 50% as basal N;D50, D70 and D100 corresponded to 50%, 70% and 100% of N deeply placed as basal N, respectively) were conducted in direct-seeded rice in 2013 and 2014. Soil N distribution and plant N uptake were analyzed. The results showed that deep placement of basal N significantly increased total N concentrations in soil. Significantly greater soil N concentrations were observed in D100 compared with B50 at 0, 6 and 12 cm (lateral distance) from the fertilizer application point both at mid-tillering and heading stages. D100 presented the highest values of dry matter and N accumulation from seeding to mid-tillering stages, but it presented the lowest values from heading to maturity stages and the lowest grain yield for no sufficient N supply at the reproductive stage. The grain yield of D50 was the highest, however, no significant difference was observed in grain yield, N agronomic efficiency or N recovery efficiency between D70 and D50, or between D70 and B50, while D70 was more labor saving than D50 for only one topdressing was applied in D70 compared with twice in other treatments. The above results indicated that 70% of fertilizer-N deeply placed as a basal fertilizer and 30% of fertilizer-N topdressed as a panicle fertilizer constituted an ideal approach for direct-seeded rice. This recommendation was further verified through on-farm demonstration experiments in 2015, in which D70 produced in similar grain yields as B50 did.
基金the National Key Research and Development Program of China (2016YFD0300206-4)the National Natural Science Foundation of China (31461143015, 31471438)+3 种基金the National Key Technology R&D Program of China (2014AA10A605)the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD-201501)the Top Talent Supporting Program of Yangzhou University (2015-01)the Hong Kong Research Grant Council (14122415,14160516,14177617,AoE/M-05/12,AoE/M-403/16)
文摘Dry direct-seeded rice grown in raised beds is becoming an important practice in the wheat–rice rotation system in China.However,little information has been available on the effect of various irrigation regimes on grain yield,water productivity(WP),nitrogen use efficiency(NUE),and greenhouse gas emission in this practice.This study investigated the question using two rice cultivars in 2015 and 2016 grown in soil with wheat straw incorporated into it.Rice seeds were directly seeded into raised beds,which were maintained under aerobic conditions during the early seedling period.Three irrigation regimes:continuous flooding(CF),alternate wetting and drying(AWD),and furrow irrigation(FI),were applied from 4.5-leaf-stage to maturity.Compared with CF,both AWD and FI significantly increased grain yield,WP,and internal NUE,with greater increases under the FI regime.The two cultivars showed the same tendency in both years.Both AWD and FI markedly increased soil redox potential,root and shoot biomass,root oxidation activity,leaf photosynthetic NUE,and harvest index and markedly decreased global warming potential,owing to substantial reduction in seasonalThe results demonstrate that adoption of either AWD or FI could increase grain yield and resource-use efficiency and reduce environmental risks in dry direct-seeded rice grown on raised beds with wheat straw incorporation in the wheat–rice rotation system.
基金the financial support provided by the National Natural Science Foundation of China(31760366)the National Key Research and Development Program of China(2016YFD0300501 and 2017YFND0301605)the Natural Science Foundation of Jiangxi,China(20161BAB214171)。
文摘Direct seeding of rice has become a main planting method due to the low labor input and high economic benefit in South China.Dry direct seeding(DDS)has been widely used for single-season rice planting establishment.However,few studies have examined the performance of early-season indica rice under mechanical dry direct seeding.A two-year field experiment was conducted with two indica rice cultivars(i.e.,Zhongjiazao 17 and Zhuliangyou 819)to study lodging characteristics and grain yield formation under DDS,flooded direct seeding(FDS)and wet direct seeding(WDS)patterns.The results showed that the annual grain yield in DDS was higher by 14.42–26.34%for cultivar ZLY819 and 6.64–24.58%for cultivar ZJZ17 than in WDS and FDS,respectively,and these increases were mainly attributed to the improvement of the panicles.The DDS pattern significantly increased the seedling emergence rate of early indica rice cultivars,and increased total dry weight and crop growth rate.Meanwhile,shorter basal internodes,better stem diameter and stem wall thickness and lower lodging index were found in DDS in contrast to FDS and WDS.In particular,DDS improved the stem lodging resistance.Our results suggested that the appropriate direct seeding method was beneficial for improving the grain yield and lodging resistance of early indica rice.
基金the Jiangsu Agriculture Science and Technology Innovation Fund, China (CX(20)1012)the Jiangsu Demonstration Project of Modern Agricultural Machinery Equipment and Technology, China (NJ2020-58)+3 种基金the Jiangsu Technical System of Rice Industry, China (JATS[2020]432)the National Key Research and Development Program of China (2016YFD0300503)the earmarked fund for China Agriculture Research System (CARS-01-27)the Yangzhou University Scientific Research and Innovation Program, China (XKYCX20_022)。
文摘Dry direct-seeded rice(DDR) sown using a multifunctional seeder that performs synchronous rotary tillage and sowing has received increased attention because it is highly efficient,relatively cheap,and environmentally friendly.However,this method of rice production may produce lower yields in a rice–wheat rotation system because of its poor seedling establishment.To address this problem,we performed field experiments to determine the rice yield at five seedling density levels(B1,B2,B3,B4,and B5=100,190,280,370,and 460 seedlings m-2,respectively) and clarify the physiological basis of yield formation.We selected a representative high-quality rice variety and a multifunctional seeder that used in a typical rice–wheat rotation area in 2016 and 2018.The proportion of main stem panicle increased with increasing seedling density.There was a parabolic relationship between yield and seedling density,and the maximum yield(9.34-9.47 t ha-1) was obtained under B3.The maximum yield was associated with a higher total spikelet number m-2 and greater biomass accumulation from heading to maturity.The higher total spikelet number m-2 under B3 was attributed to an increase in panicle number m-2 compared with B1 and B2.Although the panicle numbers also increased under B4 and B5,these increases were insufficient to compensate for the reduced spikelet numbers per panicle.Lower biomass,smaller leaf area,and lower N uptake per plant from the stem elongation stage to the heading stage were partially responsible for the smaller panicle size at higher seedling density levels such as B5.The higher biomass accumulation under B3 was ascribed to the increases in the photosynthetic rate of the top three leaves m-2 of land,crop growth rate,net assimilation rate,and leaf area index.Furthermore,the B3 rice population was marked by a higher grain–leaf ratio,as well as a lower export ratio and transport ratio of biomass per stem-sheath.A quadratic function predicted that 260-290 seedlings m-2 is the optimum seedling density for achieving maximum yield.Together,these results suggested that appropriately increasing the seedling density,and thereby increasing the proportion of panicles formed by the main stem,is an effective approach for obtaining a higher yield in DDR sown using a multifunctional seeder in a rice–wheat rotation system.
基金supported by the National Natural Science Foundation of China(31971845 and 32101819)the earmarked fund for China Agriculture Research System(CARS-01-20)the China Postdoctoral Science Foundation(2021M691179)。
文摘Nitrogen(N) and seeding rates are important factors affecting grain yield and N use efficiency(NUE) in directseeded rice. However, these factors have not been adequately investigated on direct-seeded and double-season rice(DDR) in Central China. The objective of this study was to evaluate the effects of various N and seeding rates on the grain yield and NUE of an ultrashort-duration variety grown under DDR. Field experiments were conducted in 2018 in Wuxue County and 2019 in Qichun County, Hubei Province, China with four N rates and three seeding rates.The results showed that the grain yield of the ultrashort-duration variety ranged from 6.32 to 8.23 t ha–1with a total growth duration of 85 to 97 days across all treatments with N application. Grain yield was increased significantly by N application in most cases, but seeding rate had an inconsistent effect on grain yield. Furthermore, the response of grain yield to the N rates was much higher than the response to seeding rates. The moderate N rates of 100–150 and 70–120 kg N ha–1in the early and late seasons, respectively, could fully express the yield potential of the ultrashort-duration variety grown under DDR. Remarkably higher N responses and agronomic NUE levels were achieved in the early-season rice compared with the late-season rice due to the difference in indigenous soil N supply capacity(INS) between the two seasons. Seasonal differences in INS and N response should be considered when crop management practices are optimized for achieving high grain yield and NUE in ultrashort-duration variety grown under DDR.
基金China Natural Science Foundation(30001037) Youth Foundation of Sichuan Province,China.
文摘The mechanism of early generation stability (EGS) in rice was studied via genetic analysis. Three types of crosses were made, namely between EGS varieties, EGS and conventional rice variety, and conventional rice varieties. The genetic analysis was based on the stable lines in F2 population. The stable lines may appear from some combinations of EGS rice crossing with each other and EGS rice crossing with conventional varieties at different frequencies, but stable lines didn't appear in conventional varieties crossing with conventional varieties. Genetic analysis results indicated that the EGS phenomena should just exist in special rice materials, and the frequency of stable lines was closely related to the EGS traits of parents. The EGS traits were neither qualitative nor quantitative traits, and they were controlled by neither dominant genes nor recessive genes. The EGS traits might be inherited by F1 single plant, and the traits of F3 and F4 were corresponded to those of F2 population, i.e. F3 and F4 lines derived from non-segregating F2 showed uniform agronomic traits, and those from segregating F2.did not. The agronomic traits of EGS lines were consistent with those of F1 single plant. On the other hand, when EGS lines occurred, the segregating lines in Mendelian manner were also observed in all F2 population of the same combination. It was suggested that the reason why the stable strains occurred might be a special factor to control (open/close) gene at the beginning of cell division in zygote, resulting in closing mitosis and opening somatic reduction. The somatic reduction of zygote resulted in recombination and homozygosity forming in F1 single plant, and some lines with uniform agronomic traits were observed in some lines of F2 population.
基金supported by the Jiangsu Agriculture Science and Technology Innovation Fund,China(Grant No.CX(23)1035)the National Natural Science Foundation of China(Grant Nos.32201888,32071943,and 32272197)+2 种基金the Provincial Natural Science Foundation of Jiangsu,China(Grant No.BK20200923)the National Key Research and Development Program of China(Grant Nos.SQ 2022YFD1500402 and SQ2022YFD2300304)the Priority Academic Program Development of Jiangsu Higher Education Institutions,China.
文摘Due to climate change, extreme heat stress events have become more frequent, adversely affecting rice yield and grain quality. The accumulation and translocation of dry matter and nitrogen substances are essential for rice yield and grain quality. To assess the impact of high temperature stress(HTS) at the early panicle initiation(EPI) stage on the accumulation, transportation, and distribution of dry matter and nitrogen substances in various organs of rice, as well as the resulting effects on rice yield and grain quality, pot experiments were conducted using an indica rice cultivar Yangdao 6(YD6) and a japonica rice cultivar Jinxiangyu 1(JXY1) under both normal temperature(32 ℃/26 ℃) and high temperature(38 ℃/29 ℃) conditions. The results indicated that exposure to HTS at the EPI stage significantly decreased rice yield by reducing spikelet number per panicle, grain-filling rate, and grain weight. However, it improved the nutritional quality of rice grains by increasing protein and amylose contents. The reduction in nitrogen and dry matter accumulation accounted for the changes in spikelet number per panicle, grain-filling rate, and grain size. Under HTS, the decrease in nitrogen accumulation accompanied by the reduction in dry matter may be due to the down-regulation of leaf net photosynthesis and senescence, as evidenced by the decrease in nitrogen content. Furthermore, the decrease in sink size limited the translocation of dry matter and nitrogen substances to grains, which was closely related to the reduction in grain weight and the deterioration of grain quality. These findings significantly contribute to our understanding of the mechanisms of HTS on grain yield and quality formation from the perspective of dry matter and nitrogen accumulation and translocation. Further efforts are needed to improve the adaptability of rice varieties to climate change in the near future.
基金The United States Agency for International Development provided support through the project Feed the Future Soil Fertility Technology Adoption,Policy Reform and Knowledge Management(Cooperative Agreement number AID-BFS-IO-15-00001)。
文摘Soil-emitted nitrous oxide(N2O) and nitric oxide(NO) in crop production are harmful nitrogen(N) emissions that may contribute both directly and indirectly to global warming. Application of nitrification inhibitors, such as dicyandiamide(DCD), and urea deep placement(UDP), are considered effective approaches to reduce these emissions. This study investigated the effects of DCD and UDP, compared to urea and potassium nitrate, on emissions, nitrogen use efficiency and grain yields under direct-seeded rice. High-frequency measurements of N2O and NO emissions were conducted using the automated closed chamber method throughout the crop-growing season and during the ratoon crop. Both UDP and DCD were effective in reducing N2O emissions by 95% and 73%, respectively. The highest emission factor(1.53% of applied N) was observed in urea, while the lowest was in UDP(0.08%). Emission peaks were mainly associated with fertilization events and appeared within one to two weeks of fertilization. Those emission peaks contributed to 65%–98% of the total seasonal emissions. Residual effects of fertilizer treatments on the N2O emissions from the ratoon crop were not significant;however, the urea treatment contributed 2%, whereas UDP contributed to 44% of the total annual emissions. On the other hand, cumulative NO emissions were not significant in either the rice or ratoon crops. UDP and DCD increased grain yields by 16%–19% and N recovery efficiency by 30%–40% over urea. The results suggested that the use of DCD and UDP could mitigate N2O emissions and increase grain yields and nitrogen use efficiency under direct-seeded rice condition.