The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to u...The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to understand complex mobility patterns.Deep learning techniques,such as graph neural networks(GNNs),are popular for their ability to capture spatio-temporal dependencies.However,these models often become overly complex due to the large number of hyper-parameters involved.In this study,we introduce Dynamic Multi-Graph Spatial-Temporal Graph Neural Ordinary Differential Equation Networks(DMST-GNODE),a framework based on ordinary differential equations(ODEs)that autonomously discovers effective spatial-temporal graph neural network(STGNN)architectures for traffic prediction tasks.The comparative analysis of DMST-GNODE and baseline models indicates that DMST-GNODE model demonstrates superior performance across multiple datasets,consistently achieving the lowest Root Mean Square Error(RMSE)and Mean Absolute Error(MAE)values,alongside the highest accuracy.On the BKK(Bangkok)dataset,it outperformed other models with an RMSE of 3.3165 and an accuracy of 0.9367 for a 20-min interval,maintaining this trend across 40 and 60 min.Similarly,on the PeMS08 dataset,DMST-GNODE achieved the best performance with an RMSE of 19.4863 and an accuracy of 0.9377 at 20 min,demonstrating its effectiveness over longer periods.The Los_Loop dataset results further emphasise this model’s advantage,with an RMSE of 3.3422 and an accuracy of 0.7643 at 20 min,consistently maintaining superiority across all time intervals.These numerical highlights indicate that DMST-GNODE not only outperforms baseline models but also achieves higher accuracy and lower errors across different time intervals and datasets.展开更多
High-resolution non-emissive displays based on electrochromic tungsten oxides(WOx)are crucial for future near-eye virtual/augmented reality interactions,given their impressive attributes such as high environmental sta...High-resolution non-emissive displays based on electrochromic tungsten oxides(WOx)are crucial for future near-eye virtual/augmented reality interactions,given their impressive attributes such as high environmental stability,ideal outdoor readability,and low energy consumption.However,the limited intrinsic structure of inorganic materials has presented a significant challenge in achieving precise patterning/pixelation at the micron scale.Here,we successfully developed the direct photolithography for WOx nanoparticles based on in situ photo-induced ligand exchange.This strategy enabled us to achieve ultra-high resolution efficiently(line width<4μm,the best resolution for reported inorganic electrochromic materials).Additionally,the resulting device exhibited impressive electrochromic performance,such as fast response(<1 s at 0 V),high coloration efficiency(119.5 cm^(2) C^(−1)),good optical modulation(55.9%),and durability(>3600 cycles),as well as promising applications in electronic logos,pixelated displays,flexible electronics,etc.The success and advancements presented here are expected to inspire and accelerate research and development(R&D)in high-resolution non-emissive displays and other ultra-fine micro-electronics.展开更多
A graph G is a fractional(k;m)-deleted graph if removing any m edges from G,the resulting subgraph still admits a fractional k-factor.Let k≥2 and m≥1 be integers.Denote[2m/k]^(*)=[2m/k]if 2m/k is not an integer,and[...A graph G is a fractional(k;m)-deleted graph if removing any m edges from G,the resulting subgraph still admits a fractional k-factor.Let k≥2 and m≥1 be integers.Denote[2m/k]^(*)=[2m/k]if 2m/k is not an integer,and[2m/k]^(*)=[2m/k]-1 if 2m/k is an integer.In this paper,we prove that G is a fractional(k,m)-deleted graph if δ(G)≥k+m and isolated toughness meets I(G)>{3-1/m,if k=2 and m≥3,k+[2m/k]^(*)m+1-[2m/k]^(*);otherwise.Furthermore,we show that the isolated toughness bound is tight.展开更多
Mangroves are crucial to the ecological security of the Earth and human well-being.Their management,conservation,and restoration are of great importance and necessitate the support of spatio-temporal information and m...Mangroves are crucial to the ecological security of the Earth and human well-being.Their management,conservation,and restoration are of great importance and necessitate the support of spatio-temporal information and multidisciplinary knowledge such as biology and ecology.Traditional knowledge services such as plant atlas provide illustrated textual knowledge of mangroves.However,this kind of service is oriented to information retrieval and is incapable of effectively mining and utilizing fragmented knowledge from multi-source heterogeneous data,facing the problem of“massive data,rare knowledge”.Knowledge graphs are capable of extracting,organizing,and fusing the knowledge contained in massive data into semantic networks that can be understood and computed by computers.They provide a solution for the realization of intelligent knowledge services.Focusing on the urgent need for mangrove knowledge acquisition,formal representation,and intelligent services,this paper proposes a research prospect on mangrove knowledge graphs and knowledge services.We first analyze the similarities and differences between various domain-specific concepts of Tupu.On this basis,we define the mangrove knowledge graph as a large-scale knowledge base that integrates multi-disciplinary knowledge and spatio-temporal information with mangrove ecosystems as the core.Then,we propose a research framework for mangrove knowledge services that can realize the transformation from multi-modal data to intelligent knowledge services,including multiple research levels such as ubiquitous data sensing and aggregation,knowledge organization and graph construction,and intelligent mangrove knowledge services.Subsequently,the methods and workflow for constructing mangrove knowledge graphs are introduced.Finally,we discuss the challenges and possible future directions of mangrove knowledge services in the smart era,including the construction of a mangrove knowledge system that integrates the domain-specific characteristics and spatio-temporal features of mangroves,the exploration of knowledge extraction and fusion methods supported by large language models,and the development of intelligent knowledge applications for typical scenarios.展开更多
Traditional meteorological downscaling methods face limitations due to the complex distribution of meteorological variables,which can lead to unstable forecasting results,especially in extreme scenarios.To overcome th...Traditional meteorological downscaling methods face limitations due to the complex distribution of meteorological variables,which can lead to unstable forecasting results,especially in extreme scenarios.To overcome this issue,we propose a convolutional graph neural network(CGNN)model,which we enhance with multilayer feature fusion and a squeeze-and-excitation block.Additionally,we introduce a spatially balanced mean squared error(SBMSE)loss function to address the imbalanced distribution and spatial variability of meteorological variables.The CGNN is capable of extracting essential spatial features and aggregating them from a global perspective,thereby improving the accuracy of prediction and enhancing the model's generalization ability.Based on the experimental results,CGNN has certain advantages in terms of bias distribution,exhibiting a smaller variance.When it comes to precipitation,both UNet and AE also demonstrate relatively small biases.As for temperature,AE and CNNdense perform outstandingly during the winter.The time correlation coefficients show an improvement of at least 10%at daily and monthly scales for both temperature and precipitation.Furthermore,the SBMSE loss function displays an advantage over existing loss functions in predicting the98th percentile and identifying areas where extreme events occur.However,the SBMSE tends to overestimate the distribution of extreme precipitation,which may be due to the theoretical assumptions about the posterior distribution of data that partially limit the effectiveness of the loss function.In future work,we will further optimize the SBMSE to improve prediction accuracy.展开更多
A new branch of hypergraph theory-directed hyperaph theory and a kind of new methods-dicomposition contraction(DCP, PDCP and GDC) methods are presented for solving hypernetwork problems.lts computing time is lower tha...A new branch of hypergraph theory-directed hyperaph theory and a kind of new methods-dicomposition contraction(DCP, PDCP and GDC) methods are presented for solving hypernetwork problems.lts computing time is lower than that of ECP method in several order of magnitude.展开更多
In the past 30 years,signed directed graph(SDG) ,one of the qualitative simulation technologies,has been widely applied for chemical fault diagnosis.However,SDG based fault diagnosis,as any other qualitative method,ha...In the past 30 years,signed directed graph(SDG) ,one of the qualitative simulation technologies,has been widely applied for chemical fault diagnosis.However,SDG based fault diagnosis,as any other qualitative method,has poor diagnostic resolution.In this paper,a new method that combines SDG with qualitative trend analysis(QTA) is presented to improve the resolution.In the method,a bidirectional inference algorithm based on assumption and verification is used to find all the possible fault causes and their corresponding consistent paths in the SDG model.Then an improved QTA algorithm is used to extract and analyze the trends of nodes on the consis-tent paths found in the previous step.New consistency rules based on qualitative trends are used to find the real causes from the candidate causes.The resolution can be improved.This method combines the completeness feature of SDG with the good diagnostic resolution feature of QTA.The implementation of SDG-QTA based fault diagno-sis is done using the integrated SDG modeling,inference and post-processing software platform.Its application is illustrated on an atmospheric distillation tower unit of a simulation platform.The result shows its good applicability and efficiency.展开更多
This paper proposes an algorithm for building weighted directed graph, defmes the weighted directed relationship matrix of the graph, and describes algorithm implementation using this matrix. Based on this algorithm, ...This paper proposes an algorithm for building weighted directed graph, defmes the weighted directed relationship matrix of the graph, and describes algorithm implementation using this matrix. Based on this algorithm, an effective way for building and drawing weighted directed graphs is presented, forming a foundation for visual implementation of the algorithm in the graph theory.展开更多
Based on the framework of support vector machines (SVM) using one-against-one (OAO) strategy, a new multi-class kernel method based on directed aeyclie graph (DAG) and probabilistic distance is proposed to raise...Based on the framework of support vector machines (SVM) using one-against-one (OAO) strategy, a new multi-class kernel method based on directed aeyclie graph (DAG) and probabilistic distance is proposed to raise the multi-class classification accuracies. The topology structure of DAG is constructed by rearranging the nodes' sequence in the graph. DAG is equivalent to guided operating SVM on a list, and the classification performance depends on the nodes' sequence in the graph. Jeffries-Matusita distance (JMD) is introduced to estimate the separability of each class, and the implementation list is initialized with all classes organized according to certain sequence in the list. To testify the effectiveness of the proposed method, numerical analysis is conducted on UCI data and hyperspectral data. Meanwhile, comparative studies using standard OAO and DAG classification methods are also conducted and the results illustrate better performance and higher accuracy of the orooosed JMD-DAG method.展开更多
Graph colouring is the system of assigning a colour to each vertex of a graph.It is done in such a way that adjacent vertices do not have equal colour.It is fundamental in graph theory.It is often used to solve real-w...Graph colouring is the system of assigning a colour to each vertex of a graph.It is done in such a way that adjacent vertices do not have equal colour.It is fundamental in graph theory.It is often used to solve real-world problems like traffic light signalling,map colouring,scheduling,etc.Nowadays,social networks are prevalent systems in our life.Here,the users are considered as vertices,and their connections/interactions are taken as edges.Some users follow other popular users’profiles in these networks,and some don’t,but those non-followers are connected directly to the popular profiles.That means,along with traditional relationship(information flowing),there is another relation among them.It depends on the domination of the relationship between the nodes.This type of situation can be modelled as a directed fuzzy graph.In the colouring of fuzzy graph theory,edge membership plays a vital role.Edge membership is a representation of flowing information between end nodes of the edge.Apart from the communication relationship,there may be some other factors like domination in relation.This influence of power is captured here.In this article,the colouring of directed fuzzy graphs is defined based on the influence of relationship.Along with this,the chromatic number and strong chromatic number are provided,and related properties are investigated.An application regarding COVID-19 infection is presented using the colouring of directed fuzzy graphs.展开更多
A restricted edge cut is an edge cut of a connected graph whose removal resultsin a disconnected graph without isolated vertices. The size of a minimum restricted edge cutof a graph G is called its restricted edge con...A restricted edge cut is an edge cut of a connected graph whose removal resultsin a disconnected graph without isolated vertices. The size of a minimum restricted edge cutof a graph G is called its restricted edge connectivity, and is denoted by λ′(G). Let ξ(G) bethe minimum edge degree of graph G. It is known that λ′(G) ≤ξ(G) if G contains restrictededge cuts. Graph G is called maximal restricted edge connected if the equality holds in thethe preceding inequality. In this paper, undirected Kautz graph UK(2, n) is proved to bemaximal restricted edge connected if n ≥ 2.展开更多
It is desired to obtain the joint probability distribution(JPD) over a set of random variables with local data, so as to avoid the hard work to collect statistical data in the scale of all variables. A lot of work has...It is desired to obtain the joint probability distribution(JPD) over a set of random variables with local data, so as to avoid the hard work to collect statistical data in the scale of all variables. A lot of work has been done when all variables are in a known directed acyclic graph(DAG). However, steady directed cyclic graphs(DCGs) may be involved when we simply combine modules containing local data together, where a module is composed of a child variable and its parent variables. So far, the physical and statistical meaning of steady DCGs remain unclear and unsolved. This paper illustrates the physical and statistical meaning of steady DCGs, and presents a method to calculate the JPD with local data, given that all variables are in a known single-valued Dynamic Uncertain Causality Graph(S-DUCG), and thus defines a new Bayesian Network with steady DCGs. The so-called single-valued means that only the causes of the true state of a variable are specified, while the false state is the complement of the true state.展开更多
A set in Rd is called regular if its Hausdorff dimension coincides with its upper box counting dimension. It is proved that a random graph-directed self-similar set is regular a.e..
Web service composition lets developers create applications on top of service-oriented computing and its native description, discovery, and communication capabilities. This paper mainly focuses on the QoS when the con...Web service composition lets developers create applications on top of service-oriented computing and its native description, discovery, and communication capabilities. This paper mainly focuses on the QoS when the concrete composition structure is unknown. A QoS model of service composition is presented based on the fuzzy directed graph theory. According to the model, a recursive algorithm is also described for calculating such kind of QoS. And, the feasibility of this QoS model and the recursive algorithm is verified by a case study. The proposed approach enables customers to get a possible value of the QoS before they achieve the service.展开更多
In this paper we discuss the convergence of the directed graph-algorithm for solving a kind of optimization problems where the objective and subjective functions are all separable, and the parallel implementation proc...In this paper we discuss the convergence of the directed graph-algorithm for solving a kind of optimization problems where the objective and subjective functions are all separable, and the parallel implementation process for the directed graph -algorithm is introduced.展开更多
The super edge-connectivity of a graph is an important parameter to measure fault-tolerance of interconnection networks.This note shows that the Kautz undirected graph is super edge-connected,and provides a short proo...The super edge-connectivity of a graph is an important parameter to measure fault-tolerance of interconnection networks.This note shows that the Kautz undirected graph is super edge-connected,and provides a short proof of Lü and Zhang's result on super edge-connectivity of the de Bruijn undirected graph.展开更多
Consensus control of multi-agent systems is an innovative paradigm for the development of intelligent distributed systems.This has fascinated numerous scientific groups for their promising applications as they have th...Consensus control of multi-agent systems is an innovative paradigm for the development of intelligent distributed systems.This has fascinated numerous scientific groups for their promising applications as they have the freedom to achieve their local and global goals and make their own decisions.Network communication topologies based on graph and matrix theory are widely used in a various real-time applications ranging from software agents to robotics.Therefore,while sustaining the significance of both directed and undirected graphs,this research emphases on the demonstration of a distributed average consensus algorithm.It uses the harmonic mean in the domain of multi-agent systems with directed and undirected graphs under static topologies based on a control input scheme.The proposed agreement protocol focuses on achieving a constant consensus on directional and undirected graphs using the exchange of information between neighbors to update their status values and to be able to calculate the total number of agents that contribute to the communication network at the same time.The proposed method is implemented for the identical networks that are considered under the directional and non-directional communication links.Two different scenarios are simulated and it is concluded that the undirected approach has an advantage over directed graph communication in terms of processing time and the total number of iterations required to achieve convergence.The same network parameters are introduced for both orientations of the communication graphs.In addition,the results of the simulation and the calculation of various matrices are provided at the end to validate the effectiveness of the proposed algorithm to achieve consensus.展开更多
Reinforcement learning can be modeled as markov decision process mathematically.In consequence,the interaction samples as well as the connection relation between them are two main types of information for learning.How...Reinforcement learning can be modeled as markov decision process mathematically.In consequence,the interaction samples as well as the connection relation between them are two main types of information for learning.However,most of recent works on deep reinforcement learning treat samples independently either in their own episode or between episodes.In this paper,in order to utilize more sample information,we propose another learning system based on directed associative graph(DAG).The DAG is built on all trajectories in real time,which includes the whole connection relation of all samples among all episodes.Through planning with directed edges on DAG,we offer another perspective to estimate stateaction pair,especially for the unknowns to deep neural network(DNN)as well as episodic memory(EM).Mixed loss function is generated by the three learning systems(DNN,EM and DAG)to improve the efficiency of the parameter update in the proposed algorithm.We show that our algorithm is significantly better than the state-of-the-art algorithm in performance and sample efficiency on testing environments.Furthermore,the convergence of our algorithm is proved in the appendix and its long-term performance as well as the effects of DAG are verified.展开更多
文摘The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to understand complex mobility patterns.Deep learning techniques,such as graph neural networks(GNNs),are popular for their ability to capture spatio-temporal dependencies.However,these models often become overly complex due to the large number of hyper-parameters involved.In this study,we introduce Dynamic Multi-Graph Spatial-Temporal Graph Neural Ordinary Differential Equation Networks(DMST-GNODE),a framework based on ordinary differential equations(ODEs)that autonomously discovers effective spatial-temporal graph neural network(STGNN)architectures for traffic prediction tasks.The comparative analysis of DMST-GNODE and baseline models indicates that DMST-GNODE model demonstrates superior performance across multiple datasets,consistently achieving the lowest Root Mean Square Error(RMSE)and Mean Absolute Error(MAE)values,alongside the highest accuracy.On the BKK(Bangkok)dataset,it outperformed other models with an RMSE of 3.3165 and an accuracy of 0.9367 for a 20-min interval,maintaining this trend across 40 and 60 min.Similarly,on the PeMS08 dataset,DMST-GNODE achieved the best performance with an RMSE of 19.4863 and an accuracy of 0.9377 at 20 min,demonstrating its effectiveness over longer periods.The Los_Loop dataset results further emphasise this model’s advantage,with an RMSE of 3.3422 and an accuracy of 0.7643 at 20 min,consistently maintaining superiority across all time intervals.These numerical highlights indicate that DMST-GNODE not only outperforms baseline models but also achieves higher accuracy and lower errors across different time intervals and datasets.
基金supported by the National Key R&D Program of China(2022YFB3606501,2022YFB3602902)the Key projects of National Natural Science Foundation of China(62234004)+8 种基金the National Natural Science Foundation of China(U23A2092)Pioneer and Leading Goose R&D Program of Zhejiang(2024C01191,2024C01092)Innovation and Entrepreneurship Team of Zhejiang Province(2021R01003)Ningbo Key Technologies R&D Program(2022Z085),Ningbo 3315 Programme(2020A-01-B)YONGJIANG Talent Introduction Programme(2021A-038-B,2021A-159-G)“Innovation Yongjiang 2035”Key R&D Programme(2024Z146)Ningbo JiangBei District public welfare science and technology project(2022C07)the China National Postdoctoral Program for Innovative Talents(grant no.BX20240391)the China Postdoctoral Science Foundation(grant no.2023M743623).
文摘High-resolution non-emissive displays based on electrochromic tungsten oxides(WOx)are crucial for future near-eye virtual/augmented reality interactions,given their impressive attributes such as high environmental stability,ideal outdoor readability,and low energy consumption.However,the limited intrinsic structure of inorganic materials has presented a significant challenge in achieving precise patterning/pixelation at the micron scale.Here,we successfully developed the direct photolithography for WOx nanoparticles based on in situ photo-induced ligand exchange.This strategy enabled us to achieve ultra-high resolution efficiently(line width<4μm,the best resolution for reported inorganic electrochromic materials).Additionally,the resulting device exhibited impressive electrochromic performance,such as fast response(<1 s at 0 V),high coloration efficiency(119.5 cm^(2) C^(−1)),good optical modulation(55.9%),and durability(>3600 cycles),as well as promising applications in electronic logos,pixelated displays,flexible electronics,etc.The success and advancements presented here are expected to inspire and accelerate research and development(R&D)in high-resolution non-emissive displays and other ultra-fine micro-electronics.
基金supported by the National Science Foundation of China(Nos.12161094,12031018,11871270,12161141003and11931006).
文摘A graph G is a fractional(k;m)-deleted graph if removing any m edges from G,the resulting subgraph still admits a fractional k-factor.Let k≥2 and m≥1 be integers.Denote[2m/k]^(*)=[2m/k]if 2m/k is not an integer,and[2m/k]^(*)=[2m/k]-1 if 2m/k is an integer.In this paper,we prove that G is a fractional(k,m)-deleted graph if δ(G)≥k+m and isolated toughness meets I(G)>{3-1/m,if k=2 and m≥3,k+[2m/k]^(*)m+1-[2m/k]^(*);otherwise.Furthermore,we show that the isolated toughness bound is tight.
基金supported by the National Natural Science Foundation of China(Grant No.42301536)the National Key Research and Development Program of China(Grant No.2022YFF0711602)the GDAS’Project of Science and Technology Development(Grant Nos.2022GDASZH-2022010202,2022GDASZH2022020402-01&2022GDASZH-2022010111)。
文摘Mangroves are crucial to the ecological security of the Earth and human well-being.Their management,conservation,and restoration are of great importance and necessitate the support of spatio-temporal information and multidisciplinary knowledge such as biology and ecology.Traditional knowledge services such as plant atlas provide illustrated textual knowledge of mangroves.However,this kind of service is oriented to information retrieval and is incapable of effectively mining and utilizing fragmented knowledge from multi-source heterogeneous data,facing the problem of“massive data,rare knowledge”.Knowledge graphs are capable of extracting,organizing,and fusing the knowledge contained in massive data into semantic networks that can be understood and computed by computers.They provide a solution for the realization of intelligent knowledge services.Focusing on the urgent need for mangrove knowledge acquisition,formal representation,and intelligent services,this paper proposes a research prospect on mangrove knowledge graphs and knowledge services.We first analyze the similarities and differences between various domain-specific concepts of Tupu.On this basis,we define the mangrove knowledge graph as a large-scale knowledge base that integrates multi-disciplinary knowledge and spatio-temporal information with mangrove ecosystems as the core.Then,we propose a research framework for mangrove knowledge services that can realize the transformation from multi-modal data to intelligent knowledge services,including multiple research levels such as ubiquitous data sensing and aggregation,knowledge organization and graph construction,and intelligent mangrove knowledge services.Subsequently,the methods and workflow for constructing mangrove knowledge graphs are introduced.Finally,we discuss the challenges and possible future directions of mangrove knowledge services in the smart era,including the construction of a mangrove knowledge system that integrates the domain-specific characteristics and spatio-temporal features of mangroves,the exploration of knowledge extraction and fusion methods supported by large language models,and the development of intelligent knowledge applications for typical scenarios.
基金partially funded by the National Natural Science Foundation of China(U2142205)the Guangdong Major Project of Basic and Applied Basic Research(2020B0301030004)+1 种基金the Special Fund for Forecasters of China Meteorological Administration(CMAYBY2020-094)the Graduate Student Research and Innovation Program of Central South University(2023ZZTS0347)。
文摘Traditional meteorological downscaling methods face limitations due to the complex distribution of meteorological variables,which can lead to unstable forecasting results,especially in extreme scenarios.To overcome this issue,we propose a convolutional graph neural network(CGNN)model,which we enhance with multilayer feature fusion and a squeeze-and-excitation block.Additionally,we introduce a spatially balanced mean squared error(SBMSE)loss function to address the imbalanced distribution and spatial variability of meteorological variables.The CGNN is capable of extracting essential spatial features and aggregating them from a global perspective,thereby improving the accuracy of prediction and enhancing the model's generalization ability.Based on the experimental results,CGNN has certain advantages in terms of bias distribution,exhibiting a smaller variance.When it comes to precipitation,both UNet and AE also demonstrate relatively small biases.As for temperature,AE and CNNdense perform outstandingly during the winter.The time correlation coefficients show an improvement of at least 10%at daily and monthly scales for both temperature and precipitation.Furthermore,the SBMSE loss function displays an advantage over existing loss functions in predicting the98th percentile and identifying areas where extreme events occur.However,the SBMSE tends to overestimate the distribution of extreme precipitation,which may be due to the theoretical assumptions about the posterior distribution of data that partially limit the effectiveness of the loss function.In future work,we will further optimize the SBMSE to improve prediction accuracy.
文摘A new branch of hypergraph theory-directed hyperaph theory and a kind of new methods-dicomposition contraction(DCP, PDCP and GDC) methods are presented for solving hypernetwork problems.lts computing time is lower than that of ECP method in several order of magnitude.
基金Supported by the Science and Technological Tackling Project of Heilongjiang Province(GB06A106)
文摘In the past 30 years,signed directed graph(SDG) ,one of the qualitative simulation technologies,has been widely applied for chemical fault diagnosis.However,SDG based fault diagnosis,as any other qualitative method,has poor diagnostic resolution.In this paper,a new method that combines SDG with qualitative trend analysis(QTA) is presented to improve the resolution.In the method,a bidirectional inference algorithm based on assumption and verification is used to find all the possible fault causes and their corresponding consistent paths in the SDG model.Then an improved QTA algorithm is used to extract and analyze the trends of nodes on the consis-tent paths found in the previous step.New consistency rules based on qualitative trends are used to find the real causes from the candidate causes.The resolution can be improved.This method combines the completeness feature of SDG with the good diagnostic resolution feature of QTA.The implementation of SDG-QTA based fault diagno-sis is done using the integrated SDG modeling,inference and post-processing software platform.Its application is illustrated on an atmospheric distillation tower unit of a simulation platform.The result shows its good applicability and efficiency.
基金Project supported by Science Foundation of Shanghai MunicipalConmission of Education (Grant No .03A203)
文摘This paper proposes an algorithm for building weighted directed graph, defmes the weighted directed relationship matrix of the graph, and describes algorithm implementation using this matrix. Based on this algorithm, an effective way for building and drawing weighted directed graphs is presented, forming a foundation for visual implementation of the algorithm in the graph theory.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61201310)the Fundamental Research Funds for the Central Universities(Grant No.HIT.NSRIF.201160)the China Postdoctoral Science Foundation(Grant No.20110491067)
文摘Based on the framework of support vector machines (SVM) using one-against-one (OAO) strategy, a new multi-class kernel method based on directed aeyclie graph (DAG) and probabilistic distance is proposed to raise the multi-class classification accuracies. The topology structure of DAG is constructed by rearranging the nodes' sequence in the graph. DAG is equivalent to guided operating SVM on a list, and the classification performance depends on the nodes' sequence in the graph. Jeffries-Matusita distance (JMD) is introduced to estimate the separability of each class, and the implementation list is initialized with all classes organized according to certain sequence in the list. To testify the effectiveness of the proposed method, numerical analysis is conducted on UCI data and hyperspectral data. Meanwhile, comparative studies using standard OAO and DAG classification methods are also conducted and the results illustrate better performance and higher accuracy of the orooosed JMD-DAG method.
基金supported and funded by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(2018R1D1A1B07049321).
文摘Graph colouring is the system of assigning a colour to each vertex of a graph.It is done in such a way that adjacent vertices do not have equal colour.It is fundamental in graph theory.It is often used to solve real-world problems like traffic light signalling,map colouring,scheduling,etc.Nowadays,social networks are prevalent systems in our life.Here,the users are considered as vertices,and their connections/interactions are taken as edges.Some users follow other popular users’profiles in these networks,and some don’t,but those non-followers are connected directly to the popular profiles.That means,along with traditional relationship(information flowing),there is another relation among them.It depends on the domination of the relationship between the nodes.This type of situation can be modelled as a directed fuzzy graph.In the colouring of fuzzy graph theory,edge membership plays a vital role.Edge membership is a representation of flowing information between end nodes of the edge.Apart from the communication relationship,there may be some other factors like domination in relation.This influence of power is captured here.In this article,the colouring of directed fuzzy graphs is defined based on the influence of relationship.Along with this,the chromatic number and strong chromatic number are provided,and related properties are investigated.An application regarding COVID-19 infection is presented using the colouring of directed fuzzy graphs.
基金Supported by the NNSF of China(10271105) Supported by the NSF of Fujian EducationMinistry(JA03145) Supported by the NNSF of China(10071080)
文摘A restricted edge cut is an edge cut of a connected graph whose removal resultsin a disconnected graph without isolated vertices. The size of a minimum restricted edge cutof a graph G is called its restricted edge connectivity, and is denoted by λ′(G). Let ξ(G) bethe minimum edge degree of graph G. It is known that λ′(G) ≤ξ(G) if G contains restrictededge cuts. Graph G is called maximal restricted edge connected if the equality holds in thethe preceding inequality. In this paper, undirected Kautz graph UK(2, n) is proved to bemaximal restricted edge connected if n ≥ 2.
基金supported by the National Natural Science Foundation of China under Grant 71671103
文摘It is desired to obtain the joint probability distribution(JPD) over a set of random variables with local data, so as to avoid the hard work to collect statistical data in the scale of all variables. A lot of work has been done when all variables are in a known directed acyclic graph(DAG). However, steady directed cyclic graphs(DCGs) may be involved when we simply combine modules containing local data together, where a module is composed of a child variable and its parent variables. So far, the physical and statistical meaning of steady DCGs remain unclear and unsolved. This paper illustrates the physical and statistical meaning of steady DCGs, and presents a method to calculate the JPD with local data, given that all variables are in a known single-valued Dynamic Uncertain Causality Graph(S-DUCG), and thus defines a new Bayesian Network with steady DCGs. The so-called single-valued means that only the causes of the true state of a variable are specified, while the false state is the complement of the true state.
文摘A set in Rd is called regular if its Hausdorff dimension coincides with its upper box counting dimension. It is proved that a random graph-directed self-similar set is regular a.e..
基金Supported by the National Natural Science Foundation of China(60303025 ,60673017)the Natural Science Foundation of Jiangsu Prov-ince (BK2007137)the Program for New Century Excellent Talents in University
文摘Web service composition lets developers create applications on top of service-oriented computing and its native description, discovery, and communication capabilities. This paper mainly focuses on the QoS when the concrete composition structure is unknown. A QoS model of service composition is presented based on the fuzzy directed graph theory. According to the model, a recursive algorithm is also described for calculating such kind of QoS. And, the feasibility of this QoS model and the recursive algorithm is verified by a case study. The proposed approach enables customers to get a possible value of the QoS before they achieve the service.
文摘In this paper we discuss the convergence of the directed graph-algorithm for solving a kind of optimization problems where the objective and subjective functions are all separable, and the parallel implementation process for the directed graph -algorithm is introduced.
基金by ANSF( 0 1 0 4 61 0 2 ) and the National Natural Science Foundatim of China ( 1 0 2 71 1 1 4)
文摘The super edge-connectivity of a graph is an important parameter to measure fault-tolerance of interconnection networks.This note shows that the Kautz undirected graph is super edge-connected,and provides a short proof of Lü and Zhang's result on super edge-connectivity of the de Bruijn undirected graph.
文摘Consensus control of multi-agent systems is an innovative paradigm for the development of intelligent distributed systems.This has fascinated numerous scientific groups for their promising applications as they have the freedom to achieve their local and global goals and make their own decisions.Network communication topologies based on graph and matrix theory are widely used in a various real-time applications ranging from software agents to robotics.Therefore,while sustaining the significance of both directed and undirected graphs,this research emphases on the demonstration of a distributed average consensus algorithm.It uses the harmonic mean in the domain of multi-agent systems with directed and undirected graphs under static topologies based on a control input scheme.The proposed agreement protocol focuses on achieving a constant consensus on directional and undirected graphs using the exchange of information between neighbors to update their status values and to be able to calculate the total number of agents that contribute to the communication network at the same time.The proposed method is implemented for the identical networks that are considered under the directional and non-directional communication links.Two different scenarios are simulated and it is concluded that the undirected approach has an advantage over directed graph communication in terms of processing time and the total number of iterations required to achieve convergence.The same network parameters are introduced for both orientations of the communication graphs.In addition,the results of the simulation and the calculation of various matrices are provided at the end to validate the effectiveness of the proposed algorithm to achieve consensus.
基金This work is supported by the National Key Research and Development Program of China,2018YFA0701603 and Natural Science Foundation of Anhui Province,2008085MF213.
文摘Reinforcement learning can be modeled as markov decision process mathematically.In consequence,the interaction samples as well as the connection relation between them are two main types of information for learning.However,most of recent works on deep reinforcement learning treat samples independently either in their own episode or between episodes.In this paper,in order to utilize more sample information,we propose another learning system based on directed associative graph(DAG).The DAG is built on all trajectories in real time,which includes the whole connection relation of all samples among all episodes.Through planning with directed edges on DAG,we offer another perspective to estimate stateaction pair,especially for the unknowns to deep neural network(DNN)as well as episodic memory(EM).Mixed loss function is generated by the three learning systems(DNN,EM and DAG)to improve the efficiency of the parameter update in the proposed algorithm.We show that our algorithm is significantly better than the state-of-the-art algorithm in performance and sample efficiency on testing environments.Furthermore,the convergence of our algorithm is proved in the appendix and its long-term performance as well as the effects of DAG are verified.