Current researches on node importance evaluation mainly focus on undirected and unweighted networks, which fail to reflect the real world in a comprehensive and objective way. Based on directed weighted complex networ...Current researches on node importance evaluation mainly focus on undirected and unweighted networks, which fail to reflect the real world in a comprehensive and objective way. Based on directed weighted complex network models, the paper introduces the concept of in-weight intensity of nodes and thereby presents a new method to identify key nodes by using an importance evaluation matrix. The method not only considers the direction and weight of edges, but also takes into account the position importance of nodes and the importance contributions of adjacent nodes. Finally, the paper applies the algorithm to a microblog-forwarding network composed of 34 users, then compares the evaluation results with traditional methods. The experiment shows that the method proposed can effectively evaluate the node importance in directed weighted networks.展开更多
基金Supported by the National Natural Science Foundation of China(71571119)
文摘Current researches on node importance evaluation mainly focus on undirected and unweighted networks, which fail to reflect the real world in a comprehensive and objective way. Based on directed weighted complex network models, the paper introduces the concept of in-weight intensity of nodes and thereby presents a new method to identify key nodes by using an importance evaluation matrix. The method not only considers the direction and weight of edges, but also takes into account the position importance of nodes and the importance contributions of adjacent nodes. Finally, the paper applies the algorithm to a microblog-forwarding network composed of 34 users, then compares the evaluation results with traditional methods. The experiment shows that the method proposed can effectively evaluate the node importance in directed weighted networks.