This paper proposes an algorithm for building weighted directed graph, defmes the weighted directed relationship matrix of the graph, and describes algorithm implementation using this matrix. Based on this algorithm, ...This paper proposes an algorithm for building weighted directed graph, defmes the weighted directed relationship matrix of the graph, and describes algorithm implementation using this matrix. Based on this algorithm, an effective way for building and drawing weighted directed graphs is presented, forming a foundation for visual implementation of the algorithm in the graph theory.展开更多
Currently,functional connectomes constructed from neuroimaging data have emerged as a powerful tool in identifying brain disorders.If one brain disease just manifests as some cognitive dysfunction,it means that the di...Currently,functional connectomes constructed from neuroimaging data have emerged as a powerful tool in identifying brain disorders.If one brain disease just manifests as some cognitive dysfunction,it means that the disease may affect some local connectivity in the brain functional network.That is,there are functional abnormalities in the sub-network.Therefore,it is crucial to accurately identify them in pathological diagnosis.To solve these problems,we proposed a sub-network extraction method based on graph regularization nonnegative matrix factorization(GNMF).The dynamic functional networks of normal subjects and early mild cognitive impairment(eMCI)subjects were vectorized and the functional connection vectors(FCV)were assembled to aggregation matrices.Then GNMF was applied to factorize the aggregation matrix to get the base matrix,in which the column vectors were restored to a common sub-network and a distinctive sub-network,and visualization and statistical analysis were conducted on the two sub-networks,respectively.Experimental results demonstrated that,compared with other matrix factorization methods,the proposed method can more obviously reflect the similarity between the common subnetwork of eMCI subjects and normal subjects,as well as the difference between the distinctive sub-network of eMCI subjects and normal subjects,Therefore,the high-dimensional features in brain functional networks can be best represented locally in the lowdimensional space,which provides a new idea for studying brain functional connectomes.展开更多
Consensus control of multi-agent systems is an innovative paradigm for the development of intelligent distributed systems.This has fascinated numerous scientific groups for their promising applications as they have th...Consensus control of multi-agent systems is an innovative paradigm for the development of intelligent distributed systems.This has fascinated numerous scientific groups for their promising applications as they have the freedom to achieve their local and global goals and make their own decisions.Network communication topologies based on graph and matrix theory are widely used in a various real-time applications ranging from software agents to robotics.Therefore,while sustaining the significance of both directed and undirected graphs,this research emphases on the demonstration of a distributed average consensus algorithm.It uses the harmonic mean in the domain of multi-agent systems with directed and undirected graphs under static topologies based on a control input scheme.The proposed agreement protocol focuses on achieving a constant consensus on directional and undirected graphs using the exchange of information between neighbors to update their status values and to be able to calculate the total number of agents that contribute to the communication network at the same time.The proposed method is implemented for the identical networks that are considered under the directional and non-directional communication links.Two different scenarios are simulated and it is concluded that the undirected approach has an advantage over directed graph communication in terms of processing time and the total number of iterations required to achieve convergence.The same network parameters are introduced for both orientations of the communication graphs.In addition,the results of the simulation and the calculation of various matrices are provided at the end to validate the effectiveness of the proposed algorithm to achieve consensus.展开更多
In the past 30 years,signed directed graph(SDG) ,one of the qualitative simulation technologies,has been widely applied for chemical fault diagnosis.However,SDG based fault diagnosis,as any other qualitative method,ha...In the past 30 years,signed directed graph(SDG) ,one of the qualitative simulation technologies,has been widely applied for chemical fault diagnosis.However,SDG based fault diagnosis,as any other qualitative method,has poor diagnostic resolution.In this paper,a new method that combines SDG with qualitative trend analysis(QTA) is presented to improve the resolution.In the method,a bidirectional inference algorithm based on assumption and verification is used to find all the possible fault causes and their corresponding consistent paths in the SDG model.Then an improved QTA algorithm is used to extract and analyze the trends of nodes on the consis-tent paths found in the previous step.New consistency rules based on qualitative trends are used to find the real causes from the candidate causes.The resolution can be improved.This method combines the completeness feature of SDG with the good diagnostic resolution feature of QTA.The implementation of SDG-QTA based fault diagno-sis is done using the integrated SDG modeling,inference and post-processing software platform.Its application is illustrated on an atmospheric distillation tower unit of a simulation platform.The result shows its good applicability and efficiency.展开更多
In this paper,we focus on inferring graph Laplacian matrix from the spatiotemporal signal which is defined as“time-vertex signal”.To realize this,we first represent the signals on a joint graph which is the Cartesia...In this paper,we focus on inferring graph Laplacian matrix from the spatiotemporal signal which is defined as“time-vertex signal”.To realize this,we first represent the signals on a joint graph which is the Cartesian product graph of the time-and vertex-graphs.By assuming the signals follow a Gaussian prior distribution on the joint graph,a meaningful representation that promotes the smoothness property of the joint graph signal is derived.Furthermore,by decoupling the joint graph,the graph learning framework is formulated as a joint optimization problem which includes signal denoising,timeand vertex-graphs learning together.Specifically,two algorithms are proposed to solve the optimization problem,where the discrete second-order difference operator with reversed sign(DSODO)in the time domain is used as the time-graph Laplacian operator to recover the signal and infer a vertex-graph in the first algorithm,and the time-graph,as well as the vertex-graph,is estimated by the other algorithm.Experiments on both synthetic and real-world datasets demonstrate that the proposed algorithms can effectively infer meaningful time-and vertex-graphs from noisy and incomplete data.展开更多
Web service composition lets developers create applications on top of service-oriented computing and its native description, discovery, and communication capabilities. This paper mainly focuses on the QoS when the con...Web service composition lets developers create applications on top of service-oriented computing and its native description, discovery, and communication capabilities. This paper mainly focuses on the QoS when the concrete composition structure is unknown. A QoS model of service composition is presented based on the fuzzy directed graph theory. According to the model, a recursive algorithm is also described for calculating such kind of QoS. And, the feasibility of this QoS model and the recursive algorithm is verified by a case study. The proposed approach enables customers to get a possible value of the QoS before they achieve the service.展开更多
Finding crucial vertices is a key problem for improving the reliability and ensuring the effective operation of networks,solved by approaches based on multiple attribute decision that suffer from ignoring the correlat...Finding crucial vertices is a key problem for improving the reliability and ensuring the effective operation of networks,solved by approaches based on multiple attribute decision that suffer from ignoring the correlation among each attribute or the heterogeneity between attribute and structure. To overcome these problems, a novel vertex centrality approach, called VCJG, is proposed based on joint nonnegative matrix factorization and graph embedding. The potential attributes with linearly independent and the structure information are captured automatically in light of nonnegative matrix factorization for factorizing the weighted adjacent matrix and the structure matrix, which is generated by graph embedding. And the smoothness strategy is applied to eliminate the heterogeneity between attributes and structure by joint nonnegative matrix factorization. Then VCJG integrates the above steps to formulate an overall objective function, and obtain the ultimately potential attributes fused the structure information of network through optimizing the objective function. Finally, the attributes are combined with neighborhood rules to evaluate vertex's importance. Through comparative analyses with experiments on nine real-world networks, we demonstrate that the proposed approach outperforms nine state-of-the-art algorithms for identification of vital vertices with respect to correlation, monotonicity and accuracy of top-10 vertices ranking.展开更多
This paper focuses on the distributed cooperative learning(DCL)problem for a class of discrete-time strict-feedback multi-agent systems under directed graphs.Compared with the previous DCL works based on undirected gr...This paper focuses on the distributed cooperative learning(DCL)problem for a class of discrete-time strict-feedback multi-agent systems under directed graphs.Compared with the previous DCL works based on undirected graphs,two main challenges lie in that the Laplacian matrix of directed graphs is nonsymmetric,and the derived weight error systems exist n-step delays.Two novel lemmas are developed in this paper to show the exponential convergence for two kinds of linear time-varying(LTV)systems with different phenomena including the nonsymmetric Laplacian matrix and time delays.Subsequently,an adaptive neural network(NN)control scheme is proposed by establishing a directed communication graph along with n-step delays weight updating law.Then,by using two novel lemmas on the extended exponential convergence of LTV systems,estimated NN weights of all agents are verified to exponentially converge to small neighbourhoods of their common optimal values if directed communication graphs are strongly connected and balanced.The stored NN weights are reused to structure learning controllers for the improved control performance of similar control tasks by the“mod”function and proper time series.A simulation comparison is shown to demonstrate the validity of the proposed DCL method.展开更多
Link prediction has attracted wide attention among interdisciplinaryresearchers as an important issue in complex network. It aims to predict the missing links in current networks and new links that will appear in fut...Link prediction has attracted wide attention among interdisciplinaryresearchers as an important issue in complex network. It aims to predict the missing links in current networks and new links that will appear in future networks.Despite the presence of missing links in the target network of link prediction studies, the network it processes remains macroscopically as a large connectedgraph. However, the complexity of the real world makes the complex networksabstracted from real systems often contain many isolated nodes. This phenomenon leads to existing link prediction methods not to efficiently implement the prediction of missing edges on isolated nodes. Therefore, the cold-start linkprediction is favored as one of the most valuable subproblems of traditional linkprediction. However, due to the loss of many links in the observation network, thetopological information available for completing the link prediction task is extremely scarce. This presents a severe challenge for the study of cold-start link prediction. Therefore, how to mine and fuse more available non-topologicalinformation from observed network becomes the key point to solve the problemof cold-start link prediction. In this paper, we propose a framework for solving thecold-start link prediction problem, a joint-weighted symmetric nonnegative matrixfactorization model fusing graph regularization information, based on low-rankapproximation algorithms in the field of machine learning. First, the nonlinear features in high-dimensional space of node attributes are captured by the designedgraph regularization term. Second, using a weighted matrix, we associate the attribute similarity and first order structure information of nodes and constrain eachother. Finally, a unified framework for implementing cold-start link prediction isconstructed by using a symmetric nonnegative matrix factorization model to integrate the multiple information extracted together. Extensive experimental validationon five real networks with attributes shows that the proposed model has very goodpredictive performance when predicting missing edges of isolated nodes.展开更多
This paper continues the research on theoretical foundations for computer simulation.We introduce the concept of word-updating dynamical systems(WDS)on directed graphs,which is a kind of generalization of sequential d...This paper continues the research on theoretical foundations for computer simulation.We introduce the concept of word-updating dynamical systems(WDS)on directed graphs,which is a kind of generalization of sequential dynamical systems(SDS)on graphs.Some properties on WDS,especially some results on NOR-WDS,which are different from that on NOR-SDS,are obtained.展开更多
Total Knee Replacement(TKR)is the increasing trend now a day,in revision surgery which is associated with aseptic loosening,which is a challenging research for the TKR component.The selection of optimal material loose...Total Knee Replacement(TKR)is the increasing trend now a day,in revision surgery which is associated with aseptic loosening,which is a challenging research for the TKR component.The selection of optimal material loosening can be controlled at some limits.This paper is going to consider the best material selected among a number of alternative materials for the femoral component(FC)by using Graph Theory.Here GTMA process used for optimization of material and a systematic technique introduced through sensitivity analysis to find out the more reliable result.Obtained ranking suggests the use of optimized material over the other existing material.By following GTMA Co_Cr-alloys(wrought-Co-Ni-Cr-Mo)and Co_Cr-alloys(cast-able-Co-Cr-Mo)are on the 1st and 2nd position respectively.展开更多
This paper proposes a Graph regularized Lpsmooth non-negative matrix factorization(GSNMF) method by incorporating graph regularization and L_p smoothing constraint, which considers the intrinsic geometric information ...This paper proposes a Graph regularized Lpsmooth non-negative matrix factorization(GSNMF) method by incorporating graph regularization and L_p smoothing constraint, which considers the intrinsic geometric information of a data set and produces smooth and stable solutions. The main contributions are as follows: first, graph regularization is added into NMF to discover the hidden semantics and simultaneously respect the intrinsic geometric structure information of a data set. Second,the Lpsmoothing constraint is incorporated into NMF to combine the merits of isotropic(L_2-norm) and anisotropic(L_1-norm)diffusion smoothing, and produces a smooth and more accurate solution to the optimization problem. Finally, the update rules and proof of convergence of GSNMF are given. Experiments on several data sets show that the proposed method outperforms related state-of-the-art methods.展开更多
Graph colouring is the system of assigning a colour to each vertex of a graph.It is done in such a way that adjacent vertices do not have equal colour.It is fundamental in graph theory.It is often used to solve real-w...Graph colouring is the system of assigning a colour to each vertex of a graph.It is done in such a way that adjacent vertices do not have equal colour.It is fundamental in graph theory.It is often used to solve real-world problems like traffic light signalling,map colouring,scheduling,etc.Nowadays,social networks are prevalent systems in our life.Here,the users are considered as vertices,and their connections/interactions are taken as edges.Some users follow other popular users’profiles in these networks,and some don’t,but those non-followers are connected directly to the popular profiles.That means,along with traditional relationship(information flowing),there is another relation among them.It depends on the domination of the relationship between the nodes.This type of situation can be modelled as a directed fuzzy graph.In the colouring of fuzzy graph theory,edge membership plays a vital role.Edge membership is a representation of flowing information between end nodes of the edge.Apart from the communication relationship,there may be some other factors like domination in relation.This influence of power is captured here.In this article,the colouring of directed fuzzy graphs is defined based on the influence of relationship.Along with this,the chromatic number and strong chromatic number are provided,and related properties are investigated.An application regarding COVID-19 infection is presented using the colouring of directed fuzzy graphs.展开更多
The spectral theory of graph is an important branch of graph theory,and the main part of this theory is the connection between the spectral properties and the structural properties,characterization of the structural p...The spectral theory of graph is an important branch of graph theory,and the main part of this theory is the connection between the spectral properties and the structural properties,characterization of the structural properties of graphs.We discuss the problems about singularity,signature matrix and spectrum of mixed graphs.Without loss of generality,parallel edges and loops are permitted in mixed graphs.Let G1 and G2 be connected mixed graphs which are obtained from an underlying graph G.When G1 and G2 have the same singularity,the number of induced cycles in Gi(i=1,2)is l(l=1,l>1),the length of the smallest induced cycles is 1,2,at least 3.According to conclusions and mathematics induction,we find that the singularity of corresponding induced cycles in G1 and G2 are the same if and only if there exists a signature matrix D such that L(G2)=DTL(G1)D.D may be the product of some signature matrices.If L(G2)=D^TL(G1)D,G1 and G2 have the same spectrum.展开更多
The construction of new power systems presents higher requirements for the Power Internet of Things(PIoT)technology.The“source-grid-load-storage”architecture of a new power system requires PIoT to have a stronger mu...The construction of new power systems presents higher requirements for the Power Internet of Things(PIoT)technology.The“source-grid-load-storage”architecture of a new power system requires PIoT to have a stronger multi-source heterogeneous data fusion ability.Native graph databases have great advantages in dealing with multi-source heterogeneous data,which make them suitable for an increasing number of analytical computing tasks.However,only few existing graph database products have native support for matrix operation-related interfaces or functions,resulting in low efficiency when handling matrix calculations that are commonly encountered in power grids.In this paper,the matrix computation process is expressed by a strategy called graph description,which relies on the natural connection between the matrix and structure of the graph.Based on that,we implement matrix operations on graph database,including matrix multiplication,matrix decomposition,etc.Specifically,only the nodes relevant to the computation and their neighbors are concerned in the process,which prunes the influence of zero elements in the matrix and avoids useless iterations compared to the conventional matrix computation.Based on the graph description,a series of power grid computations can be implemented on graph database,which reduces redundant data import and export operations while leveraging the parallel computing capability of graph database.It promotes the efficiency of PIoT when handling multi-source heterogeneous data.An comprehensive experimental study over two different scale power system datasets compares the proposed method with Python and MATLAB baselines.The results reveal the superior performance of our proposed method in both power flow and N-1 contingency computations.展开更多
A dominating set of a graph G is a set of vertices that contains at least one endpoint of every edge on the graph. The domination number of G is the order of a minimum dominating set of G. The (t, r) broadcast dominat...A dominating set of a graph G is a set of vertices that contains at least one endpoint of every edge on the graph. The domination number of G is the order of a minimum dominating set of G. The (t, r) broadcast domination is a generalization of domination in which a set of broadcasting vertices emits signals of strength t that decrease by 1 as they traverse each edge, and we require that every vertex in the graph receives a cumulative signal of at least r from its set of broadcasting neighbors. In this paper, we extend the study of (t, r) broadcast domination to directed graphs. Our main result explores the interval of values obtained by considering the directed (t, r) broadcast domination numbers of all orientations of a graph G. In particular, we prove that in the cases r = 1 and (t, r) = (2, 2), for every integer value in this interval, there exists an orientation of G which has directed (t, r) broadcast domination number equal to that value. We also investigate directed (t, r) broadcast domination on the finite grid graph, the star graph, the infinite grid graph, and the infinite triangular lattice graph. We conclude with some directions for future study.展开更多
In this paper, the character matrix x n is studied, fast construction method of matrix X 2m is provided. And it is proved that the lower bound estimate of the number of an Latin squares matrix D[X m] is2m(2m)!+...In this paper, the character matrix x n is studied, fast construction method of matrix X 2m is provided. And it is proved that the lower bound estimate of the number of an Latin squares matrix D[X m] is2m(2m)!+∑mi=2[(2m)!] 2∏ij=1K j!∏rj=1b j!.展开更多
In this paper, the character matrix x n is studied, fast construction method of matrix X 2m is provided. And it is proved that the lower bound estimate of the number of an Latin squares matrix D[X m] is2m(2m)!+...In this paper, the character matrix x n is studied, fast construction method of matrix X 2m is provided. And it is proved that the lower bound estimate of the number of an Latin squares matrix D[X m] is2m(2m)!+∑mi=2[(2m)!] 2∏ij=1K j!∏rj=1b j!.展开更多
A compliant metamorphic mechanism attributes to a new type of metamorphic mechanisms evolved from rigid metamorphic mechanisms. The structural characteristics and representations of a compliant metamorphic mechanism a...A compliant metamorphic mechanism attributes to a new type of metamorphic mechanisms evolved from rigid metamorphic mechanisms. The structural characteristics and representations of a compliant metamorphic mechanism are different from its rigid counterparts, so does the structural synthesis method. In order to carry out its structural synthesis, a constraint graph representation for topological structure of compliant metamorphic mechanisms is introduced, which can not only represent the structure of a compliant metamorphic mechanism, but also describe the characteristics of its links and kinematic pairs. An adjacency matrix representation of the link relationships in a compliant metamorphic mechanism is presented according to the constraint graph. Then, a method for structural synthesis of compliant metamorphic mechanisms is proposed based on the adjacency matrix operations. The operation rules and the operation procedures of adjacency matrices are described through synthesis of the initial configurations composed of s+1 links from an s-link mechanism (the final configuration). The method is demonstrated by synthesizing all the possible four-link compliant metamorphic mechanisms that can transform into a three-link mechanism through combining two of its links. Sixty-five adjacency matrices are obtained in the synthesis, each of which corresponds to a compliant metamorphic mechanism having four links. Therefore, the effectiveness of the method is validated by a specific compliant metamorphic mechanism corresponding to one of the sixty-five adjacency matrices. The structural synthesis method is put into practice as a fully compliant metamorphic hand is presented based on the synthesis results. The synthesis method has the advantages of simple operation rules, clear geometric meanings, ease of programming with matrix operation, and provides an effective method for structural synthesis of compliant metamorphic mechanisms and can be used in the design of new compliant metamorphic mechanisms.展开更多
基金Project supported by Science Foundation of Shanghai MunicipalConmission of Education (Grant No .03A203)
文摘This paper proposes an algorithm for building weighted directed graph, defmes the weighted directed relationship matrix of the graph, and describes algorithm implementation using this matrix. Based on this algorithm, an effective way for building and drawing weighted directed graphs is presented, forming a foundation for visual implementation of the algorithm in the graph theory.
基金supported by the National Natural Science Foundation of China(No.51877013),(ZJ),(http://www.nsfc.gov.cn/)the Natural Science Foundation of Jiangsu Province(No.BK20181463),(ZJ),(http://kxjst.jiangsu.gov.cn/)sponsored by Qing Lan Project of Jiangsu Province(no specific grant number),(ZJ),(http://jyt.jiangsu.gov.cn/).
文摘Currently,functional connectomes constructed from neuroimaging data have emerged as a powerful tool in identifying brain disorders.If one brain disease just manifests as some cognitive dysfunction,it means that the disease may affect some local connectivity in the brain functional network.That is,there are functional abnormalities in the sub-network.Therefore,it is crucial to accurately identify them in pathological diagnosis.To solve these problems,we proposed a sub-network extraction method based on graph regularization nonnegative matrix factorization(GNMF).The dynamic functional networks of normal subjects and early mild cognitive impairment(eMCI)subjects were vectorized and the functional connection vectors(FCV)were assembled to aggregation matrices.Then GNMF was applied to factorize the aggregation matrix to get the base matrix,in which the column vectors were restored to a common sub-network and a distinctive sub-network,and visualization and statistical analysis were conducted on the two sub-networks,respectively.Experimental results demonstrated that,compared with other matrix factorization methods,the proposed method can more obviously reflect the similarity between the common subnetwork of eMCI subjects and normal subjects,as well as the difference between the distinctive sub-network of eMCI subjects and normal subjects,Therefore,the high-dimensional features in brain functional networks can be best represented locally in the lowdimensional space,which provides a new idea for studying brain functional connectomes.
文摘Consensus control of multi-agent systems is an innovative paradigm for the development of intelligent distributed systems.This has fascinated numerous scientific groups for their promising applications as they have the freedom to achieve their local and global goals and make their own decisions.Network communication topologies based on graph and matrix theory are widely used in a various real-time applications ranging from software agents to robotics.Therefore,while sustaining the significance of both directed and undirected graphs,this research emphases on the demonstration of a distributed average consensus algorithm.It uses the harmonic mean in the domain of multi-agent systems with directed and undirected graphs under static topologies based on a control input scheme.The proposed agreement protocol focuses on achieving a constant consensus on directional and undirected graphs using the exchange of information between neighbors to update their status values and to be able to calculate the total number of agents that contribute to the communication network at the same time.The proposed method is implemented for the identical networks that are considered under the directional and non-directional communication links.Two different scenarios are simulated and it is concluded that the undirected approach has an advantage over directed graph communication in terms of processing time and the total number of iterations required to achieve convergence.The same network parameters are introduced for both orientations of the communication graphs.In addition,the results of the simulation and the calculation of various matrices are provided at the end to validate the effectiveness of the proposed algorithm to achieve consensus.
基金Supported by the Science and Technological Tackling Project of Heilongjiang Province(GB06A106)
文摘In the past 30 years,signed directed graph(SDG) ,one of the qualitative simulation technologies,has been widely applied for chemical fault diagnosis.However,SDG based fault diagnosis,as any other qualitative method,has poor diagnostic resolution.In this paper,a new method that combines SDG with qualitative trend analysis(QTA) is presented to improve the resolution.In the method,a bidirectional inference algorithm based on assumption and verification is used to find all the possible fault causes and their corresponding consistent paths in the SDG model.Then an improved QTA algorithm is used to extract and analyze the trends of nodes on the consis-tent paths found in the previous step.New consistency rules based on qualitative trends are used to find the real causes from the candidate causes.The resolution can be improved.This method combines the completeness feature of SDG with the good diagnostic resolution feature of QTA.The implementation of SDG-QTA based fault diagno-sis is done using the integrated SDG modeling,inference and post-processing software platform.Its application is illustrated on an atmospheric distillation tower unit of a simulation platform.The result shows its good applicability and efficiency.
基金supported by the National Natural Science Foundation of China(Grant No.61966007)Key Laboratory of Cognitive Radio and Information Processing,Ministry of Education(No.CRKL180106,No.CRKL180201)+1 种基金Guangxi Key Laboratory of Wireless Wideband Communication and Signal Processing,Guilin University of Electronic Technology(No.GXKL06180107,No.GXKL06190117)Guangxi Colleges and Universities Key Laboratory of Satellite Navigation and Position Sensing.
文摘In this paper,we focus on inferring graph Laplacian matrix from the spatiotemporal signal which is defined as“time-vertex signal”.To realize this,we first represent the signals on a joint graph which is the Cartesian product graph of the time-and vertex-graphs.By assuming the signals follow a Gaussian prior distribution on the joint graph,a meaningful representation that promotes the smoothness property of the joint graph signal is derived.Furthermore,by decoupling the joint graph,the graph learning framework is formulated as a joint optimization problem which includes signal denoising,timeand vertex-graphs learning together.Specifically,two algorithms are proposed to solve the optimization problem,where the discrete second-order difference operator with reversed sign(DSODO)in the time domain is used as the time-graph Laplacian operator to recover the signal and infer a vertex-graph in the first algorithm,and the time-graph,as well as the vertex-graph,is estimated by the other algorithm.Experiments on both synthetic and real-world datasets demonstrate that the proposed algorithms can effectively infer meaningful time-and vertex-graphs from noisy and incomplete data.
基金Supported by the National Natural Science Foundation of China(60303025 ,60673017)the Natural Science Foundation of Jiangsu Prov-ince (BK2007137)the Program for New Century Excellent Talents in University
文摘Web service composition lets developers create applications on top of service-oriented computing and its native description, discovery, and communication capabilities. This paper mainly focuses on the QoS when the concrete composition structure is unknown. A QoS model of service composition is presented based on the fuzzy directed graph theory. According to the model, a recursive algorithm is also described for calculating such kind of QoS. And, the feasibility of this QoS model and the recursive algorithm is verified by a case study. The proposed approach enables customers to get a possible value of the QoS before they achieve the service.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.62162040 and 11861045)。
文摘Finding crucial vertices is a key problem for improving the reliability and ensuring the effective operation of networks,solved by approaches based on multiple attribute decision that suffer from ignoring the correlation among each attribute or the heterogeneity between attribute and structure. To overcome these problems, a novel vertex centrality approach, called VCJG, is proposed based on joint nonnegative matrix factorization and graph embedding. The potential attributes with linearly independent and the structure information are captured automatically in light of nonnegative matrix factorization for factorizing the weighted adjacent matrix and the structure matrix, which is generated by graph embedding. And the smoothness strategy is applied to eliminate the heterogeneity between attributes and structure by joint nonnegative matrix factorization. Then VCJG integrates the above steps to formulate an overall objective function, and obtain the ultimately potential attributes fused the structure information of network through optimizing the objective function. Finally, the attributes are combined with neighborhood rules to evaluate vertex's importance. Through comparative analyses with experiments on nine real-world networks, we demonstrate that the proposed approach outperforms nine state-of-the-art algorithms for identification of vital vertices with respect to correlation, monotonicity and accuracy of top-10 vertices ranking.
基金supported in part by the Guangdong Natural Science Foundation(2019B151502058)in part by the National Natural Science Foundation of China(61890922,61973129)+1 种基金in part by the Major Key Project of PCL(PCL2021A09)in part by the Guangdong Basic and Applied Basic Research Foundation(2021A1515012004)。
文摘This paper focuses on the distributed cooperative learning(DCL)problem for a class of discrete-time strict-feedback multi-agent systems under directed graphs.Compared with the previous DCL works based on undirected graphs,two main challenges lie in that the Laplacian matrix of directed graphs is nonsymmetric,and the derived weight error systems exist n-step delays.Two novel lemmas are developed in this paper to show the exponential convergence for two kinds of linear time-varying(LTV)systems with different phenomena including the nonsymmetric Laplacian matrix and time delays.Subsequently,an adaptive neural network(NN)control scheme is proposed by establishing a directed communication graph along with n-step delays weight updating law.Then,by using two novel lemmas on the extended exponential convergence of LTV systems,estimated NN weights of all agents are verified to exponentially converge to small neighbourhoods of their common optimal values if directed communication graphs are strongly connected and balanced.The stored NN weights are reused to structure learning controllers for the improved control performance of similar control tasks by the“mod”function and proper time series.A simulation comparison is shown to demonstrate the validity of the proposed DCL method.
基金supported by the Teaching Reform Research Project of Qinghai Minzu University,China(2021-JYYB-009)the“Chunhui Plan”Cooperative Scientific Research Project of the Ministry of Education of China(2018).
文摘Link prediction has attracted wide attention among interdisciplinaryresearchers as an important issue in complex network. It aims to predict the missing links in current networks and new links that will appear in future networks.Despite the presence of missing links in the target network of link prediction studies, the network it processes remains macroscopically as a large connectedgraph. However, the complexity of the real world makes the complex networksabstracted from real systems often contain many isolated nodes. This phenomenon leads to existing link prediction methods not to efficiently implement the prediction of missing edges on isolated nodes. Therefore, the cold-start linkprediction is favored as one of the most valuable subproblems of traditional linkprediction. However, due to the loss of many links in the observation network, thetopological information available for completing the link prediction task is extremely scarce. This presents a severe challenge for the study of cold-start link prediction. Therefore, how to mine and fuse more available non-topologicalinformation from observed network becomes the key point to solve the problemof cold-start link prediction. In this paper, we propose a framework for solving thecold-start link prediction problem, a joint-weighted symmetric nonnegative matrixfactorization model fusing graph regularization information, based on low-rankapproximation algorithms in the field of machine learning. First, the nonlinear features in high-dimensional space of node attributes are captured by the designedgraph regularization term. Second, using a weighted matrix, we associate the attribute similarity and first order structure information of nodes and constrain eachother. Finally, a unified framework for implementing cold-start link prediction isconstructed by using a symmetric nonnegative matrix factorization model to integrate the multiple information extracted together. Extensive experimental validationon five real networks with attributes shows that the proposed model has very goodpredictive performance when predicting missing edges of isolated nodes.
文摘This paper continues the research on theoretical foundations for computer simulation.We introduce the concept of word-updating dynamical systems(WDS)on directed graphs,which is a kind of generalization of sequential dynamical systems(SDS)on graphs.Some properties on WDS,especially some results on NOR-WDS,which are different from that on NOR-SDS,are obtained.
文摘Total Knee Replacement(TKR)is the increasing trend now a day,in revision surgery which is associated with aseptic loosening,which is a challenging research for the TKR component.The selection of optimal material loosening can be controlled at some limits.This paper is going to consider the best material selected among a number of alternative materials for the femoral component(FC)by using Graph Theory.Here GTMA process used for optimization of material and a systematic technique introduced through sensitivity analysis to find out the more reliable result.Obtained ranking suggests the use of optimized material over the other existing material.By following GTMA Co_Cr-alloys(wrought-Co-Ni-Cr-Mo)and Co_Cr-alloys(cast-able-Co-Cr-Mo)are on the 1st and 2nd position respectively.
基金supported by the National Natural Science Foundation of China(61702251,61363049,11571011)the State Scholarship Fund of China Scholarship Council(CSC)(201708360040)+3 种基金the Natural Science Foundation of Jiangxi Province(20161BAB212033)the Natural Science Basic Research Plan in Shaanxi Province of China(2018JM6030)the Doctor Scientific Research Starting Foundation of Northwest University(338050050)Youth Academic Talent Support Program of Northwest University
文摘This paper proposes a Graph regularized Lpsmooth non-negative matrix factorization(GSNMF) method by incorporating graph regularization and L_p smoothing constraint, which considers the intrinsic geometric information of a data set and produces smooth and stable solutions. The main contributions are as follows: first, graph regularization is added into NMF to discover the hidden semantics and simultaneously respect the intrinsic geometric structure information of a data set. Second,the Lpsmoothing constraint is incorporated into NMF to combine the merits of isotropic(L_2-norm) and anisotropic(L_1-norm)diffusion smoothing, and produces a smooth and more accurate solution to the optimization problem. Finally, the update rules and proof of convergence of GSNMF are given. Experiments on several data sets show that the proposed method outperforms related state-of-the-art methods.
基金supported and funded by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(2018R1D1A1B07049321).
文摘Graph colouring is the system of assigning a colour to each vertex of a graph.It is done in such a way that adjacent vertices do not have equal colour.It is fundamental in graph theory.It is often used to solve real-world problems like traffic light signalling,map colouring,scheduling,etc.Nowadays,social networks are prevalent systems in our life.Here,the users are considered as vertices,and their connections/interactions are taken as edges.Some users follow other popular users’profiles in these networks,and some don’t,but those non-followers are connected directly to the popular profiles.That means,along with traditional relationship(information flowing),there is another relation among them.It depends on the domination of the relationship between the nodes.This type of situation can be modelled as a directed fuzzy graph.In the colouring of fuzzy graph theory,edge membership plays a vital role.Edge membership is a representation of flowing information between end nodes of the edge.Apart from the communication relationship,there may be some other factors like domination in relation.This influence of power is captured here.In this article,the colouring of directed fuzzy graphs is defined based on the influence of relationship.Along with this,the chromatic number and strong chromatic number are provided,and related properties are investigated.An application regarding COVID-19 infection is presented using the colouring of directed fuzzy graphs.
基金Quality Engineering Project of Anhui Province,China(No.2017zhkt036)
文摘The spectral theory of graph is an important branch of graph theory,and the main part of this theory is the connection between the spectral properties and the structural properties,characterization of the structural properties of graphs.We discuss the problems about singularity,signature matrix and spectrum of mixed graphs.Without loss of generality,parallel edges and loops are permitted in mixed graphs.Let G1 and G2 be connected mixed graphs which are obtained from an underlying graph G.When G1 and G2 have the same singularity,the number of induced cycles in Gi(i=1,2)is l(l=1,l>1),the length of the smallest induced cycles is 1,2,at least 3.According to conclusions and mathematics induction,we find that the singularity of corresponding induced cycles in G1 and G2 are the same if and only if there exists a signature matrix D such that L(G2)=DTL(G1)D.D may be the product of some signature matrices.If L(G2)=D^TL(G1)D,G1 and G2 have the same spectrum.
基金supported by the National Key R&D Program of China(2020YFB0905900).
文摘The construction of new power systems presents higher requirements for the Power Internet of Things(PIoT)technology.The“source-grid-load-storage”architecture of a new power system requires PIoT to have a stronger multi-source heterogeneous data fusion ability.Native graph databases have great advantages in dealing with multi-source heterogeneous data,which make them suitable for an increasing number of analytical computing tasks.However,only few existing graph database products have native support for matrix operation-related interfaces or functions,resulting in low efficiency when handling matrix calculations that are commonly encountered in power grids.In this paper,the matrix computation process is expressed by a strategy called graph description,which relies on the natural connection between the matrix and structure of the graph.Based on that,we implement matrix operations on graph database,including matrix multiplication,matrix decomposition,etc.Specifically,only the nodes relevant to the computation and their neighbors are concerned in the process,which prunes the influence of zero elements in the matrix and avoids useless iterations compared to the conventional matrix computation.Based on the graph description,a series of power grid computations can be implemented on graph database,which reduces redundant data import and export operations while leveraging the parallel computing capability of graph database.It promotes the efficiency of PIoT when handling multi-source heterogeneous data.An comprehensive experimental study over two different scale power system datasets compares the proposed method with Python and MATLAB baselines.The results reveal the superior performance of our proposed method in both power flow and N-1 contingency computations.
文摘A dominating set of a graph G is a set of vertices that contains at least one endpoint of every edge on the graph. The domination number of G is the order of a minimum dominating set of G. The (t, r) broadcast domination is a generalization of domination in which a set of broadcasting vertices emits signals of strength t that decrease by 1 as they traverse each edge, and we require that every vertex in the graph receives a cumulative signal of at least r from its set of broadcasting neighbors. In this paper, we extend the study of (t, r) broadcast domination to directed graphs. Our main result explores the interval of values obtained by considering the directed (t, r) broadcast domination numbers of all orientations of a graph G. In particular, we prove that in the cases r = 1 and (t, r) = (2, 2), for every integer value in this interval, there exists an orientation of G which has directed (t, r) broadcast domination number equal to that value. We also investigate directed (t, r) broadcast domination on the finite grid graph, the star graph, the infinite grid graph, and the infinite triangular lattice graph. We conclude with some directions for future study.
文摘In this paper, the character matrix x n is studied, fast construction method of matrix X 2m is provided. And it is proved that the lower bound estimate of the number of an Latin squares matrix D[X m] is2m(2m)!+∑mi=2[(2m)!] 2∏ij=1K j!∏rj=1b j!.
文摘In this paper, the character matrix x n is studied, fast construction method of matrix X 2m is provided. And it is proved that the lower bound estimate of the number of an Latin squares matrix D[X m] is2m(2m)!+∑mi=2[(2m)!] 2∏ij=1K j!∏rj=1b j!.
基金supported by National Natural Science Foundation of China (Grant No. 51075039, Grant No. 50805110,Grant No. 50705010)Beijing Municipal Natural Science Foundation of China (Grant No. 3082014)the Fundamental Research Funds for the Central Universities of China (Grant No. 2009CZ08, Grant No. JY10000904010)
文摘A compliant metamorphic mechanism attributes to a new type of metamorphic mechanisms evolved from rigid metamorphic mechanisms. The structural characteristics and representations of a compliant metamorphic mechanism are different from its rigid counterparts, so does the structural synthesis method. In order to carry out its structural synthesis, a constraint graph representation for topological structure of compliant metamorphic mechanisms is introduced, which can not only represent the structure of a compliant metamorphic mechanism, but also describe the characteristics of its links and kinematic pairs. An adjacency matrix representation of the link relationships in a compliant metamorphic mechanism is presented according to the constraint graph. Then, a method for structural synthesis of compliant metamorphic mechanisms is proposed based on the adjacency matrix operations. The operation rules and the operation procedures of adjacency matrices are described through synthesis of the initial configurations composed of s+1 links from an s-link mechanism (the final configuration). The method is demonstrated by synthesizing all the possible four-link compliant metamorphic mechanisms that can transform into a three-link mechanism through combining two of its links. Sixty-five adjacency matrices are obtained in the synthesis, each of which corresponds to a compliant metamorphic mechanism having four links. Therefore, the effectiveness of the method is validated by a specific compliant metamorphic mechanism corresponding to one of the sixty-five adjacency matrices. The structural synthesis method is put into practice as a fully compliant metamorphic hand is presented based on the synthesis results. The synthesis method has the advantages of simple operation rules, clear geometric meanings, ease of programming with matrix operation, and provides an effective method for structural synthesis of compliant metamorphic mechanisms and can be used in the design of new compliant metamorphic mechanisms.