Lightweight aluminum(Al)alloys have been widely used in frontier fields like aerospace and automotive industries,which attracts great interest in additive manufacturing(AM)to process high-value Al parts.As a mainstrea...Lightweight aluminum(Al)alloys have been widely used in frontier fields like aerospace and automotive industries,which attracts great interest in additive manufacturing(AM)to process high-value Al parts.As a mainstream AM technique,laser-directed energy deposition(LDED)shows good scalability to meet the requirements for large-format component manufacturing and repair.However,LDED Al alloys are highly challenging due to their inherent poor printability(e.g.low laser absorption,high oxidation sensitivity and cracking tendency).To further promote the development of LDED high-performance Al alloys,this review offers a deep understanding of the challenges and strategies to improve printability in LDED Al alloys.The porosity,cracking,distortion,inclusions,element evaporation and resultant inferior mechanical properties(worse than laser powder bed fusion)are the key challenges in LDED Al alloys.Processing parameter optimizations,in-situ alloy design,reinforcing particle addition and field assistance are the efficient approaches to improving the printability and performance of LDED Al alloys.The underlying correlations between processes,alloy innovation,characteristic microstructures,and achievable performances in LDED Al alloys are discussed.The benchmark mechanical properties and primary strengthening mechanism of LDED Al alloys are summarized.This review aims to provide a critical and in-depth evaluation of current progress in LDED Al alloys.Future opportunities and perspectives in LDED high-performance Al alloys are also outlined.展开更多
Ni51Ti49 at.%bulk was additively manufactured by laser-directed energy deposition(DED)to reveal the microstructure evolution,phase distribution,and mechanical properties.It is found that the localized remelting,reheat...Ni51Ti49 at.%bulk was additively manufactured by laser-directed energy deposition(DED)to reveal the microstructure evolution,phase distribution,and mechanical properties.It is found that the localized remelting,reheating,and heat accumulation during DED leads to the spatial heterogeneous distribution of columnar crystal and equiaxed crystal,a gradient distribution of Ni4Ti3 precipitates along the building direction,and preferential formation of Ni4Ti3 precipitates in the columnar zone.The austenite transformation finish temperature(Af)varies from-12.65℃(Z=33 mm)to 60.35℃(Z=10 mm),corresponding to tensile yield strength(σ0.2)changed from 120±30 MPa to 570±20 MPa,and functional properties changed from shape memory effect to superelasticity at room temperature.The sample in the Z=20.4 mm height has the best plasticity of 9.6%and the best recoverable strain of 4.2%.This work provided insights and guidelines for the spatial characterization of DEDed NiTi.展开更多
NiTi shape memory alloy(SMA)with nominal composition of Ni 50.8 at%and Ti 49.2 at%was additively manufactured(AM)by selective laser melting(SLM)and laser directed energy deposition(DED)for a comparison study,with emph...NiTi shape memory alloy(SMA)with nominal composition of Ni 50.8 at%and Ti 49.2 at%was additively manufactured(AM)by selective laser melting(SLM)and laser directed energy deposition(DED)for a comparison study,with emphasis on its phase composition,microstructure,mechanical property and deformation mechanism.The results show that the yield strength and ductility obtained by SLM are 100 MPa and 8%,respectively,which are remarkably different from DED result with 700 MPa and 2%.The load path of SLM sample presents shape memory effect,corresponding to martensite phase detected by XRD;while the load path of DED presents pseudo-elasticity with austenite phase.In SLM sample,fine grain and hole provide a uniform deformation during tensile test,resulting in a better elongation.Furthermore,the nonequilibrium solidification was studied by a temperature field simulation to understand the difference of the two 3D printing methods.Both temperature gradient G and growth rate R determine the microstructure and phase in the SLM sample and DED sample,which leads to similar grain morphologies because of similar G/R.While higher G×R of SLM leads to a finer grain size in SLM sample,providing enough driving force for martensite transition and subsequently changing texture compared to DED sample.展开更多
Laser direct deposition (LDD) of metallic components is an advanced technology of combining CAD/CAM (computer aided design/computer aided manufacturing), high power laser, and rapid prototyping. This technology us...Laser direct deposition (LDD) of metallic components is an advanced technology of combining CAD/CAM (computer aided design/computer aided manufacturing), high power laser, and rapid prototyping. This technology uses laser beam to melt the powders fed coaxiaUy into the molten pool by the laser beam to fabricate fuUy dense metallic components. The present article mainly studies the LDD of Ti-6Al-4V alloy, which can be used to fabricate aircraft components. The mechanical properties of the Ti-6Al-4V alloy, fabricated by LDD, are obtained using the tension test, and the oxygen content of used powders and deposited specimens are measured. In the present article, it can be seen that the mechanical properties obtained using this method are higher than the ones obtained by casting, and equal to those got by wrought anneal. One aircraft part has been made using the LDD process. Because of this aircraft part, with sophisticated shape, the effect of the laser scanning track on the internal soundness of the deposited part was discussed.展开更多
The application of titanium alloys in aerospace put forward the requirement for higher strength.Additive manu-facturing is a promising method for the efficient and economical processing of titanium alloys.However,rese...The application of titanium alloys in aerospace put forward the requirement for higher strength.Additive manu-facturing is a promising method for the efficient and economical processing of titanium alloys.However,research on the additive manufacturing of ultrahigh-strength titanium alloys is still limited.The mechanisms of microseg-regation for high alloying elements and poor plasticity are still not clear.In this study,an ultrahigh-strength titanium alloy Ti-4.5Al-5Mo-5V-6Cr-1Nb(TB18)was prepared using two methods:laser direct energy deposi-tion(LDED)and forging.The LDEDed alloy contains three zones with similar grain morphologies but different microstructure.The microsegregation of the alloy is limited due to the rapid solidification and almost eliminated after the thermal cycle and solution treatment.With stress relief treatment,the LDEDed alloy exhibits anisotropic mechanical properties.After solution and aging treatments,its ultimate strength is enhanced;however,its plas-ticity is relatively lower than that of the wrought alloy with equally high strength.The excellent balance of the strength and plasticity of the wrought alloy can be ascribed to the formation of𝛼WGB and multiscale𝛼laths,which provides enlightenment for optimizing the properties of the LDEDed alloy.展开更多
Inconel 718 is a nickel-based superalloy of high interest in high temperature applications such as turbine parts.To be used in such applications,heat treatments are commonly applied to dissolute Laves phase and to ach...Inconel 718 is a nickel-based superalloy of high interest in high temperature applications such as turbine parts.To be used in such applications,heat treatments are commonly applied to dissolute Laves phase and to achieve𝛾γ′phase.However,conventional heat treatment methods for wrought Inconel 718 may not be suitable for Inconel 718 fabricated by laser directed energy deposition(LDED)due to its unique microstructure formed during the rapid solidification process.There has been a lack of investigation in heat treatments for Inconel 718 fabricated by this process,specifically around the impact of aging parameters on this alloy.In this study,the effects of aging parameters were studied by performing seven different heat treatments,including solutionising and aging treatments.Our results indicate that for LDED Inconel 718,a high temperature solution treatment of 1100℃for 1 h followed by single aging at 650℃for 20 h achieved a tensile strength and elongation of 1247 MPa and 23%,respectively.Further,results indicated that even with a shorter aging time of 10 h,γ′phase was found to be of comparable size to the standard double aged treatment.展开更多
Oxide melt growth ceramics(OMGCs)exhibit excellent performance and microstructure stability near their melt-ing point and are expected to become a new structural material for long-term stable service in extremely high...Oxide melt growth ceramics(OMGCs)exhibit excellent performance and microstructure stability near their melt-ing point and are expected to become a new structural material for long-term stable service in extremely high-temperature water-oxygen environments.Owing to its unique advantages of high efficiency,flexible manufac-turing,and near-net shaping,laser directed energy deposition(LDED)has become a promising technology for the rapid preparation of high-performance OMGCs.However,owing to the limited understanding of the crack-ing mechanism,the severe cracking problem that hinders OMGCs-LDED towards engineering applications has not been resolved.Alumina/aluminum titanate(Al_(2)O_(3)/Al_(x)Ti_(y)O_(z),A/AT)ceramics are prepared using an LDED system and their cracking characteristics are investigated.Subsequently,numerical simulations are conducted to reveal the dominant factors and influencing mechanisms of the cracking behavior.The results demonstrate that the cracking nucleation process is mainly controlled by solidification defects,whereas the cracking propagation process is determined primarily by both the microstructure and stress level.This study provides a theoretical basis for the development of appropriate cracking suppression methods for OMGCs-LDED.展开更多
With the rapid developments of marine resource exploitation,mounts of marine engineering equipment are settled on the ocean.When it is not possible to move the damaged equipment into a dry dock,welding operations must...With the rapid developments of marine resource exploitation,mounts of marine engineering equipment are settled on the ocean.When it is not possible to move the damaged equipment into a dry dock,welding operations must be performed in underwater environments.The underwater laser welding/cladding technique is a promising and advanced technique which could be widely applied to the maintenance of the damaged equipment.The present review paper aims to present a critical analysis and engineering overview of the underwater laser welding/cladding technique.First,we elaborated recent advances and key issues of drainage nozzles all over the world.Next,we presented the underwater laser processing and microstructural-mechanical behavior of repaired marine materials.Then,the newly developed powder-feeding based and wire-feeding based underwater laser direct metal deposition techniques were reviewed.The differences between the convection,conduction,and the metallurgical kinetics in the melt pools during underwater laser direct metal deposition and in-air laser direct metal deposition were illustrated.After that,several challenges that need to be overcame to achieve the full potential of the underwater laser welding/cladding technique are proposed.Finally,suggestions for future directions to aid the development of underwater laser welding/cladding technology and underwater metallurgical theory are provided.The present review will not only enrich the knowledge in the underwater repair technology,but also provide important guidance for the potential applications of the technology on the marine engineering.展开更多
Direct laser deposition(DLD),as a popular metal additive manufacturing process,shows advantages of technical flexibility and high efficiency to gain a high-performance alloy steel component.However,during the processi...Direct laser deposition(DLD),as a popular metal additive manufacturing process,shows advantages of technical flexibility and high efficiency to gain a high-performance alloy steel component.However,during the processing of DLD,the deposited steel layer is affected by the subsequent layer depositing.The DLD block shows different microstructure and mechanical properties at the bottom,middle and top of the deposited parts.To date,there are few research works about the effects of inter-layer interval time and laser power on the microstructure evolution and mechanical properties of the deposited layers.In this study,the idle time and laser power layer by layer during DLD of 12CrNi2 steel were controlled to cause the deposited layers to maintain a high cooling rate,while the bottom deposited layer was subjected to a weak tempering effect.Results show that a high proportion of martensite is produced,which improves the strength of the deposited layer.Under the laser scanning strategy of laser power 2,500 W,scanning velocity 5 mm·s^(-1),powder feeding rate 11 g·min^(-1),overlap rate 50%,and a laser power difference of 50 W and a 2 min interval,the tensile strength of the deposited layer of 12CrNi2 steel is in the range of 873-1,022 MPa,and the elongation is in the range of 16.2%-18.9%.This study provides a method to reduce the tempering effect of the subsequent deposition layers on the bottom layers,which can increase the proportion of martensite in the low-alloy high-strength steel,so as to improve the yield strength of the alloy steel.展开更多
Bimetallic copper-steel composite could be an effective structural material to improve the performance of traditional nickel-aluminum bronze(NAB)ship propeller due to its high structural strength and corrosion resista...Bimetallic copper-steel composite could be an effective structural material to improve the performance of traditional nickel-aluminum bronze(NAB)ship propeller due to its high structural strength and corrosion resistance.In this work,the defect-free NAB coatings has been successfully fabricated by laser direct depositing technique on the 17-4PH stainless steel substrate.The phase constitution,microstructure characteristics and hardness properties were investigated in details.The XRD results showed that the coatings mainly consisted ofα-Cu,Fe and intermetallicκphases despite the diffraction peaks shifted more than 0.5°,which may due to the influence of the Ni,Fe and Al atoms dissolved into Cu-matrix.The microstructures of the coatings were affected significantly by laser energy density according to SEM and EDS results.The top region of the coating was more undercooled during solidification,therefore the grains at this region was much finer than that at the bottom region.The higher energy input would lead to coarser grains.Fe-rich dendrites and spherical particles were found in the Cu matrix,which could be a result of liquid separation.The hardness of the coating is in the range of 204 HV0.2–266 HV0.2 which is higher than traditional as-cast NAB.The uneven distribution of Fe-rich phases as well as the hardκphases could be the main reasons for the fluctuations of the hardness value.Tensile fracture occurred at bronze side,not at transition zone,which shows there is a good interfacial bonding between the two metals produced by laser cladding.展开更多
Near-equiaxed β grain was achieved in the near-α Ti60(Ti-5.7Al-4.0Sn-3.5Zr-0.4Mo-0.4Si-0.4Nb-1.0Ta-0.05C) titanium alloy via laser directed energy deposition(LDED). The microstructural evolution along the building d...Near-equiaxed β grain was achieved in the near-α Ti60(Ti-5.7Al-4.0Sn-3.5Zr-0.4Mo-0.4Si-0.4Nb-1.0Ta-0.05C) titanium alloy via laser directed energy deposition(LDED). The microstructural evolution along the building direction and the room-temperature tensile properties along the horizontal and vertical directions(building direction) were systematically studied through SEM and OM. EBSD and XRD were utilized to accurately demonstrate the texture of the α and β phases. The results showed that the α phase presented a low texture intensity, which was ascribed to the weak textured β grain with near-equiaxed morphology, since there are Burgers orientation relationships during the β →α transition. In addition, numerical simulation, combined with the CET curve of Ti60 alloy considering the effect of multi-composition,was utilized to elucidate the formation mechanism of the near-equiaxed β grains. Furthermore, according to the solidification theory, we proposed that the solidification temperature range ΔTfwas more accurate than the growth restriction factor Q in predicting the formation tendency of equiaxed β grain in different titanium alloys. Tensile results showed that the horizontal and vertical samples had similar strength,while the former exhibited larger elongation than the latter. The effect of the near-equiaxed β grain and the internal α phase on mechanical properties were revealed at last.展开更多
CoCrNiCux(x=0.16,0.33,0.75,and 1)without macro-segregation medium-entropy alloys(MEAs)was prepared using laser directed energy deposition(LDED).The microstructure and mechanical properties of CoCrNiCux alloys with inc...CoCrNiCux(x=0.16,0.33,0.75,and 1)without macro-segregation medium-entropy alloys(MEAs)was prepared using laser directed energy deposition(LDED).The microstructure and mechanical properties of CoCrNiCux alloys with increasing Cu content were investigated.The results indicate that a single matrix phase changes into a dual-phase structure and the tensile fracture behaviors convert from brittle to plastic pattern with increasing Cu content in CoCrNiCux alloys.In addition,the tensile strength of CoCrNiCux alloys increased from 148 to 820 MPa,and the ductility increased from 1 to 11%with increasing Cu content.The nano-precipitated particles had a mean size of approximately 20 nm in the Cu-rich phase area,and a large number of neatly arranged misfit dislocations were observed at the interface between the two phases due to Cu-rich phase precipitation in the CoCrNiCu alloy.These misfit dislocations hinder the movement of dislocations during tensile deformation,as observed through transmission electron microscopy.This allows the CoCrNiCu alloy to reach the largest tensile strength and plasticity,and a new strengthening mechanism was achieved for the CoCrNiCu alloy.Moreover,twins were observed in the matrix phase after tensile fracture.Simultaneously,the dual-phase structure with different elastic moduli coordinated with each other during the deformation process,significantly improving the plasticity and strength of the CoCrNiCu alloy.展开更多
Additive manufactured metals sometimes exhibit extraordinary microstructures and mechanical properties due to the particular processes. In this paper, we focus on a novel gradient TiAl alloys fabricated byhigh-power d...Additive manufactured metals sometimes exhibit extraordinary microstructures and mechanical properties due to the particular processes. In this paper, we focus on a novel gradient TiAl alloys fabricated byhigh-power direct laser deposition, whose chemical composition, microstructure, and mechanical property vary along the building direction. The results indicate that Al concentration dramatically decreasesfrom 39.5 at.% to 30.1 at.% as the height increases from the bottom to the top. Meanwhile, microstructural characterization indicates that the specimen appears basket-weave microstructure at the bottom,then the α_(2) and γ phase gradually decrease, and eventually it transforms into acicular martensite microstructure in the top region. The indentation analysis shows that the associated hardness increases asthe height increases, while the plasticity reaches a minimum value in the middle region. The increasingamount of β_(o)(ω) is considered to be responsible for the increasing hardness because of the strong precipitation strengthening effect. The high plasticity in the bottom and top regions results from the strongdeformation behaviors of the γ and β_(o) phases.展开更多
Direct laser metallic powder deposition technique is widely used in manufacturing, part repairing, and metallic rapid prototyping. The ability to predict geometrical accuracy and residual stress requires an understand...Direct laser metallic powder deposition technique is widely used in manufacturing, part repairing, and metallic rapid prototyping. The ability to predict geometrical accuracy and residual stress requires an understanding of temperature distribution during the deposition process. This study presents a numerical model of three-dimensional transient heat transfer in a finite model heated by a moving laser beam. Thermal phenomena in the process were investigated. The complex solid-liquid problem and latent heat of fusion were treated by means of equivalent thermal conductivity and modified specific heat, respectively. Using method of birth and death of elements, the growth of additive layers and the shape of melt pool were obtained. The effect of processing parameters such as absorbed power, travel speed, and preheated temperature on melt pool sizes and cross-section of deposited layer profile was studied. The results show that the melt pool sizes increase with absorbed power and decrease with travel velocity. In addition, the preheated temperature contributes less to the melt pool size. The results are generally in a good agreement with experiments in published literature.展开更多
Direct laser metal deposition is a kind of advanced rapid manufacturing technology, which can produce near net shape parts by depositing metal powders layer by layer. This study demonstrates fabrication, the anisotrop...Direct laser metal deposition is a kind of advanced rapid manufacturing technology, which can produce near net shape parts by depositing metal powders layer by layer. This study demonstrates fabrication, the anisotropy of mechanical properties and hardness of a graded steel. The characteristics of constituent phases, microstructure, mechanical anisotropy, and microhardness were investigated using electron backscatter diffraction, optical microscopy, tensile test machine, and microhardness tester. It was found that the graded steel is dense and free of cracks. The crystal structures of the as-built samples evolved in three grades from fcc structures to fcc + bcc structures and then to bcc + fcc structures. Samples in x and z directions showed obvious mechanical anisotropy. The samples machined in x direction showed higher strength and lower elongation than those machined in z direction due to the presence of lack-of-fusion pores and the higher metallurgical bonding between layers in the x direction. The microhardness of the as-built samples increased along the cross section from the substrate (159.7 HV) to the top surface (545.4 HV).展开更多
The present work aims to investigate the fatigue behavior of Direct Laser Deposition(DLD) Ti-6.5 Al-2 Zr-1 Mo-1 V titanium alloy under constant amplitude stress. 22 pieces of DLD Ti-6.5 Al-2 Zr-1 Mo-1 V titanium alloy...The present work aims to investigate the fatigue behavior of Direct Laser Deposition(DLD) Ti-6.5 Al-2 Zr-1 Mo-1 V titanium alloy under constant amplitude stress. 22 pieces of DLD Ti-6.5 Al-2 Zr-1 Mo-1 V titanium alloy standard cylinder specimens were tested under a stress level of 800 MPa with a stress ratio of 0.06. Fatigue fractography and fatigue life data were obtained.Through the fracture surface analysis, the specimens were divided into two categories in accordance with the location of crack initiation and defect types. Comparison of fatigue life and behavior between two specimen types was given, which was followed by a discussion about the impact of defect type, size and position on the fatigue life of the specimen. The fatigue test results also show a large variation of fatigue life. To illustrate the statistical characteristics of the fatigue life, probabilistic analysis was performed, and a novel bimodal lognormal model was established. The model has a good fit with the experimental data and can reduce the scatter of the fatigue life significantly.展开更多
The anisotropic ductility of a direct laser deposited 17-4 PH cubic part was investigated.Anisotropic elongations in the specimens from varied surfaces of the part were obtained:~6.2%,~1.5%,and~4.5%in XY,YZ,and XZ sam...The anisotropic ductility of a direct laser deposited 17-4 PH cubic part was investigated.Anisotropic elongations in the specimens from varied surfaces of the part were obtained:~6.2%,~1.5%,and~4.5%in XY,YZ,and XZ samples,respectively.Furthermore,various orientations of ferrite were found in different specimens,taking the loading direction as reference.A finite element analysis depending on actual microstructures and dislocation density revealed that the orientation of ferrite caused the ductility anisotropy.The orientation of ferrite affected its plastic deformability and the deformation compatibility between phases during the uniaxial loading.The ferrite parallel to the tensile direction in the YZ sample had the worst deformability and induced severe strain localization and stress triaxiality,which resulted in inferior ductility.The ferrite perpendicular to the tensile direction showed the best deformability,whereas strain localization remained intense in the XZ sample owing to the unmatched deformability of martensite.The inclined ferrite in the XY sample exhibited moderate deformability and was found to enhance the plastic flow of martensite,leading to the best deformation compatibility and ductility.展开更多
To investigate the influence of island scanning on the microstructures and mechanical properties of direct laser-deposited Ti–6 Al–4 V structures,two samples are prepared using island scanning and orthogonal success...To investigate the influence of island scanning on the microstructures and mechanical properties of direct laser-deposited Ti–6 Al–4 V structures,two samples are prepared using island scanning and orthogonal successive scanning,respectively.The microstructures,relative density,and mechanical properties of the samples prepared using these two scanning strategies are compared.Each sample exhibits columnarβ-grain morphology and basket-weave microstructure characterization.The grains of the sample prepared using island scanning are significantly finer than that prepared by orthogonal successive scanning due to faster cooling during deposition.However,the relative density of the sample prepared using island scanning was slightly smaller due to the concentration of lack-of-fusion pores at the overlap zone of the island.Tensile testing at room temperature indicates that the ultimate tensile strength and yield strength of the sample prepared using island scanning is enhanced due to finer grains,while the ductility of the sample is weakened due to defects.展开更多
This paper focuses on an analysis of the surface texture formed during precision machining of tungsten carbide. The work material was fabricated using direct laser deposition (DLD) technology. The experiment include...This paper focuses on an analysis of the surface texture formed during precision machining of tungsten carbide. The work material was fabricated using direct laser deposition (DLD) technology. The experiment included precision milling of tungsten carbide samples with a monolithic torus cubic boron nitride tool and grinding with diamond and alumina cup wheels. An optical surface profiler was applied to the measurements of surface textures and roughness profiles. In addition, the micro-geometry of the milling cutter was measured with the appli- cation of an optical device. The surface roughness height was also estimated with the application of a model, which included kinematic-geometric parameters and minimum uncut chip thickness. The research revealed the occurrence of micro-grooves on the machined surface. The surface roughness height calculated on the basis of the traditional kinematic-geometric model was incompatible with the measurements. However, better agreement between the theoretical and experimental values was observed for the minimum uncut chip thickness model.展开更多
Eutectic high-entropy alloys(EHEAs)that have superior formability are attractive for direct laser deposition technology.In this study,a regular-shaped bulk Ni_(32)Co_(30)Cr_(10)Fe_(10)Al_(18)EHEA without apparent pore...Eutectic high-entropy alloys(EHEAs)that have superior formability are attractive for direct laser deposition technology.In this study,a regular-shaped bulk Ni_(32)Co_(30)Cr_(10)Fe_(10)Al_(18)EHEA without apparent pores and micro-cracks was successfully fabricated by direct laser deposition.The as-deposited alloy showed a high tensile strength of 1.3 GPa with a ductility of 35%at ambient temperature and a tensile strength of 320 MPa at 760℃.The deformation mechanisms of the as-deposited alloy at ambient and elevated temperatures were investigated by coupling the in-situ tensile test with a scanning electron microscope.It is revealed that the excellent combination of strength and ductility originated from the synergic effects of the FCC and B2 phases in eutectic lamellae.And the generation of cracks along phase boundaries restricted its high-temperature strength above 760℃.展开更多
基金supported by the 2022 MTC Young Individual Research Grants(Grant No.M22K3c0097)the Singapore Research,Innovation and Enterprise(RIE)2025 PlanSingapore Aerospace Programme Cycle 16(Grant No.M2215a0073)。
文摘Lightweight aluminum(Al)alloys have been widely used in frontier fields like aerospace and automotive industries,which attracts great interest in additive manufacturing(AM)to process high-value Al parts.As a mainstream AM technique,laser-directed energy deposition(LDED)shows good scalability to meet the requirements for large-format component manufacturing and repair.However,LDED Al alloys are highly challenging due to their inherent poor printability(e.g.low laser absorption,high oxidation sensitivity and cracking tendency).To further promote the development of LDED high-performance Al alloys,this review offers a deep understanding of the challenges and strategies to improve printability in LDED Al alloys.The porosity,cracking,distortion,inclusions,element evaporation and resultant inferior mechanical properties(worse than laser powder bed fusion)are the key challenges in LDED Al alloys.Processing parameter optimizations,in-situ alloy design,reinforcing particle addition and field assistance are the efficient approaches to improving the printability and performance of LDED Al alloys.The underlying correlations between processes,alloy innovation,characteristic microstructures,and achievable performances in LDED Al alloys are discussed.The benchmark mechanical properties and primary strengthening mechanism of LDED Al alloys are summarized.This review aims to provide a critical and in-depth evaluation of current progress in LDED Al alloys.Future opportunities and perspectives in LDED high-performance Al alloys are also outlined.
基金the financial support of the Hunan Innovation Platform and Talent Plan(2022RC3033)Natural Science Foundation of Shandong Province(ZR2020ZD04)Ganzhou Science and Technology Planning Project(Grant No.Ganshikefa[2019]60)。
文摘Ni51Ti49 at.%bulk was additively manufactured by laser-directed energy deposition(DED)to reveal the microstructure evolution,phase distribution,and mechanical properties.It is found that the localized remelting,reheating,and heat accumulation during DED leads to the spatial heterogeneous distribution of columnar crystal and equiaxed crystal,a gradient distribution of Ni4Ti3 precipitates along the building direction,and preferential formation of Ni4Ti3 precipitates in the columnar zone.The austenite transformation finish temperature(Af)varies from-12.65℃(Z=33 mm)to 60.35℃(Z=10 mm),corresponding to tensile yield strength(σ0.2)changed from 120±30 MPa to 570±20 MPa,and functional properties changed from shape memory effect to superelasticity at room temperature.The sample in the Z=20.4 mm height has the best plasticity of 9.6%and the best recoverable strain of 4.2%.This work provided insights and guidelines for the spatial characterization of DEDed NiTi.
基金Project(2020JJ2046)supported by the Science Fund for Hunan Distinguished Young Scholars,ChinaProject(S2020GXKJGG0416)supported by the Special Project for Hunan Innovative Province Construction,China+1 种基金Project(2018RS3007)supported by the Huxiang Young Talents,ChinaProject(GuikeAB19050002)supported by the Science Project of Guangxi,China。
文摘NiTi shape memory alloy(SMA)with nominal composition of Ni 50.8 at%and Ti 49.2 at%was additively manufactured(AM)by selective laser melting(SLM)and laser directed energy deposition(DED)for a comparison study,with emphasis on its phase composition,microstructure,mechanical property and deformation mechanism.The results show that the yield strength and ductility obtained by SLM are 100 MPa and 8%,respectively,which are remarkably different from DED result with 700 MPa and 2%.The load path of SLM sample presents shape memory effect,corresponding to martensite phase detected by XRD;while the load path of DED presents pseudo-elasticity with austenite phase.In SLM sample,fine grain and hole provide a uniform deformation during tensile test,resulting in a better elongation.Furthermore,the nonequilibrium solidification was studied by a temperature field simulation to understand the difference of the two 3D printing methods.Both temperature gradient G and growth rate R determine the microstructure and phase in the SLM sample and DED sample,which leads to similar grain morphologies because of similar G/R.While higher G×R of SLM leads to a finer grain size in SLM sample,providing enough driving force for martensite transition and subsequently changing texture compared to DED sample.
基金This work was supported by the National Natural Science Foundation of China (No. 50331010)
文摘Laser direct deposition (LDD) of metallic components is an advanced technology of combining CAD/CAM (computer aided design/computer aided manufacturing), high power laser, and rapid prototyping. This technology uses laser beam to melt the powders fed coaxiaUy into the molten pool by the laser beam to fabricate fuUy dense metallic components. The present article mainly studies the LDD of Ti-6Al-4V alloy, which can be used to fabricate aircraft components. The mechanical properties of the Ti-6Al-4V alloy, fabricated by LDD, are obtained using the tension test, and the oxygen content of used powders and deposited specimens are measured. In the present article, it can be seen that the mechanical properties obtained using this method are higher than the ones obtained by casting, and equal to those got by wrought anneal. One aircraft part has been made using the LDD process. Because of this aircraft part, with sophisticated shape, the effect of the laser scanning track on the internal soundness of the deposited part was discussed.
基金supported by National Natural Science Foundation of China(Grant No.52071005)National Science and Technology Sup-porting Project of China(Grant No.JPPT-135-GH-2-036)Funda-mental Research Funds for the Central Universities of China(Grant No.030810).
文摘The application of titanium alloys in aerospace put forward the requirement for higher strength.Additive manu-facturing is a promising method for the efficient and economical processing of titanium alloys.However,research on the additive manufacturing of ultrahigh-strength titanium alloys is still limited.The mechanisms of microseg-regation for high alloying elements and poor plasticity are still not clear.In this study,an ultrahigh-strength titanium alloy Ti-4.5Al-5Mo-5V-6Cr-1Nb(TB18)was prepared using two methods:laser direct energy deposi-tion(LDED)and forging.The LDEDed alloy contains three zones with similar grain morphologies but different microstructure.The microsegregation of the alloy is limited due to the rapid solidification and almost eliminated after the thermal cycle and solution treatment.With stress relief treatment,the LDEDed alloy exhibits anisotropic mechanical properties.After solution and aging treatments,its ultimate strength is enhanced;however,its plas-ticity is relatively lower than that of the wrought alloy with equally high strength.The excellent balance of the strength and plasticity of the wrought alloy can be ascribed to the formation of𝛼WGB and multiscale𝛼laths,which provides enlightenment for optimizing the properties of the LDEDed alloy.
文摘Inconel 718 is a nickel-based superalloy of high interest in high temperature applications such as turbine parts.To be used in such applications,heat treatments are commonly applied to dissolute Laves phase and to achieve𝛾γ′phase.However,conventional heat treatment methods for wrought Inconel 718 may not be suitable for Inconel 718 fabricated by laser directed energy deposition(LDED)due to its unique microstructure formed during the rapid solidification process.There has been a lack of investigation in heat treatments for Inconel 718 fabricated by this process,specifically around the impact of aging parameters on this alloy.In this study,the effects of aging parameters were studied by performing seven different heat treatments,including solutionising and aging treatments.Our results indicate that for LDED Inconel 718,a high temperature solution treatment of 1100℃for 1 h followed by single aging at 650℃for 20 h achieved a tensile strength and elongation of 1247 MPa and 23%,respectively.Further,results indicated that even with a shorter aging time of 10 h,γ′phase was found to be of comparable size to the standard double aged treatment.
基金supported by National Natural Science Founda-tion of China(Grant.Nos.51805070,51790172,52175291)Funda-mental Research Funds for the Central Universities of China(Grant.Nos.DUT22YG210,DUT22LAB117)+1 种基金Science Center for Gas Turbine Project of China(Grant.No.P2022-B-IV-012-001)Shenzhen Sci-ence and Technology Innovation Commission of China(Grant.No.JCYJ20210324115413036).
文摘Oxide melt growth ceramics(OMGCs)exhibit excellent performance and microstructure stability near their melt-ing point and are expected to become a new structural material for long-term stable service in extremely high-temperature water-oxygen environments.Owing to its unique advantages of high efficiency,flexible manufac-turing,and near-net shaping,laser directed energy deposition(LDED)has become a promising technology for the rapid preparation of high-performance OMGCs.However,owing to the limited understanding of the crack-ing mechanism,the severe cracking problem that hinders OMGCs-LDED towards engineering applications has not been resolved.Alumina/aluminum titanate(Al_(2)O_(3)/Al_(x)Ti_(y)O_(z),A/AT)ceramics are prepared using an LDED system and their cracking characteristics are investigated.Subsequently,numerical simulations are conducted to reveal the dominant factors and influencing mechanisms of the cracking behavior.The results demonstrate that the cracking nucleation process is mainly controlled by solidification defects,whereas the cracking propagation process is determined primarily by both the microstructure and stress level.This study provides a theoretical basis for the development of appropriate cracking suppression methods for OMGCs-LDED.
基金Supported by National Basic Scientific Research Project(Grant No.JCKY2017110B001)Jiangsu Provincial Postgraduate Research&Practice Innovation Program of China(Grant No.KYCX20_0080)。
文摘With the rapid developments of marine resource exploitation,mounts of marine engineering equipment are settled on the ocean.When it is not possible to move the damaged equipment into a dry dock,welding operations must be performed in underwater environments.The underwater laser welding/cladding technique is a promising and advanced technique which could be widely applied to the maintenance of the damaged equipment.The present review paper aims to present a critical analysis and engineering overview of the underwater laser welding/cladding technique.First,we elaborated recent advances and key issues of drainage nozzles all over the world.Next,we presented the underwater laser processing and microstructural-mechanical behavior of repaired marine materials.Then,the newly developed powder-feeding based and wire-feeding based underwater laser direct metal deposition techniques were reviewed.The differences between the convection,conduction,and the metallurgical kinetics in the melt pools during underwater laser direct metal deposition and in-air laser direct metal deposition were illustrated.After that,several challenges that need to be overcame to achieve the full potential of the underwater laser welding/cladding technique are proposed.Finally,suggestions for future directions to aid the development of underwater laser welding/cladding technology and underwater metallurgical theory are provided.The present review will not only enrich the knowledge in the underwater repair technology,but also provide important guidance for the potential applications of the technology on the marine engineering.
基金the National Key Technologies Research and Development Program of China(Grant No.2016YFB1100200)。
文摘Direct laser deposition(DLD),as a popular metal additive manufacturing process,shows advantages of technical flexibility and high efficiency to gain a high-performance alloy steel component.However,during the processing of DLD,the deposited steel layer is affected by the subsequent layer depositing.The DLD block shows different microstructure and mechanical properties at the bottom,middle and top of the deposited parts.To date,there are few research works about the effects of inter-layer interval time and laser power on the microstructure evolution and mechanical properties of the deposited layers.In this study,the idle time and laser power layer by layer during DLD of 12CrNi2 steel were controlled to cause the deposited layers to maintain a high cooling rate,while the bottom deposited layer was subjected to a weak tempering effect.Results show that a high proportion of martensite is produced,which improves the strength of the deposited layer.Under the laser scanning strategy of laser power 2,500 W,scanning velocity 5 mm·s^(-1),powder feeding rate 11 g·min^(-1),overlap rate 50%,and a laser power difference of 50 W and a 2 min interval,the tensile strength of the deposited layer of 12CrNi2 steel is in the range of 873-1,022 MPa,and the elongation is in the range of 16.2%-18.9%.This study provides a method to reduce the tempering effect of the subsequent deposition layers on the bottom layers,which can increase the proportion of martensite in the low-alloy high-strength steel,so as to improve the yield strength of the alloy steel.
文摘Bimetallic copper-steel composite could be an effective structural material to improve the performance of traditional nickel-aluminum bronze(NAB)ship propeller due to its high structural strength and corrosion resistance.In this work,the defect-free NAB coatings has been successfully fabricated by laser direct depositing technique on the 17-4PH stainless steel substrate.The phase constitution,microstructure characteristics and hardness properties were investigated in details.The XRD results showed that the coatings mainly consisted ofα-Cu,Fe and intermetallicκphases despite the diffraction peaks shifted more than 0.5°,which may due to the influence of the Ni,Fe and Al atoms dissolved into Cu-matrix.The microstructures of the coatings were affected significantly by laser energy density according to SEM and EDS results.The top region of the coating was more undercooled during solidification,therefore the grains at this region was much finer than that at the bottom region.The higher energy input would lead to coarser grains.Fe-rich dendrites and spherical particles were found in the Cu matrix,which could be a result of liquid separation.The hardness of the coating is in the range of 204 HV0.2–266 HV0.2 which is higher than traditional as-cast NAB.The uneven distribution of Fe-rich phases as well as the hardκphases could be the main reasons for the fluctuations of the hardness value.Tensile fracture occurred at bronze side,not at transition zone,which shows there is a good interfacial bonding between the two metals produced by laser cladding.
基金supported by the National Key Technologies R&D Program (Nos. 2016YFB1100102, 2018YFB1106003).
文摘Near-equiaxed β grain was achieved in the near-α Ti60(Ti-5.7Al-4.0Sn-3.5Zr-0.4Mo-0.4Si-0.4Nb-1.0Ta-0.05C) titanium alloy via laser directed energy deposition(LDED). The microstructural evolution along the building direction and the room-temperature tensile properties along the horizontal and vertical directions(building direction) were systematically studied through SEM and OM. EBSD and XRD were utilized to accurately demonstrate the texture of the α and β phases. The results showed that the α phase presented a low texture intensity, which was ascribed to the weak textured β grain with near-equiaxed morphology, since there are Burgers orientation relationships during the β →α transition. In addition, numerical simulation, combined with the CET curve of Ti60 alloy considering the effect of multi-composition,was utilized to elucidate the formation mechanism of the near-equiaxed β grains. Furthermore, according to the solidification theory, we proposed that the solidification temperature range ΔTfwas more accurate than the growth restriction factor Q in predicting the formation tendency of equiaxed β grain in different titanium alloys. Tensile results showed that the horizontal and vertical samples had similar strength,while the former exhibited larger elongation than the latter. The effect of the near-equiaxed β grain and the internal α phase on mechanical properties were revealed at last.
基金financially supported by the National Natural Science Foundation of China(NSAF)joint Fund(Grant No.U2030102)the National Natural Science Foundation of China(Grant No.52071124)。
文摘CoCrNiCux(x=0.16,0.33,0.75,and 1)without macro-segregation medium-entropy alloys(MEAs)was prepared using laser directed energy deposition(LDED).The microstructure and mechanical properties of CoCrNiCux alloys with increasing Cu content were investigated.The results indicate that a single matrix phase changes into a dual-phase structure and the tensile fracture behaviors convert from brittle to plastic pattern with increasing Cu content in CoCrNiCux alloys.In addition,the tensile strength of CoCrNiCux alloys increased from 148 to 820 MPa,and the ductility increased from 1 to 11%with increasing Cu content.The nano-precipitated particles had a mean size of approximately 20 nm in the Cu-rich phase area,and a large number of neatly arranged misfit dislocations were observed at the interface between the two phases due to Cu-rich phase precipitation in the CoCrNiCu alloy.These misfit dislocations hinder the movement of dislocations during tensile deformation,as observed through transmission electron microscopy.This allows the CoCrNiCu alloy to reach the largest tensile strength and plasticity,and a new strengthening mechanism was achieved for the CoCrNiCu alloy.Moreover,twins were observed in the matrix phase after tensile fracture.Simultaneously,the dual-phase structure with different elastic moduli coordinated with each other during the deformation process,significantly improving the plasticity and strength of the CoCrNiCu alloy.
基金The authors acknowledge financial support from the National Natural Science Foundation of China(No.52101139 and No.51971145).
文摘Additive manufactured metals sometimes exhibit extraordinary microstructures and mechanical properties due to the particular processes. In this paper, we focus on a novel gradient TiAl alloys fabricated byhigh-power direct laser deposition, whose chemical composition, microstructure, and mechanical property vary along the building direction. The results indicate that Al concentration dramatically decreasesfrom 39.5 at.% to 30.1 at.% as the height increases from the bottom to the top. Meanwhile, microstructural characterization indicates that the specimen appears basket-weave microstructure at the bottom,then the α_(2) and γ phase gradually decrease, and eventually it transforms into acicular martensite microstructure in the top region. The indentation analysis shows that the associated hardness increases asthe height increases, while the plasticity reaches a minimum value in the middle region. The increasingamount of β_(o)(ω) is considered to be responsible for the increasing hardness because of the strong precipitation strengthening effect. The high plasticity in the bottom and top regions results from the strongdeformation behaviors of the γ and β_(o) phases.
基金Supported by the National Key Basic Research and Development(973) Program of China (No. 2007CB707704)
文摘Direct laser metallic powder deposition technique is widely used in manufacturing, part repairing, and metallic rapid prototyping. The ability to predict geometrical accuracy and residual stress requires an understanding of temperature distribution during the deposition process. This study presents a numerical model of three-dimensional transient heat transfer in a finite model heated by a moving laser beam. Thermal phenomena in the process were investigated. The complex solid-liquid problem and latent heat of fusion were treated by means of equivalent thermal conductivity and modified specific heat, respectively. Using method of birth and death of elements, the growth of additive layers and the shape of melt pool were obtained. The effect of processing parameters such as absorbed power, travel speed, and preheated temperature on melt pool sizes and cross-section of deposited layer profile was studied. The results show that the melt pool sizes increase with absorbed power and decrease with travel velocity. In addition, the preheated temperature contributes less to the melt pool size. The results are generally in a good agreement with experiments in published literature.
基金financially supported by the National Key Research and Development Program of China (Grant Nos. 2016YFB1100204 and 2013ZX06002-002)the Shenyang Science and Technology Funded Project (Grant Nos. 17-29-2-00, Y17-1-031 and Z17-2-002)Financial support by the Youth Foundation of School of Stomatology, China Medical University (Grant No. K101593-17-05)
文摘Direct laser metal deposition is a kind of advanced rapid manufacturing technology, which can produce near net shape parts by depositing metal powders layer by layer. This study demonstrates fabrication, the anisotropy of mechanical properties and hardness of a graded steel. The characteristics of constituent phases, microstructure, mechanical anisotropy, and microhardness were investigated using electron backscatter diffraction, optical microscopy, tensile test machine, and microhardness tester. It was found that the graded steel is dense and free of cracks. The crystal structures of the as-built samples evolved in three grades from fcc structures to fcc + bcc structures and then to bcc + fcc structures. Samples in x and z directions showed obvious mechanical anisotropy. The samples machined in x direction showed higher strength and lower elongation than those machined in z direction due to the presence of lack-of-fusion pores and the higher metallurgical bonding between layers in the x direction. The microhardness of the as-built samples increased along the cross section from the substrate (159.7 HV) to the top surface (545.4 HV).
基金the support from the National Key Research and Development Program of China (No. 2017YFB1104003)the National Natural Science Foundation of China (No. 11772027)Aeronautical Science Foundation of China (No. 28163701002)
文摘The present work aims to investigate the fatigue behavior of Direct Laser Deposition(DLD) Ti-6.5 Al-2 Zr-1 Mo-1 V titanium alloy under constant amplitude stress. 22 pieces of DLD Ti-6.5 Al-2 Zr-1 Mo-1 V titanium alloy standard cylinder specimens were tested under a stress level of 800 MPa with a stress ratio of 0.06. Fatigue fractography and fatigue life data were obtained.Through the fracture surface analysis, the specimens were divided into two categories in accordance with the location of crack initiation and defect types. Comparison of fatigue life and behavior between two specimen types was given, which was followed by a discussion about the impact of defect type, size and position on the fatigue life of the specimen. The fatigue test results also show a large variation of fatigue life. To illustrate the statistical characteristics of the fatigue life, probabilistic analysis was performed, and a novel bimodal lognormal model was established. The model has a good fit with the experimental data and can reduce the scatter of the fatigue life significantly.
基金supported by the National Natural Science Foundation of China(No.51575347)the China Scholarship Council(No.201806235039)。
文摘The anisotropic ductility of a direct laser deposited 17-4 PH cubic part was investigated.Anisotropic elongations in the specimens from varied surfaces of the part were obtained:~6.2%,~1.5%,and~4.5%in XY,YZ,and XZ samples,respectively.Furthermore,various orientations of ferrite were found in different specimens,taking the loading direction as reference.A finite element analysis depending on actual microstructures and dislocation density revealed that the orientation of ferrite caused the ductility anisotropy.The orientation of ferrite affected its plastic deformability and the deformation compatibility between phases during the uniaxial loading.The ferrite parallel to the tensile direction in the YZ sample had the worst deformability and induced severe strain localization and stress triaxiality,which resulted in inferior ductility.The ferrite perpendicular to the tensile direction showed the best deformability,whereas strain localization remained intense in the XZ sample owing to the unmatched deformability of martensite.The inclined ferrite in the XY sample exhibited moderate deformability and was found to enhance the plastic flow of martensite,leading to the best deformation compatibility and ductility.
基金supported by the Science and Technology Support Program of Jiangsu (Nos. BE2014009-1 and BE2014009-2)the Key Research and Development Program of Jiangsu (No. BE2015161)
文摘To investigate the influence of island scanning on the microstructures and mechanical properties of direct laser-deposited Ti–6 Al–4 V structures,two samples are prepared using island scanning and orthogonal successive scanning,respectively.The microstructures,relative density,and mechanical properties of the samples prepared using these two scanning strategies are compared.Each sample exhibits columnarβ-grain morphology and basket-weave microstructure characterization.The grains of the sample prepared using island scanning are significantly finer than that prepared by orthogonal successive scanning due to faster cooling during deposition.However,the relative density of the sample prepared using island scanning was slightly smaller due to the concentration of lack-of-fusion pores at the overlap zone of the island.Tensile testing at room temperature indicates that the ultimate tensile strength and yield strength of the sample prepared using island scanning is enhanced due to finer grains,while the ductility of the sample is weakened due to defects.
文摘This paper focuses on an analysis of the surface texture formed during precision machining of tungsten carbide. The work material was fabricated using direct laser deposition (DLD) technology. The experiment included precision milling of tungsten carbide samples with a monolithic torus cubic boron nitride tool and grinding with diamond and alumina cup wheels. An optical surface profiler was applied to the measurements of surface textures and roughness profiles. In addition, the micro-geometry of the milling cutter was measured with the appli- cation of an optical device. The surface roughness height was also estimated with the application of a model, which included kinematic-geometric parameters and minimum uncut chip thickness. The research revealed the occurrence of micro-grooves on the machined surface. The surface roughness height calculated on the basis of the traditional kinematic-geometric model was incompatible with the measurements. However, better agreement between the theoretical and experimental values was observed for the minimum uncut chip thickness model.
基金financially supported by the Research Fund of the State Key Laboratory of Solidification Processing(NPU),China(Grant Nos.2020-TS-06,2021-TS-02).
文摘Eutectic high-entropy alloys(EHEAs)that have superior formability are attractive for direct laser deposition technology.In this study,a regular-shaped bulk Ni_(32)Co_(30)Cr_(10)Fe_(10)Al_(18)EHEA without apparent pores and micro-cracks was successfully fabricated by direct laser deposition.The as-deposited alloy showed a high tensile strength of 1.3 GPa with a ductility of 35%at ambient temperature and a tensile strength of 320 MPa at 760℃.The deformation mechanisms of the as-deposited alloy at ambient and elevated temperatures were investigated by coupling the in-situ tensile test with a scanning electron microscope.It is revealed that the excellent combination of strength and ductility originated from the synergic effects of the FCC and B2 phases in eutectic lamellae.And the generation of cracks along phase boundaries restricted its high-temperature strength above 760℃.