The existing direction of arrival (DOA) estimation algorithms based on the electromagnetic vector sensors array barely deal with the coexisting of independent and coherent signals. A two-dimensional direction findin...The existing direction of arrival (DOA) estimation algorithms based on the electromagnetic vector sensors array barely deal with the coexisting of independent and coherent signals. A two-dimensional direction finding method using an L-shape electromagnetic vector sensors array is proposed. According to this method, the DOAs of the independent signals and the coherent signals are estimated separately, so that the array aperture can be exploited sufficiently. Firstly, the DOAs of the independent signals are estimated by the estimation of signal parameters via rotational invariance techniques, and the influence of the co- herent signals can be eliminated by utilizing the property of the coherent signals. Then the data covariance matrix containing the information of the coherent signals only is obtained by exploiting the Toeplitz property of the independent signals, and an improved polarimetric angular smoothing technique is proposed to de-correlate the coherent signals. This new method is more practical in actual signal environment than common DOA estimation algorithms and can expand the array aperture. Simulation results are presented to show the estimating performance of the proposed method.展开更多
Sensing coverage is a fundamental problem in sensors networks. Different from traditional isotropic sensors with sensing disk, directional sensors may have a limited angle of sensing range due to special applications....Sensing coverage is a fundamental problem in sensors networks. Different from traditional isotropic sensors with sensing disk, directional sensors may have a limited angle of sensing range due to special applications. In this paper, we study the coverage problem in directional sensor networks (DSNs) with the rotatable orientation for each sensor. We propose the optimal coverage in directional sensor networks (OCDSN) problem to cover maximal area while activating as few sensors as possible. Then we prove the OCDSN to be NP-complete and propose the Voronoi-based centralized approximation (VCA) algorithm and the Voronoi-based distributed approximation (VDA) algorithm of the solution to the OCDSN problem. Finally, extensive simulation is executed to demonstrate the performance of the proposed algorithms.展开更多
Flexible and wearable humidity sensors play a vital role in daily point-of-care diagnosis and noncontact human-machine interactions.However,achieving a facile and high-speed fabrication approach to realizing flexible ...Flexible and wearable humidity sensors play a vital role in daily point-of-care diagnosis and noncontact human-machine interactions.However,achieving a facile and high-speed fabrication approach to realizing flexible humidity sensors remains a challenge.In this work,a wearable capacitive-type Ga_(2)O_(3)/liquid metal-based humidity sensor is demonstrated by a one-step laser direct writing technique.Owing to the photothermal effect of laser,the Ga_(2)O_(3)-wrapped liquid metal particles can be selectively sintered and converted from insulative to conductive traces with a resistivity of 0.19Ω·cm,while the untreated regions serve as active sensing layers in response to moisture changes.Under 95%relative humidity,the humidity sensor displays a highly stable performance along with rapid response and recover time.Utilizing these superior properties,the Ga_(2)O_(3)/liquid metal-based humidity sensor is able to monitor human respiration rate,as well as skin moisture of the palm under different physiological states for healthcare monitoring.展开更多
A two-dimensional direction-of-arrival (DOA) and polarization estimation algorithm for coherent sources using a linear vector-sensor array is presented. Two matrices are first constructed by the receiving data. The ...A two-dimensional direction-of-arrival (DOA) and polarization estimation algorithm for coherent sources using a linear vector-sensor array is presented. Two matrices are first constructed by the receiving data. The ranks of the two matrices are only related to the DOAs of the sources and independent of their coherency. Then the source’s elevation is resolved via the matrix pencil (MP) method, and the singular value decomposition (SVD) is used to reduce the noise effect. Finally, the source’s steering vector is estimated, and the analytics solutions of the source’s azimuth and polarization parameter can be directly computed by using a vector cross-product estimator. Moreover, the proposed algorithm can achieve the unambiguous direction estimates, even if the space between adjacent sensors is larger than a half-wavelength. Theoretical and numerical simulations show the effectiveness of the proposed algorithm.展开更多
A fundamental problem in the direct manufacturing of flexible devices is the low melting temperature of flexible substrates,which hinders the development of flexible electronics.Proposed here is an electron-cyclotron-...A fundamental problem in the direct manufacturing of flexible devices is the low melting temperature of flexible substrates,which hinders the development of flexible electronics.Proposed here is an electron-cyclotron-resonance sputtering system that can batch-fabricate devices directly on flexible substrates under a low temperature by virtue of the polariton energy transfer between the plasma and the material.Flexible graphene nanosheet-embedded carbon(F-GNEC)films are manufactured directly on polyimide,polyethylene terephthalate,and polydimethylsiloxane,and how the substrate bias(electron energy),microwave power(plasma flux and energy),and magnetic field(electron flux)affect the nanostructure of the F-GNEC films is investigated,indicating that electron energy and flux contribute to the formation of standing graphene nanosheets in the film.The films have good uniformity of distribution in a large size(17 mm×17 mm),and tensile and angle sensors with a high gauge factor(0.92)and fast response(50 ms)for a machine hand are obtained by virtue of the unique nanostructure of the F-GNEC film.This work sheds light on the quantum manufacturing of carbon sensors and its applications for intelligent machine hands and virtual-reality technology.展开更多
Gravity waves with periods close to the Brunt-V(a|¨)is(a|¨)l(a|¨) period of the upper troposphere are often observed at mesopause altitudes as short period,quasi-monochromatic waves.The assumption that ...Gravity waves with periods close to the Brunt-V(a|¨)is(a|¨)l(a|¨) period of the upper troposphere are often observed at mesopause altitudes as short period,quasi-monochromatic waves.The assumption that these short period waves originate in the troposphere may be problematic because their upward propagation to the mesosphere and lower thermosphere region could be significantly impeded due to an extended region of strong evanescence above the stratopause.To reconcile this apparent paradox,an alternative explanation is proposed in this paper.The inclusion of mean winds and their vertical shears is sufficient to allow certain short period waves to remain internal above the stratopause and to propagate efficiently to higher altitudes.A time-dependent numerical model is used to demonstrate the feasibility of this and to determine the circumstances under which the mesospheric wind shears play a role in the removal and directional filtering of short period gravity waves. Finally this paper concludes that the combination of the height-dependent mean winds and the mean temperature structure probably explains the existence of short period,quasi-monochromatic structures observed in airglow images of mesopause region.展开更多
In most areas of China, affected by the environment of low temperature and high humidity, the wind speed sensor and wind direction sensor are frozen and cannot output data in autumn, winter or the alternation of winte...In most areas of China, affected by the environment of low temperature and high humidity, the wind speed sensor and wind direction sensor are frozen and cannot output data in autumn, winter or the alternation of winter and spring. In order to solve the freezing situation of the wind sensor, this paper designs a new type of antifreeze wind speed sensor. After meteorology performance testing and field observation tests, the correlation coefficient of the observation data is demonstrated, and the data curve is fitted. The result shows the sensor is stable, and has a good antifreeze effect, the data output is reliable.展开更多
A thin film giant magneto impedance (GMI) based on magnetic field sensor has been developed using electrodeposited Ni-Fe permalloy. Chemical composition, surface morphology, and magnetic properties of Ni-Fe permalloy ...A thin film giant magneto impedance (GMI) based on magnetic field sensor has been developed using electrodeposited Ni-Fe permalloy. Chemical composition, surface morphology, and magnetic properties of Ni-Fe permalloy were char-acterized as a function of plateup parameters, and process conditions were established to deposit a Ni-Fe thin film with a high permeability (~1000) and a low coercivity (0.6 Oersted). Conventional GMI sensors are uni-directional and are several millimeters long. In this work, a spiral-shaped sensor using electroplated Ni-Fe permalloy to detect bi-directional magnetic field is reported. Excellent bi-directional magnetic field sensing has been demonstrated using the 1 mm2 compact double-spiral structure.展开更多
基金supported by the National Natural Science Foundation of China (61102106)the Fundamental Research Funds for the Central Universities (HEUCF1208 HEUCF100801)
文摘The existing direction of arrival (DOA) estimation algorithms based on the electromagnetic vector sensors array barely deal with the coexisting of independent and coherent signals. A two-dimensional direction finding method using an L-shape electromagnetic vector sensors array is proposed. According to this method, the DOAs of the independent signals and the coherent signals are estimated separately, so that the array aperture can be exploited sufficiently. Firstly, the DOAs of the independent signals are estimated by the estimation of signal parameters via rotational invariance techniques, and the influence of the co- herent signals can be eliminated by utilizing the property of the coherent signals. Then the data covariance matrix containing the information of the coherent signals only is obtained by exploiting the Toeplitz property of the independent signals, and an improved polarimetric angular smoothing technique is proposed to de-correlate the coherent signals. This new method is more practical in actual signal environment than common DOA estimation algorithms and can expand the array aperture. Simulation results are presented to show the estimating performance of the proposed method.
文摘Sensing coverage is a fundamental problem in sensors networks. Different from traditional isotropic sensors with sensing disk, directional sensors may have a limited angle of sensing range due to special applications. In this paper, we study the coverage problem in directional sensor networks (DSNs) with the rotatable orientation for each sensor. We propose the optimal coverage in directional sensor networks (OCDSN) problem to cover maximal area while activating as few sensors as possible. Then we prove the OCDSN to be NP-complete and propose the Voronoi-based centralized approximation (VCA) algorithm and the Voronoi-based distributed approximation (VDA) algorithm of the solution to the OCDSN problem. Finally, extensive simulation is executed to demonstrate the performance of the proposed algorithms.
基金This study was supported by the National Natural Science Foundation of China (52105593 and 62271439)STI 2030 —Major Projects(2022ZD0208601)the “Pioneer” and “Leading Goose” R&D Program of Zhejiang (2023C01051)。
文摘Flexible and wearable humidity sensors play a vital role in daily point-of-care diagnosis and noncontact human-machine interactions.However,achieving a facile and high-speed fabrication approach to realizing flexible humidity sensors remains a challenge.In this work,a wearable capacitive-type Ga_(2)O_(3)/liquid metal-based humidity sensor is demonstrated by a one-step laser direct writing technique.Owing to the photothermal effect of laser,the Ga_(2)O_(3)-wrapped liquid metal particles can be selectively sintered and converted from insulative to conductive traces with a resistivity of 0.19Ω·cm,while the untreated regions serve as active sensing layers in response to moisture changes.Under 95%relative humidity,the humidity sensor displays a highly stable performance along with rapid response and recover time.Utilizing these superior properties,the Ga_(2)O_(3)/liquid metal-based humidity sensor is able to monitor human respiration rate,as well as skin moisture of the palm under different physiological states for healthcare monitoring.
基金supported by the Program for Changjiang Scholars and Innovative Research Team in University (IRT0645)
文摘A two-dimensional direction-of-arrival (DOA) and polarization estimation algorithm for coherent sources using a linear vector-sensor array is presented. Two matrices are first constructed by the receiving data. The ranks of the two matrices are only related to the DOAs of the sources and independent of their coherency. Then the source’s elevation is resolved via the matrix pencil (MP) method, and the singular value decomposition (SVD) is used to reduce the noise effect. Finally, the source’s steering vector is estimated, and the analytics solutions of the source’s azimuth and polarization parameter can be directly computed by using a vector cross-product estimator. Moreover, the proposed algorithm can achieve the unambiguous direction estimates, even if the space between adjacent sensors is larger than a half-wavelength. Theoretical and numerical simulations show the effectiveness of the proposed algorithm.
基金support of the National Natural Science Foundation of China(Grant Nos.52275565,NSFC-JSPS:52011540005,and 62104155)the Natural Science Foundation of Guangdong Province(Grant No.2022A1515011667)the Guangdong Kangyi Special Fund(Grant No.2020KZDZX1173).
文摘A fundamental problem in the direct manufacturing of flexible devices is the low melting temperature of flexible substrates,which hinders the development of flexible electronics.Proposed here is an electron-cyclotron-resonance sputtering system that can batch-fabricate devices directly on flexible substrates under a low temperature by virtue of the polariton energy transfer between the plasma and the material.Flexible graphene nanosheet-embedded carbon(F-GNEC)films are manufactured directly on polyimide,polyethylene terephthalate,and polydimethylsiloxane,and how the substrate bias(electron energy),microwave power(plasma flux and energy),and magnetic field(electron flux)affect the nanostructure of the F-GNEC films is investigated,indicating that electron energy and flux contribute to the formation of standing graphene nanosheets in the film.The films have good uniformity of distribution in a large size(17 mm×17 mm),and tensile and angle sensors with a high gauge factor(0.92)and fast response(50 ms)for a machine hand are obtained by virtue of the unique nanostructure of the F-GNEC film.This work sheds light on the quantum manufacturing of carbon sensors and its applications for intelligent machine hands and virtual-reality technology.
基金Supported by the National Natural Science Foundation of China(40874100,41174128)
文摘Gravity waves with periods close to the Brunt-V(a|¨)is(a|¨)l(a|¨) period of the upper troposphere are often observed at mesopause altitudes as short period,quasi-monochromatic waves.The assumption that these short period waves originate in the troposphere may be problematic because their upward propagation to the mesosphere and lower thermosphere region could be significantly impeded due to an extended region of strong evanescence above the stratopause.To reconcile this apparent paradox,an alternative explanation is proposed in this paper.The inclusion of mean winds and their vertical shears is sufficient to allow certain short period waves to remain internal above the stratopause and to propagate efficiently to higher altitudes.A time-dependent numerical model is used to demonstrate the feasibility of this and to determine the circumstances under which the mesospheric wind shears play a role in the removal and directional filtering of short period gravity waves. Finally this paper concludes that the combination of the height-dependent mean winds and the mean temperature structure probably explains the existence of short period,quasi-monochromatic structures observed in airglow images of mesopause region.
文摘In most areas of China, affected by the environment of low temperature and high humidity, the wind speed sensor and wind direction sensor are frozen and cannot output data in autumn, winter or the alternation of winter and spring. In order to solve the freezing situation of the wind sensor, this paper designs a new type of antifreeze wind speed sensor. After meteorology performance testing and field observation tests, the correlation coefficient of the observation data is demonstrated, and the data curve is fitted. The result shows the sensor is stable, and has a good antifreeze effect, the data output is reliable.
文摘A thin film giant magneto impedance (GMI) based on magnetic field sensor has been developed using electrodeposited Ni-Fe permalloy. Chemical composition, surface morphology, and magnetic properties of Ni-Fe permalloy were char-acterized as a function of plateup parameters, and process conditions were established to deposit a Ni-Fe thin film with a high permeability (~1000) and a low coercivity (0.6 Oersted). Conventional GMI sensors are uni-directional and are several millimeters long. In this work, a spiral-shaped sensor using electroplated Ni-Fe permalloy to detect bi-directional magnetic field is reported. Excellent bi-directional magnetic field sensing has been demonstrated using the 1 mm2 compact double-spiral structure.