The rock fracture characteristics and principal stress directions are crucial for prevention of geological disasters.In this study,we carried out biaxial compression tests on cubic granite samples of 100 mm in side le...The rock fracture characteristics and principal stress directions are crucial for prevention of geological disasters.In this study,we carried out biaxial compression tests on cubic granite samples of 100 mm in side length with different intermediate principal stress gradients in combination with acoustic emission(AE)technique.Results show that the fracture characteristics of granite samples change from‘sudden and aggregated’to‘continuous and dispersed’with the increase of the intermediate principal stress.The effect of increasing intermediate principal stress on AE amplitude is not significant,but it increases the proportions of high-frequency AE signals and shear cracks,which in turn increases the possibility of unstable rock failure.The difference of stress in different directions causes the anisotropy of rock fracture and thus leads to the obvious anisotropic characteristics of wave velocity variations.The anisotropy of wave velocity variations with stress difference is probable to identify the principal stress directions.The AE characteristics and the anisotropy of wave velocity variations of granite under two-dimensional stress are not only beneficial complements for rock fracture characteristic and principal stress direction identification,but also can provide a new analysis method for stability monitoring in practical rock engineering.展开更多
The characteristics of rock instability precursors and the principal stress direction are very crucial for the prevention of geological disasters.This study investigated the qualitative relationship between rock insta...The characteristics of rock instability precursors and the principal stress direction are very crucial for the prevention of geological disasters.This study investigated the qualitative relationship between rock instability precursors and principal stress direction through wave velocity in rock acoustic emission(AE)experiments.Results show that the wave velocity variation exhibits obvious anisotropic characteristics in 0%–20%and 60%–90%of peak strength due to the differences of stress-induced microcrack types.The amplitude of wave velocity variation is related to the azimuth and position of wave propagation path,which indicates that the principal stress direction can be identified by the anisotropic characteristics of wave velocity variations.Furthermore,the experiments also demonstrate that the AE event rate and wave velocity show quiet and stable variations in the elastic stage of rock samples,while they present a trend of active and unstable variations in the plastic stage.It implies that both the AE event rate and wave velocity are effective monitoring parameters for rock instability.The anisotropic characteristics of the wave velocity variation and AE event rate are beneficial complements for identifying the rock instability precursors and determining the principal stress direction,which provides a new analysis method for stability monitoring in practical rock engineering.展开更多
The behavior that different magnetic treatment directions induce various amounts of welding residual stress reductions in low alloy steel was studied. Reductions of 26%-28% in the longitudinal stress σ x were obtaine...The behavior that different magnetic treatment directions induce various amounts of welding residual stress reductions in low alloy steel was studied. Reductions of 26%-28% in the longitudinal stress σ x were obtained when low frequency alternating magnetic treatment was applied perpendicularly to the welding bead, whereas reductions of 20%-21% in σ x were measured by using the same treatment parameters except that the field direction was applied parallel to the bead. It is proposed that different extent of stress reductions caused by the above two treatment directions is attributed primarily to the alteration of the energy absorbed by domains from the external magnetic field, which part of energy can arouse plastic deformation in microstructures by the motion of domain walls.展开更多
To investigate the failure process and characteristics of D-shaped tunnels under different maximum principal stress directions θ, true-triaxial tests were conducted on cubic sandstone samples with a through D-shaped ...To investigate the failure process and characteristics of D-shaped tunnels under different maximum principal stress directions θ, true-triaxial tests were conducted on cubic sandstone samples with a through D-shaped hole. The test results show that the failure process can be divided into 4 periods:calm, buckling deformation, gradual buckling and exfoliation of rock fragment, and formation of a Vshaped notch. With an increase in θ from 0° to 90°, the size of the rock fragments first decreases and then increases, whereas the fractal dimension of the rock fragments first increases and then decreases. Meanwhile, the failure position at the left side shifts from the sidewall to the corner and finally to the floor, whereas the failure position at the right side moves from the sidewall to the spandrel and finally to the roof, which is consistent with the failure position in underground engineering. In addition, the initial vertical failure stress first decreases and then increases. By comparing the results,the failure severities at different maximum principal stress directions can be ranked from high to low in the following order: 90°>60°>30°>45°>0°.展开更多
A series of directional shear tests on remolded frozen soil was carried out at 10°C by using a hollow cylinder apparatus to study failure criterion under a directional shear-stress path.Directional shear tests we...A series of directional shear tests on remolded frozen soil was carried out at 10°C by using a hollow cylinder apparatus to study failure criterion under a directional shear-stress path.Directional shear tests were conducted at five shear rates(10,20,30,40,and 50 kPa/min)and five intermediate principal stress coefficients(b=0,0.25,0.5,0.75,and 1),with the mean principal stress(p=4.5 MPa)kept constant.The results show that the torsional strength and the generalized strength both increase with the increase of the shear rates.According to the failure modes of frozen soil under different shear rates,the specimens present obvious plastic failure and shear band;and the torsional shear component dominates the failure modes of hollow cylindrical specimens.A shear rate of 30 kPa/min is chosen as the loading rate in the directional shear tests of frozen soil.The shape of the failure curve in theπplane is dependent on the directional anglesαof the major prin cipal stress.It is reasonable to use the strain-hardening curves to define the deviatoric stress value atγg=15%(generalized shear strain)as the failure criterion of frozen soil under a directional shear-stress path.展开更多
In deep hard rock excavation, stress plays a pivotal role in inducing stress-controlled failure. While the impact of excavation-induced stress disturbance on rock failure and tunnel stability has undergone comprehensi...In deep hard rock excavation, stress plays a pivotal role in inducing stress-controlled failure. While the impact of excavation-induced stress disturbance on rock failure and tunnel stability has undergone comprehensive examination through laboratory tests and numerical simulations, its validation through insitu stress tests remains unexplored. This study analyzes the three-dimensional stress changes in the surrounding rock at various depths, monitored during the excavation of B2 Lab in China Jinping Underground Laboratory Phase Ⅱ(CJPL-Ⅱ). The investigation delves into the three-dimensional stress variation characteristics in deep hard rock, encompassing stress components and principal stress. The results indicate changes in both the magnitude and direction of the principal stress during tunnel excavation. To quantitatively describe the degree of stress disturbance, a series of stress evaluation indexes are established based on the distances between stress tensors, including the stress disturbance index(SDI), the principal stress magnitude disturbance index(SDIm), and the principal stress direction disturbance index(SDId). The SDI indicates the greatest stress disturbance in the surrounding rock is 4.5 m from the tunnel wall in B2 Lab. SDIm shows that the principal stress magnitude disturbance peaks at2.5 m from the tunnel wall. SDId reveals that the largest change in principal stress direction does not necessarily occur near the tunnel wall but at a specific depth from it. The established relationship between SDI and the depth of the excavation damaged zone(EDZ) can serve as a criterion for determining the depth of the EDZ in deep hard rock engineering. Additionally, it provides a reference for future construction and support considerations.展开更多
The occurrence of geological hazards and the instability of geotechnical engineering structures are closely related to the time-dependent behavior of rock.However,the idealization boundary condition for constant stres...The occurrence of geological hazards and the instability of geotechnical engineering structures are closely related to the time-dependent behavior of rock.However,the idealization boundary condition for constant stress in creep or constant strain in relaxation is not usually attained in natural geological systems.Therefore,generalized relaxation tests that explore the simultaneous changes of stress and strain with time under different stress levels with constant pore-water pressure are conducted in this study.The results show that in area Ⅰ,area Ⅱ,and area Ⅲ,the stress and strain both change synchronously with time and show similar evolutionary laws as the strain-time curve for creep or the stress-time curve for relaxation.When the applied stress level surpasses the δ_(ci) or δ_(cd) threshold,the variations in stress and strain and their respective rates of change exhibit a significant increase.The radial deformation and its rate of change exhibit greater sensitivity in response to stress levels.The apparent strain deforms homogeneously at the primary stage,and subsequently,gradually localizes due to the microcrack development at the secondary stage.Ultimately,interconnection of the microcracks causes the formation of a shear-localization zone at the tertiary stage.The strain-time responses inside and outside the localization zone are characterized by local strain accumulation and inelastic unloading during the secondary and tertiary stages,respectively.The width of the shear-localization zone is found to range from 4.43 mm to 7.08 mm and increased with a longer time-to-failure.Scanning electron microscopy(SEM)reveals a dominant coalescence of intergranular cracks on the fracture surface,and the degree of physiochemical deterioration caused by water-rock interaction is more severe under a longer lifetime.The brittle sandstone’s time-dependent deformation is essentially controlled by microcrack development during generalized relaxation,and its expectancy-life is determined by its initial microstructural state and the rheological path.展开更多
Crop water stress index(CWSI)is widely used for efficient irrigation management.Precise canopy temperature(T_(c))measurement is necessary to derive a reliable CWSI.The objective of this research was to investigate the...Crop water stress index(CWSI)is widely used for efficient irrigation management.Precise canopy temperature(T_(c))measurement is necessary to derive a reliable CWSI.The objective of this research was to investigate the influences of atmospheric conditions,settled height,view angle of infrared thermography,and investigating time of temperature measuring on the performance of the CWSI.Three irrigation treatments were used to create different soil water conditions during the 2020-2021 and 2021-2022 winter wheat-growing seasons.The CWSI was calculated using the CWSI-E(an empirical approach)and CWSI-T(a theoretical approach)based on the T_(c).Weather conditions were recorded continuously throughout the experimental period.The results showed that atmospheric conditions influenced the estimation of the CWSI;when the vapor pressure deficit(VPD)was>2000 Pa,the estimated CWSI was related to soil water conditions.The height of the installed infrared thermograph influenced the T_(c)values,and the differences among the T_(c)values measured at height of 3,5,and 10 m was smaller in the afternoon than in the morning.However,the lens of the thermometer facing south recorded a higher T_(c)than those facing east or north,especially at a low height,indicating that the direction of the thermometer had a significant influence on T_(c).There was a large variation in CWSI derived at different times of the day,and the midday measurements(12:00-15:00)were the most reliable for estimating CWSI.Negative linear relationships were found between the transpiration rate and CWSI-E(R^(2)of 0.3646-0.5725)and CWSI-T(R^(2)of 0.5407-0.7213).The relations between fraction of available soil water(FASW)with CWSI-T was higher than that with CWSI-E,indicating CWSI-T was more accurate for predicting crop water status.In addition,The R^(2)between CWSI-T and FASW at 14:00 was higher than that at other times,indicating that 14:00 was the optimal time for using the CWSI for crop water status monitoring.Relative higher yield of winter wheat was obtained with average seasonal values of CWSI-E and CWSI-T around 0.23 and 0.25-0.26,respectively.The CWSI-E values were more easily influenced by meteorological factors and the timing of the measurements,and using the theoretical approach to derive the CWSI was recommended for precise irrigation water management.展开更多
This study is focused on the effect of boron addition, in the range of 0.0007wt% to 0.03wt%, on the microstructure and stress-rupture properties of a directionally solidified superalloy. With increasing boron content ...This study is focused on the effect of boron addition, in the range of 0.0007wt% to 0.03wt%, on the microstructure and stress-rupture properties of a directionally solidified superalloy. With increasing boron content in the as-cast alloys, there is an increase in the fraction of the γ′/γ eutectic and block borides precipitate around the γ′/γ eutectic. At a high boron content of 0.03wt%, there is precipitation of lamellar borides. Upon heat treatment, fine block borides tend to precipitate at grain boundaries with increasing boron content. Overall, the rupture life of the directionally solidified superalloy is significantly improved with the addition of nominal content of boron. However, the rupture life decreases when the boron content exceeds 0.03wt%.展开更多
A graphical method for determining the principal stress distribution of a triaxial stress state from a fault slipstate was proposed by Aleksandrowski in 1985,based on Arthaud′s concept of plane movement,Alek-sandrow...A graphical method for determining the principal stress distribution of a triaxial stress state from a fault slipstate was proposed by Aleksandrowski in 1985,based on Arthaud′s concept of plane movement,Alek-sandrowski′s method,however,is only valid for the cases in which the values of the stress ratios(C)are consid-ered 1o be ,10,2,1.1 and 1.Whether the method is applicable for general cases of all values of C has not yetbeen confirmed.In this paper.Aleksandrowskis′ method is tested using a numerical derivation from spatialgeometric analysis,and it is revealed that this method is correct for all values of stress ratios other than C=,10,2,1.1,and 1,i.c-【C【.展开更多
In this article, a direct stress approach based on finite element analysis to determine the stress intensity factor is improved. Firstly, by comparing the rigorous solution against the asymptotic solution for a proble...In this article, a direct stress approach based on finite element analysis to determine the stress intensity factor is improved. Firstly, by comparing the rigorous solution against the asymptotic solution for a problem of an infinite plate embedded a central crack, we found that the stresses in a restrictive interval near the crack tip given by the rigorous solution can be used to determine the stress intensity factor, which is nearly equal to the stress intensity factor given by the asymptotic solution. Secondly, the crack problem is solved numerically by the finite element method. Depending on the modeling capability of the software, we designed an adaptive mesh model to simulate the stress singularity. Thus, the stress result in an appropriate interval near the crack tip is fairly approximated to the rigorous solution of the corresponding crack problem. Therefore, the stress intensity factor may be calculated from the stress distribution in the appropriate interval, with a high accuracy.展开更多
The directional dependency of the acoustic emission (AE) and deformation rate analysis (DRA) methods was analyzed, based on the contact bond model in the two-dimensional particle flow code (PFC2D) in two types o...The directional dependency of the acoustic emission (AE) and deformation rate analysis (DRA) methods was analyzed, based on the contact bond model in the two-dimensional particle flow code (PFC2D) in two types of rocks, the coarse-grained sandstone and Aue granite. Each type of rocks had two shapes, the Brazilian disk and a square shape. The mechanical behaviors of the numerical model had already been verified to be in agreement with those of the physical specimens in previous research. Three loading protocols with different loading cycles in two orthogonal directions were specially designed in the numerical tests. The results show that no memory effect is observed in the second loading in the orthogonal direction. However, both the cumulative crack number of the second loading and the differential strain value at the inflection point are influenced by the first loading in the orthogonal direction.展开更多
Directional rupture is one of the difficult problems in deep rock mechanics and engineering.A directional fracturing method with static expansive agent controlled by dense linear multi boreholes is proposed.A physical...Directional rupture is one of the difficult problems in deep rock mechanics and engineering.A directional fracturing method with static expansive agent controlled by dense linear multi boreholes is proposed.A physical experiment is designed and performed to investigate the basic laws of this method.The fracture initiation and propagation process,and the mechanism of directional fracturing are analyzed.The results indicate that a directional fracture is formed along the direction of boreholes layout through directionally fracturing with static expansive agents controlled by the dense linear multi boreholes.According to the variation of strain and the distribution of associated acoustic emission(AE)events and energy,the experiment can be divided into three stages.In the first stage,the static expansive agent expand slowly with no fracturing inside the rock.In the second stage,some initial micro-fracturing occurs inside the rock.In the third stage,a wide range of fracturing occurs inside the sample.The internal micro-fracturing planes are connected to form a macro-fracture.Finally,it propagates to the surface of the sample.The directional fracturing plane presents a relatively smooth plane with little bias but much local fluctuation.展开更多
Owing to the stochastic behavior of earthquakes and complex crustal structure,wave type and incident direction are uncertain when seismic waves arrive at a structure.In addition,because of the different types of the s...Owing to the stochastic behavior of earthquakes and complex crustal structure,wave type and incident direction are uncertain when seismic waves arrive at a structure.In addition,because of the different types of the structures and terrains,the traveling wave effects have different influences on the dynamic response of the structures.For the tall concrete-faced rockfill dam(CFRD),it is not only built in the complex terrain such as river valley,but also its height has reached 300 m level,which puts forward higher requirements for the seismic safety of the anti-seepage system mainly comprising concrete face slabs,especially the accurate location of the weak area in seism.Considering the limitations of the traditional uniform vibration analysis method,we implemented an efficient dynamic interaction analysis between a tall CFRD and its foundation using a non-uniform wave input method with a viscous-spring artificial boundary and equivalent nodal loads.This method was then applied to investigate the dynamic stress distribution on the concrete face slabs for different seismic wave types and incident directions.The results indicate that dam-foundation interactions behave differently at different wave incident angles,and that the traveling wave effect becomes more evident in valley topography.Seismic wave type and incident direction dramatically influenced stress in the face slab,and the extreme stress values and distribution law will vary under oblique wave incidence.The influence of the incident direction on slab stress was particularly apparent when SH-waves arrived from the left bank.Specifically,the extreme stress values in the face slab increased with an increasing incident angle.Interestingly,the locations of the extreme stress values changed mainly along the axis of the dam,and did not exhibit large changes in height.The seismic safety of CFRDs is therefore lower at higher incident angles from an anti-seepage perspective.Therefore,it is necessary to consider both the seismic wave type and incident direction during seismic capacity evaluations of tall CFRDs.展开更多
The microstructure changed markedly with increasing solution temperature, i.e eutectic γ' phases and coarse primary γ' phase are redissolved continuously into matrix, which was finished at 1250-1260℃, and m...The microstructure changed markedly with increasing solution temperature, i.e eutectic γ' phases and coarse primary γ' phase are redissolved continuously into matrix, which was finished at 1250-1260℃, and more and finer γ' phases are reprecipitated. The grain boundary morphology changed gradually to 'fine line' form. The dendritic segregation of elements decreased. With raising solution temperature the longitudinal stress-rupture life at high and intermediate temperature were enhanced, but the transversal stress-rupture life at intermediate temperature decreased obviously. The incipient melting temperature of DZ22 alloy was measured to be 1230-1240℃ and may be increased by homogenization at 1150℃. In this paper the principle of determining solution temperature of DS alloys was discussed. It was suggested that the solution temperature of alloy DZ22 selected at 1200-1210℃ is appropri- ate.展开更多
High geostress will become a normality in the deep because in-situ stress rises linearly with depth.The geological structure grows immensely intricate as depth increases.Faults,small fractures,and joint fissures are w...High geostress will become a normality in the deep because in-situ stress rises linearly with depth.The geological structure grows immensely intricate as depth increases.Faults,small fractures,and joint fissures are widely developed.The objective of this paper is to identify geostress anomalies at a variety of locations near faults and to demonstrate their accumulation mechanism.Hydrofracturing tests were conducted in seven deep boreholes.We conducted a test at a drilling depth of over one thousand meters to reveal and quantify the influence of faults on in-situ stresses at the hanging wall,footwall,between faults,end of faults,junction of faults,and far-field of faults.The effect of fault sites and characteristics on the direction and magnitude of stresses has been investigated and compared to test boreholes.The accumulation heterogeneity of stresses near faults was illustrated by a three-dimensional numerical simulation,which is utilized to explain the effect of faults on the accumulation and differentiation of in-situ stress.Due to regional tectonics and faulting,the magnitude,direction,and stress regime are all extremely different.The concentration degree of geostress and direction change will vary with the location of faults near faults,but the magnitude and direction of in-situ stress conform to regional tectonic stress at a distance from the faults.The focal mechanism solution has been verified using historical seismic ground motion vectors.The results demonstrate that the degree of stress differentiation varies according to the fault attribute and its position.Changes in stress differentiation and its ratio from strong to weak occur between faults,intersection,footwall,end of faults,and hanging wall;along with the sequence of orientation is the footwall,between faults,the end of faults,intersection,and hanging wall.This work sheds new light on the fault-induced stress accumulation and orientation shift mechanisms across the entire cycle.展开更多
The present study aims at the design and making of measuring instrument of whole direct method for bed shear stress under two-dimensional water-flow co-action. The instrument combines the traditional strain gauge with...The present study aims at the design and making of measuring instrument of whole direct method for bed shear stress under two-dimensional water-flow co-action. The instrument combines the traditional strain gauge with a precise pressure gauge, and adopts the method directly measuring the difference between the lateral hydrodynamic pressure and different head pressures on both sides of the force plate. As a result, such an instrument solves a technical puzzle of the past strain gauge, i.e. the difficulty to set apart shear stress and lateral force. Static force test and sink test both prove that the instrument is precise, stable and applicable to the measurement of rough beds with different shear stresses.展开更多
The creep crack propagation in superalloy René80 of two different microstructures,i.e., equiaxed grain structure by conventional casting and columnar grain by directional solidification,was investigated under sta...The creep crack propagation in superalloy René80 of two different microstructures,i.e., equiaxed grain structure by conventional casting and columnar grain by directional solidification,was investigated under static load at 1123 K.The creep crack growth rate, da/dt,seems to be correlated with the stress intensity factor,K.The creep crack growth rate in the directionally solidified alloy is lower than that in the conventional cast alloy,owing to the elimination of transverse grain boundaries.The effect of microstructure on creep crack propagation has also been discussed.展开更多
This paper focuses on the development of the mathematical model of shear stress by direct shear test for compressible soil of the littoral region, which will be a great tool in the hand of geotechnical engineers. The ...This paper focuses on the development of the mathematical model of shear stress by direct shear test for compressible soil of the littoral region, which will be a great tool in the hand of geotechnical engineers. The most common use of a shear test is to determine the shear strength which is the maximum shear stress that a material can withstand before the failure occurs. This parameter is useful in many engineering designs such as foundations, roads and retaining walls. We carried out an experimental laboratory test of ten samples of undisturbed soil taken at different points of the border of Wouri river of Cameroon. The samples were collected at different depths and a direct shear test was conducted. The investigations have been performed under constant vertical stresses and constant sample volume with the aim to determine the frictional angle and the cohesion of the compressible soil which are so important to establish the conditions of buildings stability. Special care was taken to derive loading conditions actually existing in the ground and to duplicate them in the laboratory. Given that the buildings constructed in this area are subjected to settlement, landslide, and punch break or shear failure, the cohesion and the frictional angle are determined through the rupture line after assessed the mean values of the shear stress for the considered ten samples. The bearing capacity of the soil, which is the fundamental soil parameter, was calculated. From the laboratory experimental results, the least squared method was used to derive an approximated mathematical model of the shearing stress. Many optimizations methods were then considered to reach the best adjustment.展开更多
Rocks are composed of mineral particles and micropores between mineral which has a great influence on the mechanical properties of rocks. In this paper, based on the theory of locked-in stress developed by academician...Rocks are composed of mineral particles and micropores between mineral which has a great influence on the mechanical properties of rocks. In this paper, based on the theory of locked-in stress developed by academician Chen Zongji, the locked-in stress problem in underground rock is simulated by the thermal expansion of hard rubber particles. The pore inclusion in rock is assumed to be uniformly distributed spherical cavities. Using the thermal stress theory, the stress of rock with a spherical pore inclusion is equivalent to the thermal stress generated by the spherical hard rubber inclusion. The elastic theory formula of the temperature increment and the equivalent pore pressure of the spherical hard rubber inclusion is derived. The numerical simulation of the rock mass model with a spherical hard rubber inclusion is carried out and compared to the theoretical calculation results<span lang="EN-US" style="font-family:;" minion="" pro="" capt",serif;font-size:10pt;mso-fareast-font-family:宋体;mso-bidi-font-family:"times="" new="" roman";mso-ansi-language:en-us;mso-fareast-language:zh-cn;mso-bidi-language:ar-sa;mso-bidi-font-weight:bold;"="">;</span><span lang="EN-US" style="font-family:;" minion="" pro="" capt",serif;font-size:10pt;mso-fareast-font-family:宋体;mso-bidi-font-family:"times="" new="" roman";mso-ansi-language:en-us;mso-fareast-language:en-us;mso-bidi-language:ar-sa;mso-bidi-font-weight:bold;"=""> the results show that they are consistent. The method proposed by this paper for simulating stress distribution in rock by thermal stress is reasonable and feasible</span><span lang="EN-US" style="font-family:;" minion="" pro="" capt",serif;font-size:10pt;mso-fareast-font-family:宋体;mso-bidi-font-family:"times="" new="" roman";mso-ansi-language:en-us;mso-fareast-language:zh-cn;mso-bidi-language:ar-sa;mso-bidi-font-weight:bold;"="">;</span><span lang="EN-US" style="font-family:;" minion="" pro="" capt",serif;font-size:10pt;mso-fareast-font-family:宋体;mso-bidi-font-family:"times="" new="" roman";mso-ansi-language:en-us;mso-fareast-language:en-us;mso-bidi-language:ar-sa;mso-bidi-font-weight:bold;"=""> it has a positive meaning for further study of mechanic phenomenon of rock with micropore inclusion.</span>展开更多
基金This work was financially supported by the National Key Research and Development Program of China(Grant No.2021YFC2900500)the International(Regional)Cooperation and Exchange Program of National Natural Science Foundation of China(Grant No.52161135301)the Special Fund for Basic Scientific Research Operations in Universities(Grant No.2282020cxqd055).
文摘The rock fracture characteristics and principal stress directions are crucial for prevention of geological disasters.In this study,we carried out biaxial compression tests on cubic granite samples of 100 mm in side length with different intermediate principal stress gradients in combination with acoustic emission(AE)technique.Results show that the fracture characteristics of granite samples change from‘sudden and aggregated’to‘continuous and dispersed’with the increase of the intermediate principal stress.The effect of increasing intermediate principal stress on AE amplitude is not significant,but it increases the proportions of high-frequency AE signals and shear cracks,which in turn increases the possibility of unstable rock failure.The difference of stress in different directions causes the anisotropy of rock fracture and thus leads to the obvious anisotropic characteristics of wave velocity variations.The anisotropy of wave velocity variations with stress difference is probable to identify the principal stress directions.The AE characteristics and the anisotropy of wave velocity variations of granite under two-dimensional stress are not only beneficial complements for rock fracture characteristic and principal stress direction identification,but also can provide a new analysis method for stability monitoring in practical rock engineering.
基金the financial support from the Fundamental Research Funds for the Central Universities(No.2282020cxqd055)the National Science Foundation for Excellent Young Scholars of China(No.51822407)+1 种基金the Natural Science Foundation of China(Nos.51774327 and 51504288)the Fundamental Research Funds for the Central Universities of Central South University(No.2021zzts0862)。
文摘The characteristics of rock instability precursors and the principal stress direction are very crucial for the prevention of geological disasters.This study investigated the qualitative relationship between rock instability precursors and principal stress direction through wave velocity in rock acoustic emission(AE)experiments.Results show that the wave velocity variation exhibits obvious anisotropic characteristics in 0%–20%and 60%–90%of peak strength due to the differences of stress-induced microcrack types.The amplitude of wave velocity variation is related to the azimuth and position of wave propagation path,which indicates that the principal stress direction can be identified by the anisotropic characteristics of wave velocity variations.Furthermore,the experiments also demonstrate that the AE event rate and wave velocity show quiet and stable variations in the elastic stage of rock samples,while they present a trend of active and unstable variations in the plastic stage.It implies that both the AE event rate and wave velocity are effective monitoring parameters for rock instability.The anisotropic characteristics of the wave velocity variation and AE event rate are beneficial complements for identifying the rock instability precursors and determining the principal stress direction,which provides a new analysis method for stability monitoring in practical rock engineering.
基金Funded by the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institutions of Ministry of Education, China (No. [2002] 383)Science and Technology Planning Project of Wuhan City, China (No. 20067003111-05)
文摘The behavior that different magnetic treatment directions induce various amounts of welding residual stress reductions in low alloy steel was studied. Reductions of 26%-28% in the longitudinal stress σ x were obtained when low frequency alternating magnetic treatment was applied perpendicularly to the welding bead, whereas reductions of 20%-21% in σ x were measured by using the same treatment parameters except that the field direction was applied parallel to the bead. It is proposed that different extent of stress reductions caused by the above two treatment directions is attributed primarily to the alteration of the energy absorbed by domains from the external magnetic field, which part of energy can arouse plastic deformation in microstructures by the motion of domain walls.
基金This work was supported by the National Natural Science Foun-dation of China(Nos.52174098,41630642,and 51904335).
文摘To investigate the failure process and characteristics of D-shaped tunnels under different maximum principal stress directions θ, true-triaxial tests were conducted on cubic sandstone samples with a through D-shaped hole. The test results show that the failure process can be divided into 4 periods:calm, buckling deformation, gradual buckling and exfoliation of rock fragment, and formation of a Vshaped notch. With an increase in θ from 0° to 90°, the size of the rock fragments first decreases and then increases, whereas the fractal dimension of the rock fragments first increases and then decreases. Meanwhile, the failure position at the left side shifts from the sidewall to the corner and finally to the floor, whereas the failure position at the right side moves from the sidewall to the spandrel and finally to the roof, which is consistent with the failure position in underground engineering. In addition, the initial vertical failure stress first decreases and then increases. By comparing the results,the failure severities at different maximum principal stress directions can be ranked from high to low in the following order: 90°>60°>30°>45°>0°.
基金supported by the National Natural Science Foundation of China(Nos.U1703244 and 41672310)the National Natural Science Foundation of China(No.41801038)+6 种基金the State Key Laboratory for Geo Mechanics and Deep Underground Engineering,the China University of Mining and Technology(SKLGDUEK1904)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA2003020102)the Major Program of Bureau of International Cooperation,the Chinese Academy of Sciences(131B62KYSB20170012)the National Key Research and Development Program(2017YFC0405101)the Research Project of the State Key Laboratory of Frozen Soils Engineering(Grant No.SKLFSE-ZY-16)the Science and Technology Major Project of Gansu Province(143GKDA007)the Science and Technology Planning Project of Gansu Province(No.18JR3RA376)
文摘A series of directional shear tests on remolded frozen soil was carried out at 10°C by using a hollow cylinder apparatus to study failure criterion under a directional shear-stress path.Directional shear tests were conducted at five shear rates(10,20,30,40,and 50 kPa/min)and five intermediate principal stress coefficients(b=0,0.25,0.5,0.75,and 1),with the mean principal stress(p=4.5 MPa)kept constant.The results show that the torsional strength and the generalized strength both increase with the increase of the shear rates.According to the failure modes of frozen soil under different shear rates,the specimens present obvious plastic failure and shear band;and the torsional shear component dominates the failure modes of hollow cylindrical specimens.A shear rate of 30 kPa/min is chosen as the loading rate in the directional shear tests of frozen soil.The shape of the failure curve in theπplane is dependent on the directional anglesαof the major prin cipal stress.It is reasonable to use the strain-hardening curves to define the deviatoric stress value atγg=15%(generalized shear strain)as the failure criterion of frozen soil under a directional shear-stress path.
基金financial support for this work from the National Natural Science Foundation of China(Nos.42202320 and 42102266)the Open Project of Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education(No.LKF201901).
文摘In deep hard rock excavation, stress plays a pivotal role in inducing stress-controlled failure. While the impact of excavation-induced stress disturbance on rock failure and tunnel stability has undergone comprehensive examination through laboratory tests and numerical simulations, its validation through insitu stress tests remains unexplored. This study analyzes the three-dimensional stress changes in the surrounding rock at various depths, monitored during the excavation of B2 Lab in China Jinping Underground Laboratory Phase Ⅱ(CJPL-Ⅱ). The investigation delves into the three-dimensional stress variation characteristics in deep hard rock, encompassing stress components and principal stress. The results indicate changes in both the magnitude and direction of the principal stress during tunnel excavation. To quantitatively describe the degree of stress disturbance, a series of stress evaluation indexes are established based on the distances between stress tensors, including the stress disturbance index(SDI), the principal stress magnitude disturbance index(SDIm), and the principal stress direction disturbance index(SDId). The SDI indicates the greatest stress disturbance in the surrounding rock is 4.5 m from the tunnel wall in B2 Lab. SDIm shows that the principal stress magnitude disturbance peaks at2.5 m from the tunnel wall. SDId reveals that the largest change in principal stress direction does not necessarily occur near the tunnel wall but at a specific depth from it. The established relationship between SDI and the depth of the excavation damaged zone(EDZ) can serve as a criterion for determining the depth of the EDZ in deep hard rock engineering. Additionally, it provides a reference for future construction and support considerations.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52304099,52172625)Shenzhen Science and Technology Program(Grant No.RCYX20221008092903013).
文摘The occurrence of geological hazards and the instability of geotechnical engineering structures are closely related to the time-dependent behavior of rock.However,the idealization boundary condition for constant stress in creep or constant strain in relaxation is not usually attained in natural geological systems.Therefore,generalized relaxation tests that explore the simultaneous changes of stress and strain with time under different stress levels with constant pore-water pressure are conducted in this study.The results show that in area Ⅰ,area Ⅱ,and area Ⅲ,the stress and strain both change synchronously with time and show similar evolutionary laws as the strain-time curve for creep or the stress-time curve for relaxation.When the applied stress level surpasses the δ_(ci) or δ_(cd) threshold,the variations in stress and strain and their respective rates of change exhibit a significant increase.The radial deformation and its rate of change exhibit greater sensitivity in response to stress levels.The apparent strain deforms homogeneously at the primary stage,and subsequently,gradually localizes due to the microcrack development at the secondary stage.Ultimately,interconnection of the microcracks causes the formation of a shear-localization zone at the tertiary stage.The strain-time responses inside and outside the localization zone are characterized by local strain accumulation and inelastic unloading during the secondary and tertiary stages,respectively.The width of the shear-localization zone is found to range from 4.43 mm to 7.08 mm and increased with a longer time-to-failure.Scanning electron microscopy(SEM)reveals a dominant coalescence of intergranular cracks on the fracture surface,and the degree of physiochemical deterioration caused by water-rock interaction is more severe under a longer lifetime.The brittle sandstone’s time-dependent deformation is essentially controlled by microcrack development during generalized relaxation,and its expectancy-life is determined by its initial microstructural state and the rheological path.
基金supported by the Project of State Grid Hebei Electric Power Co.,Ltd.(SGHEYX00SCJS2100077).
文摘Crop water stress index(CWSI)is widely used for efficient irrigation management.Precise canopy temperature(T_(c))measurement is necessary to derive a reliable CWSI.The objective of this research was to investigate the influences of atmospheric conditions,settled height,view angle of infrared thermography,and investigating time of temperature measuring on the performance of the CWSI.Three irrigation treatments were used to create different soil water conditions during the 2020-2021 and 2021-2022 winter wheat-growing seasons.The CWSI was calculated using the CWSI-E(an empirical approach)and CWSI-T(a theoretical approach)based on the T_(c).Weather conditions were recorded continuously throughout the experimental period.The results showed that atmospheric conditions influenced the estimation of the CWSI;when the vapor pressure deficit(VPD)was>2000 Pa,the estimated CWSI was related to soil water conditions.The height of the installed infrared thermograph influenced the T_(c)values,and the differences among the T_(c)values measured at height of 3,5,and 10 m was smaller in the afternoon than in the morning.However,the lens of the thermometer facing south recorded a higher T_(c)than those facing east or north,especially at a low height,indicating that the direction of the thermometer had a significant influence on T_(c).There was a large variation in CWSI derived at different times of the day,and the midday measurements(12:00-15:00)were the most reliable for estimating CWSI.Negative linear relationships were found between the transpiration rate and CWSI-E(R^(2)of 0.3646-0.5725)and CWSI-T(R^(2)of 0.5407-0.7213).The relations between fraction of available soil water(FASW)with CWSI-T was higher than that with CWSI-E,indicating CWSI-T was more accurate for predicting crop water status.In addition,The R^(2)between CWSI-T and FASW at 14:00 was higher than that at other times,indicating that 14:00 was the optimal time for using the CWSI for crop water status monitoring.Relative higher yield of winter wheat was obtained with average seasonal values of CWSI-E and CWSI-T around 0.23 and 0.25-0.26,respectively.The CWSI-E values were more easily influenced by meteorological factors and the timing of the measurements,and using the theoretical approach to derive the CWSI was recommended for precise irrigation water management.
文摘This study is focused on the effect of boron addition, in the range of 0.0007wt% to 0.03wt%, on the microstructure and stress-rupture properties of a directionally solidified superalloy. With increasing boron content in the as-cast alloys, there is an increase in the fraction of the γ′/γ eutectic and block borides precipitate around the γ′/γ eutectic. At a high boron content of 0.03wt%, there is precipitation of lamellar borides. Upon heat treatment, fine block borides tend to precipitate at grain boundaries with increasing boron content. Overall, the rupture life of the directionally solidified superalloy is significantly improved with the addition of nominal content of boron. However, the rupture life decreases when the boron content exceeds 0.03wt%.
文摘A graphical method for determining the principal stress distribution of a triaxial stress state from a fault slipstate was proposed by Aleksandrowski in 1985,based on Arthaud′s concept of plane movement,Alek-sandrowski′s method,however,is only valid for the cases in which the values of the stress ratios(C)are consid-ered 1o be ,10,2,1.1 and 1.Whether the method is applicable for general cases of all values of C has not yetbeen confirmed.In this paper.Aleksandrowskis′ method is tested using a numerical derivation from spatialgeometric analysis,and it is revealed that this method is correct for all values of stress ratios other than C=,10,2,1.1,and 1,i.c-【C【.
基金financial support of the National Natural Science Foundation of China (Grant 11572226)
文摘In this article, a direct stress approach based on finite element analysis to determine the stress intensity factor is improved. Firstly, by comparing the rigorous solution against the asymptotic solution for a problem of an infinite plate embedded a central crack, we found that the stresses in a restrictive interval near the crack tip given by the rigorous solution can be used to determine the stress intensity factor, which is nearly equal to the stress intensity factor given by the asymptotic solution. Secondly, the crack problem is solved numerically by the finite element method. Depending on the modeling capability of the software, we designed an adaptive mesh model to simulate the stress singularity. Thus, the stress result in an appropriate interval near the crack tip is fairly approximated to the rigorous solution of the corresponding crack problem. Therefore, the stress intensity factor may be calculated from the stress distribution in the appropriate interval, with a high accuracy.
基金supported by the National Natural Science Foundation of China (Grant No. 50978083)the Fundamental Research Funds for the Central Universities (Grants No. 2009B07714 and 2010B13914) in Chinathe Innovation Project for Graduate Students of Jiangsu Province (Grant No. CX10B_215Z)
文摘The directional dependency of the acoustic emission (AE) and deformation rate analysis (DRA) methods was analyzed, based on the contact bond model in the two-dimensional particle flow code (PFC2D) in two types of rocks, the coarse-grained sandstone and Aue granite. Each type of rocks had two shapes, the Brazilian disk and a square shape. The mechanical behaviors of the numerical model had already been verified to be in agreement with those of the physical specimens in previous research. Three loading protocols with different loading cycles in two orthogonal directions were specially designed in the numerical tests. The results show that no memory effect is observed in the second loading in the orthogonal direction. However, both the cumulative crack number of the second loading and the differential strain value at the inflection point are influenced by the first loading in the orthogonal direction.
基金Project(2017YFC0603001)supported by the National Key Research and Development Program of ChinaProjects(51774272,52004269)supported by the National Natural Science Foundation of ChinaProject(2019M661995)supported by the China Postdoctoral Sciences Foundation。
文摘Directional rupture is one of the difficult problems in deep rock mechanics and engineering.A directional fracturing method with static expansive agent controlled by dense linear multi boreholes is proposed.A physical experiment is designed and performed to investigate the basic laws of this method.The fracture initiation and propagation process,and the mechanism of directional fracturing are analyzed.The results indicate that a directional fracture is formed along the direction of boreholes layout through directionally fracturing with static expansive agents controlled by the dense linear multi boreholes.According to the variation of strain and the distribution of associated acoustic emission(AE)events and energy,the experiment can be divided into three stages.In the first stage,the static expansive agent expand slowly with no fracturing inside the rock.In the second stage,some initial micro-fracturing occurs inside the rock.In the third stage,a wide range of fracturing occurs inside the sample.The internal micro-fracturing planes are connected to form a macro-fracture.Finally,it propagates to the surface of the sample.The directional fracturing plane presents a relatively smooth plane with little bias but much local fluctuation.
基金supported by the National Natural Science Foundation of China(Nos.52192674,U1965206,U2240211)the Fundamental Research Funds for the Central Universities(No.DUT21TD106)。
文摘Owing to the stochastic behavior of earthquakes and complex crustal structure,wave type and incident direction are uncertain when seismic waves arrive at a structure.In addition,because of the different types of the structures and terrains,the traveling wave effects have different influences on the dynamic response of the structures.For the tall concrete-faced rockfill dam(CFRD),it is not only built in the complex terrain such as river valley,but also its height has reached 300 m level,which puts forward higher requirements for the seismic safety of the anti-seepage system mainly comprising concrete face slabs,especially the accurate location of the weak area in seism.Considering the limitations of the traditional uniform vibration analysis method,we implemented an efficient dynamic interaction analysis between a tall CFRD and its foundation using a non-uniform wave input method with a viscous-spring artificial boundary and equivalent nodal loads.This method was then applied to investigate the dynamic stress distribution on the concrete face slabs for different seismic wave types and incident directions.The results indicate that dam-foundation interactions behave differently at different wave incident angles,and that the traveling wave effect becomes more evident in valley topography.Seismic wave type and incident direction dramatically influenced stress in the face slab,and the extreme stress values and distribution law will vary under oblique wave incidence.The influence of the incident direction on slab stress was particularly apparent when SH-waves arrived from the left bank.Specifically,the extreme stress values in the face slab increased with an increasing incident angle.Interestingly,the locations of the extreme stress values changed mainly along the axis of the dam,and did not exhibit large changes in height.The seismic safety of CFRDs is therefore lower at higher incident angles from an anti-seepage perspective.Therefore,it is necessary to consider both the seismic wave type and incident direction during seismic capacity evaluations of tall CFRDs.
文摘The microstructure changed markedly with increasing solution temperature, i.e eutectic γ' phases and coarse primary γ' phase are redissolved continuously into matrix, which was finished at 1250-1260℃, and more and finer γ' phases are reprecipitated. The grain boundary morphology changed gradually to 'fine line' form. The dendritic segregation of elements decreased. With raising solution temperature the longitudinal stress-rupture life at high and intermediate temperature were enhanced, but the transversal stress-rupture life at intermediate temperature decreased obviously. The incipient melting temperature of DZ22 alloy was measured to be 1230-1240℃ and may be increased by homogenization at 1150℃. In this paper the principle of determining solution temperature of DS alloys was discussed. It was suggested that the solution temperature of alloy DZ22 selected at 1200-1210℃ is appropri- ate.
基金financially supported by the National Natural Science Foundation of China(Nos.51574015 and 51934001)the National Key Science and Technology Programs,China(No.2018YFC0808004)。
文摘High geostress will become a normality in the deep because in-situ stress rises linearly with depth.The geological structure grows immensely intricate as depth increases.Faults,small fractures,and joint fissures are widely developed.The objective of this paper is to identify geostress anomalies at a variety of locations near faults and to demonstrate their accumulation mechanism.Hydrofracturing tests were conducted in seven deep boreholes.We conducted a test at a drilling depth of over one thousand meters to reveal and quantify the influence of faults on in-situ stresses at the hanging wall,footwall,between faults,end of faults,junction of faults,and far-field of faults.The effect of fault sites and characteristics on the direction and magnitude of stresses has been investigated and compared to test boreholes.The accumulation heterogeneity of stresses near faults was illustrated by a three-dimensional numerical simulation,which is utilized to explain the effect of faults on the accumulation and differentiation of in-situ stress.Due to regional tectonics and faulting,the magnitude,direction,and stress regime are all extremely different.The concentration degree of geostress and direction change will vary with the location of faults near faults,but the magnitude and direction of in-situ stress conform to regional tectonic stress at a distance from the faults.The focal mechanism solution has been verified using historical seismic ground motion vectors.The results demonstrate that the degree of stress differentiation varies according to the fault attribute and its position.Changes in stress differentiation and its ratio from strong to weak occur between faults,intersection,footwall,end of faults,and hanging wall;along with the sequence of orientation is the footwall,between faults,the end of faults,intersection,and hanging wall.This work sheds new light on the fault-induced stress accumulation and orientation shift mechanisms across the entire cycle.
基金supported by the National Major Special Project for Scientific Instruments and Equipment Development“Intelligent Measurement and Control System Development for Large-Scale River Model Tests in China”(Grant No.2011YQ070055)
文摘The present study aims at the design and making of measuring instrument of whole direct method for bed shear stress under two-dimensional water-flow co-action. The instrument combines the traditional strain gauge with a precise pressure gauge, and adopts the method directly measuring the difference between the lateral hydrodynamic pressure and different head pressures on both sides of the force plate. As a result, such an instrument solves a technical puzzle of the past strain gauge, i.e. the difficulty to set apart shear stress and lateral force. Static force test and sink test both prove that the instrument is precise, stable and applicable to the measurement of rough beds with different shear stresses.
文摘The creep crack propagation in superalloy René80 of two different microstructures,i.e., equiaxed grain structure by conventional casting and columnar grain by directional solidification,was investigated under static load at 1123 K.The creep crack growth rate, da/dt,seems to be correlated with the stress intensity factor,K.The creep crack growth rate in the directionally solidified alloy is lower than that in the conventional cast alloy,owing to the elimination of transverse grain boundaries.The effect of microstructure on creep crack propagation has also been discussed.
文摘This paper focuses on the development of the mathematical model of shear stress by direct shear test for compressible soil of the littoral region, which will be a great tool in the hand of geotechnical engineers. The most common use of a shear test is to determine the shear strength which is the maximum shear stress that a material can withstand before the failure occurs. This parameter is useful in many engineering designs such as foundations, roads and retaining walls. We carried out an experimental laboratory test of ten samples of undisturbed soil taken at different points of the border of Wouri river of Cameroon. The samples were collected at different depths and a direct shear test was conducted. The investigations have been performed under constant vertical stresses and constant sample volume with the aim to determine the frictional angle and the cohesion of the compressible soil which are so important to establish the conditions of buildings stability. Special care was taken to derive loading conditions actually existing in the ground and to duplicate them in the laboratory. Given that the buildings constructed in this area are subjected to settlement, landslide, and punch break or shear failure, the cohesion and the frictional angle are determined through the rupture line after assessed the mean values of the shear stress for the considered ten samples. The bearing capacity of the soil, which is the fundamental soil parameter, was calculated. From the laboratory experimental results, the least squared method was used to derive an approximated mathematical model of the shearing stress. Many optimizations methods were then considered to reach the best adjustment.
文摘Rocks are composed of mineral particles and micropores between mineral which has a great influence on the mechanical properties of rocks. In this paper, based on the theory of locked-in stress developed by academician Chen Zongji, the locked-in stress problem in underground rock is simulated by the thermal expansion of hard rubber particles. The pore inclusion in rock is assumed to be uniformly distributed spherical cavities. Using the thermal stress theory, the stress of rock with a spherical pore inclusion is equivalent to the thermal stress generated by the spherical hard rubber inclusion. The elastic theory formula of the temperature increment and the equivalent pore pressure of the spherical hard rubber inclusion is derived. The numerical simulation of the rock mass model with a spherical hard rubber inclusion is carried out and compared to the theoretical calculation results<span lang="EN-US" style="font-family:;" minion="" pro="" capt",serif;font-size:10pt;mso-fareast-font-family:宋体;mso-bidi-font-family:"times="" new="" roman";mso-ansi-language:en-us;mso-fareast-language:zh-cn;mso-bidi-language:ar-sa;mso-bidi-font-weight:bold;"="">;</span><span lang="EN-US" style="font-family:;" minion="" pro="" capt",serif;font-size:10pt;mso-fareast-font-family:宋体;mso-bidi-font-family:"times="" new="" roman";mso-ansi-language:en-us;mso-fareast-language:en-us;mso-bidi-language:ar-sa;mso-bidi-font-weight:bold;"=""> the results show that they are consistent. The method proposed by this paper for simulating stress distribution in rock by thermal stress is reasonable and feasible</span><span lang="EN-US" style="font-family:;" minion="" pro="" capt",serif;font-size:10pt;mso-fareast-font-family:宋体;mso-bidi-font-family:"times="" new="" roman";mso-ansi-language:en-us;mso-fareast-language:zh-cn;mso-bidi-language:ar-sa;mso-bidi-font-weight:bold;"="">;</span><span lang="EN-US" style="font-family:;" minion="" pro="" capt",serif;font-size:10pt;mso-fareast-font-family:宋体;mso-bidi-font-family:"times="" new="" roman";mso-ansi-language:en-us;mso-fareast-language:en-us;mso-bidi-language:ar-sa;mso-bidi-font-weight:bold;"=""> it has a positive meaning for further study of mechanic phenomenon of rock with micropore inclusion.</span>