The trajectory tracking control performance of nonholonomic wheeled mobile robots(NWMRs)is subject to nonholonomic constraints,system uncertainties,and external disturbances.This paper proposes a barrier function-base...The trajectory tracking control performance of nonholonomic wheeled mobile robots(NWMRs)is subject to nonholonomic constraints,system uncertainties,and external disturbances.This paper proposes a barrier function-based adaptive sliding mode control(BFASMC)method to provide high-precision,fast-response performance and robustness for NWMRs.Compared with the conventional adaptive sliding mode control,the proposed control strategy can guarantee that the sliding mode variables converge to a predefined neighborhood of origin with a predefined reaching time independent of the prior knowledge of the uncertainties and disturbances bounds.Another advantage of the proposed algorithm is that the control gains can be adaptively adjusted to follow the disturbances amplitudes thanks to the barrier function.The benefit is that the overestimation of control gain can be eliminated,resulting in chattering reduction.Moreover,a modified barrier function-like control gain is employed to prevent the input saturation problem due to the physical limit of the actuator.The stability analysis and comparative experiments demonstrate that the proposed BFASMC can ensure the prespecified convergence performance of the NWMR system output variables and strong robustness against uncertainties/disturbances.展开更多
In the context of induction motor control, there are various control strategies used to separately control torque and flux. One common approach is known as Field-Oriented Control (FOC). This technique involves transfo...In the context of induction motor control, there are various control strategies used to separately control torque and flux. One common approach is known as Field-Oriented Control (FOC). This technique involves transforming the three-phase currents and voltages into a rotating reference frame, commonly referred to as the “dq” frame. In this frame, the torque/speed and flux components are decoupled, allowing for independent control, by doing so, the motor’s speed can be regulated accurately and maintain a constant flux which is crucial to ensure optimal motor performance and efficiency. The research focused on studying and simulating a field-oriented control system using fuzzy control techniques for an induction motor. The aim was to address the issue of parameter variations, particularly the change in rotor resistance during motor operation, which causes the control system to deviate from the desired direction. This deviation implies to an increase in the magnetic flux value, specifically the flux component on the q-axis. By employing fuzzy logic techniques to regulate flux vector’s components in the dq frame, this problem was successfully resolved, ensuring that the magnetic flux value remains within the nominal limits. To enhance the control system’s performance, response speed, and efficiency of the motor, sliding mode controllers were implemented to regulate the current in the inner loop. The simulation results demonstrated the proficiency of the proposed methodology.展开更多
An adaptive fuzzy sliding mode control (AFSMC) ap- proach is proposed for a robotic airship. First, the mathematical model of an airship is derived in the form of a nonlinear control system. Second, an AFSMC approac...An adaptive fuzzy sliding mode control (AFSMC) ap- proach is proposed for a robotic airship. First, the mathematical model of an airship is derived in the form of a nonlinear control system. Second, an AFSMC approach is proposed to design the attitude control system of airship, and the global stability of the closed-loop system is proved by using the Lyapunov stability theorem. Finally, simulation results verify the effectiveness and robustness of the proposed control approach in the presence of model uncertainties and external disturbances.展开更多
A new design scheme of decentralized model reference adaptive sliding mode controller for a class of MIMO nonlinear systems with the high-order interconnections is propcsed. The design is based on the universal approx...A new design scheme of decentralized model reference adaptive sliding mode controller for a class of MIMO nonlinear systems with the high-order interconnections is propcsed. The design is based on the universal approximation capability of the Takagi - Seguno (T-S) fuzzy systems. Motivated by the principle of certainty equivalenteontrol, a decentralized adaptive controller is designed to achieve the tracking objective without computafion of the T-S fuzz ymodel. The approach does not require the upper bound of the uncertainty term to be known through some adaptive estimation. By theoretical analysis, the closed-loop fuzzy control system is proven to be globally stable in the sense that all signalsinvolved are bounded, with tracking errors converging to zero. Simulation results demonstrate the effectiveness of the approach.展开更多
An adaptive fuzzy sliding mode strategy is developed for the generalized projective synchronization of a fractional- order chaotic system, where the slave system is not necessarily known in advance. Based on the desig...An adaptive fuzzy sliding mode strategy is developed for the generalized projective synchronization of a fractional- order chaotic system, where the slave system is not necessarily known in advance. Based on the designed adaptive update laws and the linear feedback method, the adaptive fuzzy sliding controllers are proposed via the fuzzy design, and the strength of the designed controllers can he adaptively adjusted according to the external disturbances. Based on the Lya- punov stability theorem, the stability and the robustness of the controlled system are proved theoretically. Numerical simu- lations further support the theoretical results of the paper and demonstrate the efficiency of the proposed method. Moreover, it is revealed that the proposed method allows us to manipulate arbitrarily the response dynamics of the slave system by adjusting the desired scaling factor λi and the desired translating factor ηi, which may be used in a channel-independent chaotic secure communication.展开更多
In this study an indirect adaptive sliding mode control (SMC) based on a fuzzy logic scheme is proposed to strengthen the tracking control performance of a general class of multi-input multi-output (MIMO) nonlinear un...In this study an indirect adaptive sliding mode control (SMC) based on a fuzzy logic scheme is proposed to strengthen the tracking control performance of a general class of multi-input multi-output (MIMO) nonlinear uncertain systems. Combining reaching law approach and fuzzy universal approximation theorem, the proposed design procedure combines the advantages of fuzzy logic control, adaptive control and sliding mode control. The stability of the control systems is proved in the sense of the Lyapunov second stability theorem. Two simulation studies are presented to demonstrate the effectiveness of our new hybrid control algorithm.展开更多
A novel fuzzy terminal sliding mode control (FTSMC) scheme is proposed for position tracking of a class of second-order nonlinear uncertain system. In the proposed scheme, we integrate input-output linearization tec...A novel fuzzy terminal sliding mode control (FTSMC) scheme is proposed for position tracking of a class of second-order nonlinear uncertain system. In the proposed scheme, we integrate input-output linearization technique to cancel the nonlinearities. By using a function-augmented sliding hyperplane, it is guaranteed that the output tracking error converges to zero in finite time which can be set arbitrarily. The proposed scheme eliminates reaching phase problem, so that the closed-loop system always shows invariance property to parameter uncertainties. Fuzzy logic systems are used to approximate the unknown system functions and switch item. Robust adaptive law is proposed to reduce approximation errors between true nonlinear functions and fuzzy systems, thus chattering phenomenon can be eliminated. Stability of the proposed control scheme is proved and the scheme is applied to an inverted pendulum system. Simulation studies are provided to confirm performance and effectiveness of the proposed control approach.展开更多
In this article, an adaptive fuzzy sliding mode control (AFSMC) scheme is derived for robotic systems. In the AFSMC design, the sliding mode control (SMC) concept is combined with fuzzy control strategy to obtain a mo...In this article, an adaptive fuzzy sliding mode control (AFSMC) scheme is derived for robotic systems. In the AFSMC design, the sliding mode control (SMC) concept is combined with fuzzy control strategy to obtain a model-free fuzzy sliding mode control. The equivalent controller has been substituted for by a fuzzy system and the uncertainties are estimated on-line. The approach of the AFSMC has the learning ability to generate the fuzzy control actions and adaptively compensates for the uncertainties. Despite the high nonlinearity and coupling effects, the control input of the proposed control algorithm has been decoupled leading to a simplified control mechanism for robotic systems. Simulations have been carried out on a two link planar robot. Results show the effectiveness of the proposed control system.展开更多
Fuzzy Logic System (FLS) can be utilized to approxi-mate complex uncertain nonlinear dynamic systems. Inthis paper, an adaptive fuzzy Sliding Mode Control(SMC) scheme is proposed where FLS is used as an ap-proximation...Fuzzy Logic System (FLS) can be utilized to approxi-mate complex uncertain nonlinear dynamic systems. Inthis paper, an adaptive fuzzy Sliding Mode Control(SMC) scheme is proposed where FLS is used as an ap-proximation of the unknown systems. In order to reducethe approximation errors between the true nonlinearmodel and FLS, an adaptive law is presented. The sta-bility of the controlled system is proved by using Lya-punov stability theory. The proposed control scheme isapplied to an inverted pendulum system to show its effec-tiveness.展开更多
A nonlinear pressure controller was presented to track desired feeding pressure for the cutter feeding system(CFS) of trench cutter(TC) in the presence of unknown external disturbances.The feeding pressure control of ...A nonlinear pressure controller was presented to track desired feeding pressure for the cutter feeding system(CFS) of trench cutter(TC) in the presence of unknown external disturbances.The feeding pressure control of CFS is subjected to unknown load characteristics of rock or soil; in addition,the geological condition is time-varying.Due to the complex load characteristics of rock or soil,the feeding velocity of TC is related to geological conditions.What is worse,its dynamic model is subjected to uncertainties and its function is unknown.To deal with the particular characteristics of CFS,a novel adaptive fuzzy integral sliding mode control(AFISMC) was designed for feeding pressure control of CFS,which combines the robust characteristics of an integral sliding mode controller and the adaptive adjusting characteristics of an adaptive fuzzy controller.The AFISMC feeding pressure controller is synthesized using the backstepping technique.The stability of the overall closed-loop system consisting of the adaptive fuzzy inference system,integral sliding mode controller and the cutter feeding system is proved using Lyapunov theory.Experiments are conducted on a TC test bench with the AFISMC under different operating conditions.The experimental results demonstrate that the proposed AFISMC feeding pressure controller for CFS gives a superior and robust pressure tracking performance with maximum pressure tracking error within ?0.3 MPa.展开更多
Robust stabilization for a class of nonlinear uncertain neutral system with time-varying delay is investigated. By applying the Lyapunov stability theorem, an adaptive sliding mode controller (ADSMC) is developed.Ba...Robust stabilization for a class of nonlinear uncertain neutral system with time-varying delay is investigated. By applying the Lyapunov stability theorem, an adaptive sliding mode controller (ADSMC) is developed.Based on the sliding mode control technique, the controller can drive the system into a pre-specified sliding hyperplane to obtain the desired dynamic performance. Once the system dynamics reaches the sliding plane, the control system is insensitive to uncertainty. The adaptive technique can overcome the unknown upper bound of uncertainty so that the reaching condition can be satisfied. Furthermore, the controller does not include any delayed state,so such an ADSMC is memoryless. Finally, a numerical example is given to verify the validity of the developed memoryless ADSMC and the globally asymptotic stability is guaranteed for the control scheme.展开更多
This paper presents a closed-loop vector control structure based on adaptive Fuzzy Logic Sliding Mode Controller (FL-SMC) for a grid-connected Wave Energy Conversion System (WECS) driven Self-Excited Induction Generat...This paper presents a closed-loop vector control structure based on adaptive Fuzzy Logic Sliding Mode Controller (FL-SMC) for a grid-connected Wave Energy Conversion System (WECS) driven Self-Excited Induction Generator (SEIG). The aim of the developed control method is to automatically tune and optimize the scaling factors and the membership functions of the Fuzzy Logic Controllers (FLC) using Multi-Objective Genetic Algorithms (MOGA) and Multi-Objective Particle Swarm Optimization (MOPSO). Two Pulse Width Modulated voltage source PWM converters with a carrier-based Sinusoidal PWM modulation for both Generator- and Grid-side converters have been connected back to back between the generator terminals and utility grid via common DC link. The indirect vector control scheme is implemented to maintain balance between generated power and power supplied to the grid and maintain the terminal voltage of the generator and the DC bus voltage constant for variable rotor speed and load. Simulation study has been carried out using the MATLAB/Simulink environment to verify the robustness of the power electronics converters and the effectiveness of proposed control method under steady state and transient conditions and also machine parameters mismatches. The proposed control scheme has improved the voltage regulation and the transient performance of the wave energy scheme over a wide range of operating conditions.展开更多
In this paper,a stable and adaptive sliding mode control(SMC)method for induction motors is introduced.Determining the parameters of this system has been one of the existing challenges.To solve this challenge,a new se...In this paper,a stable and adaptive sliding mode control(SMC)method for induction motors is introduced.Determining the parameters of this system has been one of the existing challenges.To solve this challenge,a new self-tuning type-2 fuzzy neural network calculates and updates the control system parameters with a fast mechanism.According to the dynamic changes of the system,in addition to the parameters of the SMC,the parameters of the type-2 fuzzy neural network are also updated online.The conditions for guaranteeing the convergence and stability of the control system are provided.In the simulation part,in order to test the proposed method,several uncertain models and load torque have been applied.Also,the results have been compared to the SMC based on the type-1 fuzzy system,the traditional SMC,and the PI controller.The average RMSE in different scenarios,for type-2 fuzzy SMC,is 0.0311,for type-1 fuzzy SMC is 0.0497,for traditional SMC is 0.0778,and finally for PI controller is 0.0997.展开更多
In order to apply the terminal sliding mode control to robot manipulators,prior knowledge of the exact upper bound of parameter uncertainties,and external disturbances is necessary.However,this bound will not be easil...In order to apply the terminal sliding mode control to robot manipulators,prior knowledge of the exact upper bound of parameter uncertainties,and external disturbances is necessary.However,this bound will not be easily determined because of the complexity and unpredictability of the structure of uncertainties in the dynamics of the robot.To resolve this problem in robot control,we propose a new robust adaptive terminal sliding mode control for tracking problems in robotic manipulators.By applying this adaptive controller,prior knowledge is not required because the controller is able to estimate the upper bound of uncertainties and disturbances.Also,the proposed controller can eliminate the chattering effect without losing the robustness property.The stability of the control algorithm can be easily verified by using Lyapunov theory.The proposed controller is tested in simulation on a two-degree-of-freedom robot to prove its effectiveness.展开更多
To alleviate the chattering problem, a new type of fuzzy global sliding mode controller (FGSMC) is presented. In this controller, the switching gain is estimated by fuzzy logic system based on the reachable conditio...To alleviate the chattering problem, a new type of fuzzy global sliding mode controller (FGSMC) is presented. In this controller, the switching gain is estimated by fuzzy logic system based on the reachable conditions of sliding mode controller(SMC), and genetic algorithm (GA) is used to optimize scaling factor of the switching gain, thus the switch chattering of SMC can be alleviated. Moreover, global sliding mode is realized by designing an exponential dynamic sliding surface. Simulation and real-time application for flight simulator servo system with Lugre friction are given to indicate that the proposed controller can guarantee high robust performance all the time and can alleviate chattering phenomenon effectively.展开更多
The accurate control for the vehicle height and leveling adjustment system of an electronic air suspension(EAS) still is a challenging problem that has not been effectively solved in prior researches. This paper propo...The accurate control for the vehicle height and leveling adjustment system of an electronic air suspension(EAS) still is a challenging problem that has not been effectively solved in prior researches. This paper proposes a new adaptive controller to control the vehicle height and to adjust the roll and pitch angles of the vehicle body(leveling control) during the vehicle height adjustment procedures by an EAS system. A nonlinear mechanism model of the full?car vehicle height adjustment system is established to reflect the system dynamic behaviors and to derive the system optimal control law. To deal with the nonlinear characters in the vehicle height and leveling adjustment processes, the nonlinear system model is globally linearized through the state feedback method. On this basis, a fuzzy sliding mode controller(FSMC) is designed to improve the control accuracy of the vehicle height adjustment and to reduce the peak values of the roll and pitch angles of the vehicle body. To verify the effectiveness of the proposed control method more accurately, the full?car EAS system model programmed using AMESim is also given. Then, the co?simulation study of the FSMC performance can be conducted. Finally, actual vehicle tests are performed with a city bus, and the test results illustrate that the vehicle height adjustment performance is effectively guaranteed by the FSMC, and the peak values of the roll and pitch angles of the vehicle body during the vehicle height adjustment procedures are also reduced significantly. This research proposes an effective control methodology for the vehicle height and leveling adjustment system of an EAS, which provides a favorable control performance for the system.展开更多
A full-order sliding mode control based on a fuzzy extended state observer is proposed to control the uncertain chaos in the permanent magnet synchronous motor. Through a simple coordinate transformation, the chaotic ...A full-order sliding mode control based on a fuzzy extended state observer is proposed to control the uncertain chaos in the permanent magnet synchronous motor. Through a simple coordinate transformation, the chaotic PMSM model is transformed into the Brunovsky canonical form, which is more suitable for the controller design. Based on the fuzzy control theory, a fuzzy extended state observer is developed to estimate the unknown states and uncertainties, and the restriction that all the system states should be completely measurable is avoided. Thereafter, a full-order sliding mode controller is designed to ensure the convergence of all system states without any chattering problem. Comparative simulations show the effectiveness and superior performance of the proposed control method.展开更多
基金the China Scholarship Council(202106690037)the Natural Science Foundation of Anhui Province(19080885QE194)。
文摘The trajectory tracking control performance of nonholonomic wheeled mobile robots(NWMRs)is subject to nonholonomic constraints,system uncertainties,and external disturbances.This paper proposes a barrier function-based adaptive sliding mode control(BFASMC)method to provide high-precision,fast-response performance and robustness for NWMRs.Compared with the conventional adaptive sliding mode control,the proposed control strategy can guarantee that the sliding mode variables converge to a predefined neighborhood of origin with a predefined reaching time independent of the prior knowledge of the uncertainties and disturbances bounds.Another advantage of the proposed algorithm is that the control gains can be adaptively adjusted to follow the disturbances amplitudes thanks to the barrier function.The benefit is that the overestimation of control gain can be eliminated,resulting in chattering reduction.Moreover,a modified barrier function-like control gain is employed to prevent the input saturation problem due to the physical limit of the actuator.The stability analysis and comparative experiments demonstrate that the proposed BFASMC can ensure the prespecified convergence performance of the NWMR system output variables and strong robustness against uncertainties/disturbances.
文摘In the context of induction motor control, there are various control strategies used to separately control torque and flux. One common approach is known as Field-Oriented Control (FOC). This technique involves transforming the three-phase currents and voltages into a rotating reference frame, commonly referred to as the “dq” frame. In this frame, the torque/speed and flux components are decoupled, allowing for independent control, by doing so, the motor’s speed can be regulated accurately and maintain a constant flux which is crucial to ensure optimal motor performance and efficiency. The research focused on studying and simulating a field-oriented control system using fuzzy control techniques for an induction motor. The aim was to address the issue of parameter variations, particularly the change in rotor resistance during motor operation, which causes the control system to deviate from the desired direction. This deviation implies to an increase in the magnetic flux value, specifically the flux component on the q-axis. By employing fuzzy logic techniques to regulate flux vector’s components in the dq frame, this problem was successfully resolved, ensuring that the magnetic flux value remains within the nominal limits. To enhance the control system’s performance, response speed, and efficiency of the motor, sliding mode controllers were implemented to regulate the current in the inner loop. The simulation results demonstrated the proficiency of the proposed methodology.
基金supported by the Hunan Provincial Innovation Foundation for Postgraduate (CX2011B005)the National University of Defense Technlolgy Innovation Foundation for Postgraduate (B110105)
文摘An adaptive fuzzy sliding mode control (AFSMC) ap- proach is proposed for a robotic airship. First, the mathematical model of an airship is derived in the form of a nonlinear control system. Second, an AFSMC approach is proposed to design the attitude control system of airship, and the global stability of the closed-loop system is proved by using the Lyapunov stability theorem. Finally, simulation results verify the effectiveness and robustness of the proposed control approach in the presence of model uncertainties and external disturbances.
文摘A new design scheme of decentralized model reference adaptive sliding mode controller for a class of MIMO nonlinear systems with the high-order interconnections is propcsed. The design is based on the universal approximation capability of the Takagi - Seguno (T-S) fuzzy systems. Motivated by the principle of certainty equivalenteontrol, a decentralized adaptive controller is designed to achieve the tracking objective without computafion of the T-S fuzz ymodel. The approach does not require the upper bound of the uncertainty term to be known through some adaptive estimation. By theoretical analysis, the closed-loop fuzzy control system is proven to be globally stable in the sense that all signalsinvolved are bounded, with tracking errors converging to zero. Simulation results demonstrate the effectiveness of the approach.
基金Project supported by the Research Foundation of Education Bureau of Hebei Province,China(Grant No.QN2014096)
文摘An adaptive fuzzy sliding mode strategy is developed for the generalized projective synchronization of a fractional- order chaotic system, where the slave system is not necessarily known in advance. Based on the designed adaptive update laws and the linear feedback method, the adaptive fuzzy sliding controllers are proposed via the fuzzy design, and the strength of the designed controllers can he adaptively adjusted according to the external disturbances. Based on the Lya- punov stability theorem, the stability and the robustness of the controlled system are proved theoretically. Numerical simu- lations further support the theoretical results of the paper and demonstrate the efficiency of the proposed method. Moreover, it is revealed that the proposed method allows us to manipulate arbitrarily the response dynamics of the slave system by adjusting the desired scaling factor λi and the desired translating factor ηi, which may be used in a channel-independent chaotic secure communication.
文摘In this study an indirect adaptive sliding mode control (SMC) based on a fuzzy logic scheme is proposed to strengthen the tracking control performance of a general class of multi-input multi-output (MIMO) nonlinear uncertain systems. Combining reaching law approach and fuzzy universal approximation theorem, the proposed design procedure combines the advantages of fuzzy logic control, adaptive control and sliding mode control. The stability of the control systems is proved in the sense of the Lyapunov second stability theorem. Two simulation studies are presented to demonstrate the effectiveness of our new hybrid control algorithm.
基金This work was supported by the National Natural Science Foundation of China (No. 60474025, 90405017).
文摘A novel fuzzy terminal sliding mode control (FTSMC) scheme is proposed for position tracking of a class of second-order nonlinear uncertain system. In the proposed scheme, we integrate input-output linearization technique to cancel the nonlinearities. By using a function-augmented sliding hyperplane, it is guaranteed that the output tracking error converges to zero in finite time which can be set arbitrarily. The proposed scheme eliminates reaching phase problem, so that the closed-loop system always shows invariance property to parameter uncertainties. Fuzzy logic systems are used to approximate the unknown system functions and switch item. Robust adaptive law is proposed to reduce approximation errors between true nonlinear functions and fuzzy systems, thus chattering phenomenon can be eliminated. Stability of the proposed control scheme is proved and the scheme is applied to an inverted pendulum system. Simulation studies are provided to confirm performance and effectiveness of the proposed control approach.
文摘In this article, an adaptive fuzzy sliding mode control (AFSMC) scheme is derived for robotic systems. In the AFSMC design, the sliding mode control (SMC) concept is combined with fuzzy control strategy to obtain a model-free fuzzy sliding mode control. The equivalent controller has been substituted for by a fuzzy system and the uncertainties are estimated on-line. The approach of the AFSMC has the learning ability to generate the fuzzy control actions and adaptively compensates for the uncertainties. Despite the high nonlinearity and coupling effects, the control input of the proposed control algorithm has been decoupled leading to a simplified control mechanism for robotic systems. Simulations have been carried out on a two link planar robot. Results show the effectiveness of the proposed control system.
基金This work was supported by China Postdoctoral Science Foundation and Hebei Provincial Natural Science Foundation(698004).
文摘Fuzzy Logic System (FLS) can be utilized to approxi-mate complex uncertain nonlinear dynamic systems. Inthis paper, an adaptive fuzzy Sliding Mode Control(SMC) scheme is proposed where FLS is used as an ap-proximation of the unknown systems. In order to reducethe approximation errors between the true nonlinearmodel and FLS, an adaptive law is presented. The sta-bility of the controlled system is proved by using Lya-punov stability theory. The proposed control scheme isapplied to an inverted pendulum system to show its effec-tiveness.
基金Project(2012AA041801)supported by the High-tech Research and Development Program of China
文摘A nonlinear pressure controller was presented to track desired feeding pressure for the cutter feeding system(CFS) of trench cutter(TC) in the presence of unknown external disturbances.The feeding pressure control of CFS is subjected to unknown load characteristics of rock or soil; in addition,the geological condition is time-varying.Due to the complex load characteristics of rock or soil,the feeding velocity of TC is related to geological conditions.What is worse,its dynamic model is subjected to uncertainties and its function is unknown.To deal with the particular characteristics of CFS,a novel adaptive fuzzy integral sliding mode control(AFISMC) was designed for feeding pressure control of CFS,which combines the robust characteristics of an integral sliding mode controller and the adaptive adjusting characteristics of an adaptive fuzzy controller.The AFISMC feeding pressure controller is synthesized using the backstepping technique.The stability of the overall closed-loop system consisting of the adaptive fuzzy inference system,integral sliding mode controller and the cutter feeding system is proved using Lyapunov theory.Experiments are conducted on a TC test bench with the AFISMC under different operating conditions.The experimental results demonstrate that the proposed AFISMC feeding pressure controller for CFS gives a superior and robust pressure tracking performance with maximum pressure tracking error within ?0.3 MPa.
文摘Robust stabilization for a class of nonlinear uncertain neutral system with time-varying delay is investigated. By applying the Lyapunov stability theorem, an adaptive sliding mode controller (ADSMC) is developed.Based on the sliding mode control technique, the controller can drive the system into a pre-specified sliding hyperplane to obtain the desired dynamic performance. Once the system dynamics reaches the sliding plane, the control system is insensitive to uncertainty. The adaptive technique can overcome the unknown upper bound of uncertainty so that the reaching condition can be satisfied. Furthermore, the controller does not include any delayed state,so such an ADSMC is memoryless. Finally, a numerical example is given to verify the validity of the developed memoryless ADSMC and the globally asymptotic stability is guaranteed for the control scheme.
文摘This paper presents a closed-loop vector control structure based on adaptive Fuzzy Logic Sliding Mode Controller (FL-SMC) for a grid-connected Wave Energy Conversion System (WECS) driven Self-Excited Induction Generator (SEIG). The aim of the developed control method is to automatically tune and optimize the scaling factors and the membership functions of the Fuzzy Logic Controllers (FLC) using Multi-Objective Genetic Algorithms (MOGA) and Multi-Objective Particle Swarm Optimization (MOPSO). Two Pulse Width Modulated voltage source PWM converters with a carrier-based Sinusoidal PWM modulation for both Generator- and Grid-side converters have been connected back to back between the generator terminals and utility grid via common DC link. The indirect vector control scheme is implemented to maintain balance between generated power and power supplied to the grid and maintain the terminal voltage of the generator and the DC bus voltage constant for variable rotor speed and load. Simulation study has been carried out using the MATLAB/Simulink environment to verify the robustness of the power electronics converters and the effectiveness of proposed control method under steady state and transient conditions and also machine parameters mismatches. The proposed control scheme has improved the voltage regulation and the transient performance of the wave energy scheme over a wide range of operating conditions.
基金This research is financially supported by the Ministry of Science and Technology of China(Grant No.2019YFE0112400)the Department of Science and Technology of Shandong Province(Grant No.2021CXGC011204).
文摘In this paper,a stable and adaptive sliding mode control(SMC)method for induction motors is introduced.Determining the parameters of this system has been one of the existing challenges.To solve this challenge,a new self-tuning type-2 fuzzy neural network calculates and updates the control system parameters with a fast mechanism.According to the dynamic changes of the system,in addition to the parameters of the SMC,the parameters of the type-2 fuzzy neural network are also updated online.The conditions for guaranteeing the convergence and stability of the control system are provided.In the simulation part,in order to test the proposed method,several uncertain models and load torque have been applied.Also,the results have been compared to the SMC based on the type-1 fuzzy system,the traditional SMC,and the PI controller.The average RMSE in different scenarios,for type-2 fuzzy SMC,is 0.0311,for type-1 fuzzy SMC is 0.0497,for traditional SMC is 0.0778,and finally for PI controller is 0.0997.
文摘In order to apply the terminal sliding mode control to robot manipulators,prior knowledge of the exact upper bound of parameter uncertainties,and external disturbances is necessary.However,this bound will not be easily determined because of the complexity and unpredictability of the structure of uncertainties in the dynamics of the robot.To resolve this problem in robot control,we propose a new robust adaptive terminal sliding mode control for tracking problems in robotic manipulators.By applying this adaptive controller,prior knowledge is not required because the controller is able to estimate the upper bound of uncertainties and disturbances.Also,the proposed controller can eliminate the chattering effect without losing the robustness property.The stability of the control algorithm can be easily verified by using Lyapunov theory.The proposed controller is tested in simulation on a two-degree-of-freedom robot to prove its effectiveness.
基金This project is supported by Aeronautics Foundation of China (No. 00E51022)
文摘To alleviate the chattering problem, a new type of fuzzy global sliding mode controller (FGSMC) is presented. In this controller, the switching gain is estimated by fuzzy logic system based on the reachable conditions of sliding mode controller(SMC), and genetic algorithm (GA) is used to optimize scaling factor of the switching gain, thus the switch chattering of SMC can be alleviated. Moreover, global sliding mode is realized by designing an exponential dynamic sliding surface. Simulation and real-time application for flight simulator servo system with Lugre friction are given to indicate that the proposed controller can guarantee high robust performance all the time and can alleviate chattering phenomenon effectively.
基金Supported by National Natural Science Foundation of China(Grant Nos.51375212,61601203)Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions of China+1 种基金Key Research and Development Program of Jiangsu Province(BE2016149)Jiangsu Provincial Natural Science Foundation of China(BK20140555)
文摘The accurate control for the vehicle height and leveling adjustment system of an electronic air suspension(EAS) still is a challenging problem that has not been effectively solved in prior researches. This paper proposes a new adaptive controller to control the vehicle height and to adjust the roll and pitch angles of the vehicle body(leveling control) during the vehicle height adjustment procedures by an EAS system. A nonlinear mechanism model of the full?car vehicle height adjustment system is established to reflect the system dynamic behaviors and to derive the system optimal control law. To deal with the nonlinear characters in the vehicle height and leveling adjustment processes, the nonlinear system model is globally linearized through the state feedback method. On this basis, a fuzzy sliding mode controller(FSMC) is designed to improve the control accuracy of the vehicle height adjustment and to reduce the peak values of the roll and pitch angles of the vehicle body. To verify the effectiveness of the proposed control method more accurately, the full?car EAS system model programmed using AMESim is also given. Then, the co?simulation study of the FSMC performance can be conducted. Finally, actual vehicle tests are performed with a city bus, and the test results illustrate that the vehicle height adjustment performance is effectively guaranteed by the FSMC, and the peak values of the roll and pitch angles of the vehicle body during the vehicle height adjustment procedures are also reduced significantly. This research proposes an effective control methodology for the vehicle height and leveling adjustment system of an EAS, which provides a favorable control performance for the system.
基金supported by the National Natural Science Foundation of China(Grant Nos.61403343 and 61433003)the Scientific Research Foundation of Education Department of Zhejiang Province,China(Grant No.Y201329260)the Natural Science Foundation of Zhejiang University of Technology,China(Grant No.1301103053408)
文摘A full-order sliding mode control based on a fuzzy extended state observer is proposed to control the uncertain chaos in the permanent magnet synchronous motor. Through a simple coordinate transformation, the chaotic PMSM model is transformed into the Brunovsky canonical form, which is more suitable for the controller design. Based on the fuzzy control theory, a fuzzy extended state observer is developed to estimate the unknown states and uncertainties, and the restriction that all the system states should be completely measurable is avoided. Thereafter, a full-order sliding mode controller is designed to ensure the convergence of all system states without any chattering problem. Comparative simulations show the effectiveness and superior performance of the proposed control method.