行人检测在机器人、驾驶辅助系统和视频监控等领域有广泛的应用,该文提出一种基于显著性检测与方向梯度直方图-非负矩阵分解(Histogram of Oriented Gradient-Non-negative Matrix Factorization,HOG-NMF)特征的快速行人检测方法。采用...行人检测在机器人、驾驶辅助系统和视频监控等领域有广泛的应用,该文提出一种基于显著性检测与方向梯度直方图-非负矩阵分解(Histogram of Oriented Gradient-Non-negative Matrix Factorization,HOG-NMF)特征的快速行人检测方法。采用频谱调谐显著性检测提取显著图,并基于熵值门限进行感兴趣区域的提取;组合非负矩阵分解和方向梯度直方图生成HOG-NMF特征;采用加性交叉核支持向量机方法(Intersection Kernel Support Vector Machine,IKSVM)。该算法显著降低了特征维数,在相同的计算复杂度下明显改善了线性支持向量机的检测率。在INRIA数据库的实验结果表明,该方法对比HOG/线性SVM和HOG/RBF-SVM显著减少了检测时间,并达到了满意的检测率。展开更多
针对传统基于梯度方向直方图特征检测算法对解决目标模型单一、发生形变、存在遮挡及目标受干扰下定位困难的问题,提出一种基于HOG特征混合模型结合隐SVM的感兴趣目标检测算法。首先利用用训练图像的HOG特征金字塔表示得到包含感兴趣目...针对传统基于梯度方向直方图特征检测算法对解决目标模型单一、发生形变、存在遮挡及目标受干扰下定位困难的问题,提出一种基于HOG特征混合模型结合隐SVM的感兴趣目标检测算法。首先利用用训练图像的HOG特征金字塔表示得到包含感兴趣目标根模型、部件模型和对应可变形部件特征表示,该模型不仅描述目标的整体轮廓,而且能够捕捉到更为精细的目标部件轮廓,在一定程度上提高了检测算法在目标姿态复杂情况下的鲁棒性。然后利用HOG特征混合特征训练部件检测分类器LSVM(Latent Support Vector Machine)。最后通过动态规划和距离转换算法在测试图上扫描出与可变形部件模型相匹配的区域,实现感兴趣目标的检测定位。经过多组实验结果表明,所提出的算法能较好地解决目标在发生较大形变和存在遮挡等复杂姿态下的定位问题。展开更多
文摘行人检测在机器人、驾驶辅助系统和视频监控等领域有广泛的应用,该文提出一种基于显著性检测与方向梯度直方图-非负矩阵分解(Histogram of Oriented Gradient-Non-negative Matrix Factorization,HOG-NMF)特征的快速行人检测方法。采用频谱调谐显著性检测提取显著图,并基于熵值门限进行感兴趣区域的提取;组合非负矩阵分解和方向梯度直方图生成HOG-NMF特征;采用加性交叉核支持向量机方法(Intersection Kernel Support Vector Machine,IKSVM)。该算法显著降低了特征维数,在相同的计算复杂度下明显改善了线性支持向量机的检测率。在INRIA数据库的实验结果表明,该方法对比HOG/线性SVM和HOG/RBF-SVM显著减少了检测时间,并达到了满意的检测率。
文摘针对传统基于梯度方向直方图特征检测算法对解决目标模型单一、发生形变、存在遮挡及目标受干扰下定位困难的问题,提出一种基于HOG特征混合模型结合隐SVM的感兴趣目标检测算法。首先利用用训练图像的HOG特征金字塔表示得到包含感兴趣目标根模型、部件模型和对应可变形部件特征表示,该模型不仅描述目标的整体轮廓,而且能够捕捉到更为精细的目标部件轮廓,在一定程度上提高了检测算法在目标姿态复杂情况下的鲁棒性。然后利用HOG特征混合特征训练部件检测分类器LSVM(Latent Support Vector Machine)。最后通过动态规划和距离转换算法在测试图上扫描出与可变形部件模型相匹配的区域,实现感兴趣目标的检测定位。经过多组实验结果表明,所提出的算法能较好地解决目标在发生较大形变和存在遮挡等复杂姿态下的定位问题。