期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Two-Dimensional Direction Finding via Sequential Sparse Representations
1
作者 Yougen Xu Ying Lu +1 位作者 Yulin Huang Zhiwen Liu 《Journal of Beijing Institute of Technology》 EI CAS 2018年第2期169-175,共7页
The problem of two-dimensional direction finding is approached by using a multi-layer Lshaped array. The proposed method is based on two sequential sparse representations,fulfilling respectively the estimation of elev... The problem of two-dimensional direction finding is approached by using a multi-layer Lshaped array. The proposed method is based on two sequential sparse representations,fulfilling respectively the estimation of elevation angles,and azimuth angles. For the estimation of elevation angles,the weighted sub-array smoothing technique for perfect data decorrelation is used to produce a covariance vector suitable for exact sparse representation,related only to the elevation angles. The estimates of elevation angles are then obtained by sparse restoration associated with this elevation angle dependent covariance vector. The estimates of elevation angles are further incorporated with weighted sub-array smoothing to yield a second covariance vector for precise sparse representation related to both elevation angles,and azimuth angles. The estimates of azimuth angles,automatically paired with the estimates of elevation angles,are finally obtained by sparse restoration associated with this latter elevation-azimuth angle related covariance vector. Simulation results are included to illustrate the performance of the proposed method. 展开更多
关键词 array signal processing adaptive array direction finding sparse representation
下载PDF
DOA estimation via sparse recovering from the smoothed covariance vector 被引量:1
2
作者 Jingjing Cai Dan Bao Peng Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第3期555-561,共7页
A direction of arrival(DOA) estimation algorithm is proposed using the concept of sparse representation. In particular, a new sparse signal representation model called the smoothed covariance vector(SCV) is establ... A direction of arrival(DOA) estimation algorithm is proposed using the concept of sparse representation. In particular, a new sparse signal representation model called the smoothed covariance vector(SCV) is established, which is constructed using the lower left diagonals of the covariance matrix. DOA estimation is then achieved from the SCV by sparse recovering, where two distinguished error limit estimation methods of the constrained optimization are proposed to make the algorithms more robust. The algorithm shows robust performance on DOA estimation in a uniform array, especially for coherent signals. Furthermore, it significantly reduces the computational load compared with those algorithms based on multiple measurement vectors(MMVs). Simulation results validate the effectiveness and efficiency of the proposed algorithm. 展开更多
关键词 array signal processing convex optimization direction of arrival(DOA) estimation sparse representation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部