Understanding the anisotropic creep behaviors of shale under direct shearing is a challenging issue.In this context,we conducted shear-creep and steady-creep tests on shale with five bedding orientations (i.e.0°,...Understanding the anisotropic creep behaviors of shale under direct shearing is a challenging issue.In this context,we conducted shear-creep and steady-creep tests on shale with five bedding orientations (i.e.0°,30°,45°,60°,and 90°),under multiple levels of direct shearing for the first time.The results show that the anisotropic creep of shale exhibits a significant stress-dependent behavior.Under a low shear stress,the creep compliance of shale increases linearly with the logarithm of time at all bedding orientations,and the increase depends on the bedding orientation and creep time.Under high shear stress conditions,the creep compliance of shale is minimal when the bedding orientation is 0°,and the steady-creep rate of shale increases significantly with increasing bedding orientations of 30°,45°,60°,and 90°.The stress-strain values corresponding to the inception of the accelerated creep stage show an increasing and then decreasing trend with the bedding orientation.A semilogarithmic model that could reflect the stress dependence of the steady-creep rate while considering the hardening and damage process is proposed.The model minimizes the deviation of the calculated steady-state creep rate from the observed value and reveals the behavior of the bedding orientation's influence on the steady-creep rate.The applicability of the five classical empirical creep models is quantitatively evaluated.It shows that the logarithmic model can well explain the experimental creep strain and creep rate,and it can accurately predict long-term shear creep deformation.Based on an improved logarithmic model,the variations in creep parameters with shear stress and bedding orientations are discussed.With abovementioned findings,a mathematical method for constructing an anisotropic shear creep model of shale is proposed,which can characterize the nonlinear dependence of the anisotropic shear creep behavior of shale on the bedding orientation.展开更多
Serious riverbank erosion,caused by scouring and soil siltation on the bank slope in the lower reaches of the Tarim River,Northwest China urgently requires a solution.Plant roots play an important role in enhancing so...Serious riverbank erosion,caused by scouring and soil siltation on the bank slope in the lower reaches of the Tarim River,Northwest China urgently requires a solution.Plant roots play an important role in enhancing soil shear strength on the slopes to maintain slope soils,but the extent of enhancement of soil shear strength by different root distribution patterns is unclear.The study used a combination of indoor experiments and numerical simulation to investigate the effects of varying plant root morphologies on the shear strength of the sandy soil in the Tarim River.The results showed that:(1)by counting the root morphology of dominant vegetation on the bank slope,we summarized the root morphology of dominant vegetation along the coast as vertical,horizontal,and claw type;(2)the shear strength of root-soil composites(RSCs)was significantly higher than that of remolded soil,and the presence of root system made the strain-softening of soil body significantly weakened so that RSCs had better mechanical properties;and(3)compared with the lateral roots,the average particle contact degree of vertical root system was higher,and the transition zone of shear strength was more prominent.Hence,vegetation with vertical root system had the best effect on soil protection and slope fixation.The results of this study have important guiding significance for prevention and control of soil erosion in the Tarim River basin,the restoration of riparian ecosystems,and the planning of water conservancy projects.展开更多
Some rock joints exhibit significant brittleness,characterized by a sharp decrease in shear stress upon reaching the peak strength.However,existing models often fail to accurately represent this behavior and are encum...Some rock joints exhibit significant brittleness,characterized by a sharp decrease in shear stress upon reaching the peak strength.However,existing models often fail to accurately represent this behavior and are encumbered by numerous parameters lacking clear mechanical significance.This study presents a new statistical damage constitutive model rooted in both damage mechanics and statistics,containing only three model parameters.The proposed model encompasses all stages of joint shearing,including the compaction stage,linear stage,plastic yielding stage,drop stage,strain softening stage,and residual strength stage.To derive the analytical expression of the constitutive model,three boundary conditions are introduced.Experimental data from both natural and artificial rock joints is utilized to validate the model,resulting in average absolute relative errors ranging from 3%to 8%.Moreover,a comparative analysis with established models illustrates that the proposed model captures stress drop and post-peak strain softening more effectively,with model parameters possessing clearer mechanical interpretations.Furthermore,parameter analysis is conducted to investigate the impacts of model parameters on the curves and unveil the relationship between these parameters and the mechanical properties of rock joints.Importantly,the proposed model is straightforward in form,and all model parameters can be obtained from direct shear tests,thus facilitating the utilization in numerical simulations.展开更多
The Shimian area of Sichuan sits at the junction of the Bayan Har block.Sichuan-Yunnan rhombic block,and Yangtze block,where several faults intersect.This region features intense tectonic activity and frequent earthqu...The Shimian area of Sichuan sits at the junction of the Bayan Har block.Sichuan-Yunnan rhombic block,and Yangtze block,where several faults intersect.This region features intense tectonic activity and frequent earthquakes.In this study,we used local seismic waveform data recorded using dense arrays deployed in the Shimian area to obtain the shear wave splitting parameters at 55 seismic stations and thereby determine the crustal anisotropic characteristics of the region.We then analyzed the crustal stress pattern and tectonic setting and explored their relationship in the study area.Although some stations returned a polarization direction of NNW-SSE.a dominant polarization direction of NW-SE was obtained for the fast shear wave at most seismic stations in the study area.The polarization directions of the fast shear wave were highly consistent throughout the study-area.This orientation was in accordance with the direction of the regional principal compressive stress and parallel to the trend of the Xianshuihe and Daliangshan faults.The distribution of crustal anisotropy in this area was affected by the regional tectonic stress field and the fault structures.The mean delay time between fast and slow shear waves was 3.83 ms/km.slightly greater than the values obtained in other regions of Sichuan.This indicates that the crustal media in our study area had a high anisotropic strength and also reveals the influence of tectonic complexity resulting from the intersection of multiple faults on the strength of seismic anisotropy.展开更多
The rock bridges sandwiched in incipiently jointed rock mass were considered as barriers that block the fluid seepage,and provide certain shear strength reservation.For better revealing the influence of hydraulic pres...The rock bridges sandwiched in incipiently jointed rock mass were considered as barriers that block the fluid seepage,and provide certain shear strength reservation.For better revealing the influence of hydraulic pressure on the failure behaviour of rock bridges,direct shear tests were carried out through a newly proposed method on rock samples that contain two parallel incipient joints.By developing the gypsum-silicone pad coupling samples,a conventional triaxial test system was qualified to implement direct shear tests with satisfied sealing capability.The results showed that the rock bridges could be failed through the tensile failure,shear failure and mixed failure mechanism.The hydraulic pressure would facilitate the tensile failure mechanism and induce rougher fracture surfaces;while the normal stress would facilitate the shear failure mechanism and induce less rough fracture.The hydraulic pressure reduced the global shear strength of the rock block through reducing the efficient normal stress applied on the rock bridge area,which was highly dependent on the joint persistence,k.Moreover,because of the iterating occurrence of the hydraulic pressure lag with the fracture propagation,the rock bridge failure stage in the shear stress-shear displacement curves displayed a fluctuation trend.展开更多
Each rock joint is unique by nature which means that utilization of replicas in direct shear tests is required in experimental parameter studies.However,a method to acquire knowledge about the ability of the replicas ...Each rock joint is unique by nature which means that utilization of replicas in direct shear tests is required in experimental parameter studies.However,a method to acquire knowledge about the ability of the replicas to imitate the shear mechanical behavior of the rock joint and their dispersion in direct shear testing is lacking.In this study,a novel method is presented for geometric quality assurance of replicas.The aim is to facilitate generation of high-quality direct shear testing data as a prerequisite for reliable subsequent analyses of the results.In Part 1 of this study,two quality assurance parameters,smf and V_(Hp100),are derived and their usefulness for evaluation of geometric deviations,i.e.geometric reproducibility,is shown.In Part 2,the parameters are validated by showing a correlation between the parameters and the shear mechanical behavior,which qualifies the parameters for usage in the quality assurance method.Unique results from direct shear tests presenting comparisons between replicas and the rock joint show that replicas fulfilling proposed threshold values of σ_(mf)<0.06 mm and|V_(Hp100)|<0.2 mm have a narrow dispersion and imitate the shear mechanical behavior of the rock joint in all aspects apart from having a slightly lower peak shear strength.The wear in these replicas,which have similar morphology as the rock joint,is in the same areas as in the rock joint.The wear is slightly larger in the rock joint and therefore the discrepancy in peak shear strength derives from differences in material properties,possibly from differences in toughness.It is shown by application of the suggested method that the quality assured replicas manufactured following the process employed in this study phenomenologically capture the shear strength characteristics,which makes them useful in parameter studies.展开更多
In recent years,the exploration of seabed has been intensified,but the submarine soils of silt and sand in the Yellow Sea area have not been well investigated so far.In this study,the physical and mechanical propertie...In recent years,the exploration of seabed has been intensified,but the submarine soils of silt and sand in the Yellow Sea area have not been well investigated so far.In this study,the physical and mechanical properties of silt and sand from the Yellow Sea were measured using a direct shear apparatus and their microstructures were observed using a scanning electron microscope.The test results suggest that the shear strength of silt and sand increases linearly with the increase of normal stress.Based on the direct shear test,the scanning electron microscope was used to observe the section surface of sand.It is observed that the section surface becomes rough,with many“V”‐shaped cracks.Many particles appear on the surface of the silt structure and tend to be disintegrated.The X‐ray diffraction experiment reveals that the sand and silt have different compositions.The shear strength of sand is slightly greater than that of silt under high stress,which is related to the shape of soil particles and the mineral composition.These results can be a reference for further study of other soils in the Yellow Sea;meanwhile,they can serve as soil parameters for the stability and durability analyses of offshore infrastructure construction.展开更多
Grouted rock bolts subject to axial loading in the field exhibit various failure modes,among which the most predominant one is the bolt-grout interface failure.Thus,mechanical characterization of the grout is essentia...Grouted rock bolts subject to axial loading in the field exhibit various failure modes,among which the most predominant one is the bolt-grout interface failure.Thus,mechanical characterization of the grout is essential for understanding its performance in ground support.To date,few studies have been conducted to characterize the mechanical behaviour of fiber-reinforced grout(FRG)in rock bolt reinforcement.Here we experimentally studied the mechanical behaviour of FRG under uniaxial compression,indirect tension,and direct shear loading conditions.We also conducted a series of pullout tests of rebar bolt encapsulated with different grouts including conventional cementitious grout and FRG.FRG was developed using 15%silica fume(SF)replacement of cement(by weight)and steel fiber to achieve highstrength and crack-resistance to overcome drawbacks of the conventional grout.Two types of steel fibers including straight and wavy steel fibers were further added to enhance the grout quality.The effect of fiber shape and fiber volume proportion on the grout mechanical properties were examined.Our experimental results showed that the addition of SF and steel fiber by 1.5%fiber volume proportion could lead to the highest compressive,tensile,and shear strengths of the grout.The minimum volume of fiber that could improve the mechanical properties of grout was found at 0.5%.The scanning electron microscopy(SEM)analysis demonstrated that steel fibers act as an excellent bridge to prevent the cracks from propagating at the interfacial region and hence to aid in maintaining the integrity of the cementitious grout.Our laboratory pullout tests further confirmed that FRG could prevent the cylindrical grout annulus from radial crack and hence improve the rebar’s load carrying capacity.Therefore,FRG has a potential to be utilized in civil and mining applications where high-strength and crack-resistance support is required.展开更多
Moraines,characterized by the accumulation of rock and soil debris transported by glacial activity,present unique challenges for tunnel construction,particularly in portal sections,due to prevailing geographical and c...Moraines,characterized by the accumulation of rock and soil debris transported by glacial activity,present unique challenges for tunnel construction,particularly in portal sections,due to prevailing geographical and climatic conditions that facilitate freeze-thaw action.Despite these challenges,there is a dearth of studies investigating the influence of freeze-thaw action and water content on the mechanical properties of moraines,and no research on calculating surrounding rock pressure in moraine tunnels subjected to freeze-thaw conditions.In this study,direct shear tests under freeze-thaw cycles were conducted to examine the effects of freeze-thaw cycles and water content on the mechanical properties of frozen moraine.A comprehensive parameter K,integrating the number of freeze-thaws and water content,was introduced to model cohesion c.Drawing on Terzaghi Theory,we propose an improved algorithm for calculating surrounding rock pressure at the portal section of moraine tunnels.Using a tunnel as a case study,surrounding rock pressure was calculated under various conditions to validate the Improved Algorithm's efficacy.The results show that:(1)Strength loss exhibits a linear trend with the number of freeze-thaw cycles at water content levels of 4%and 8%,while at 12%water content,previous freeze-thaw cycles induce more significant damage to the soil.(2)Moraine saturation peaks between 8%and 12%water content.Following repeated freeze-thaw cycles,moraine shear strength initially increases before decreasing with varying water content.(3)The internal friction angle of moraine experiences slight reductions with prolonged freeze-thaw cycles,but both freeze-thaw cycles and water content significantly influence cohesion.(4)Vertical surrounding rock pressure increases after the initial freeze-thaw cycle,particularly with higher water content,although freeze-thaw cycles have minimal effect on it.(5)Freeze-thaw cycles lead to a substantial increase in lateral surrounding rock pressure,necessitating reinforced support structures at the arch wall,arch waist,and arch foot in engineering projects to mitigate freeze-thaw effects.This study provides a foundation for designing and selecting tunnel support structures in similar geological conditions.展开更多
Rock bolts are widely used in rock engineering projects to improve the shear capacity of the jointed rock mass.The bolt inclination angle with respect to the shear plane has a remarkable influence on the bolting perfo...Rock bolts are widely used in rock engineering projects to improve the shear capacity of the jointed rock mass.The bolt inclination angle with respect to the shear plane has a remarkable influence on the bolting performance.In this study,a new artificial molding method based on 3D scanning and printing technology was first proposed to prepare bolted joints with an inclined bolt.Then,the effects of the bolt inclination angle and boundary conditions on the shear behavior and failure characteristic of bolted joints were addressed by conducting direct shear tests under both CNL and CNS conditions.Results indicated that rock bolt could significantly improve the shear behavior of rock joints,especially in the post-yield deformation region.With the increase of bolt inclination angle,both the maximum shear stress and the maximum friction coefficient increased first and then decreased,while the maximum normal displacement decreased monotonously.Compared with CNL conditions,the maximum shear stress was larger,whereas the maximum normal displacement and friction coefficient were smaller under the CNS conditions.Furthermore,more asperity damage was observed under the CNS conditions due to the increased normal stress on the shear plane.展开更多
The mechanical properties of outwash deposits which are taken as unconsolidated geo-materials with the characteristics of non-uniformity, heterogeneity and multiphase have attracted much attention in engineering. Acco...The mechanical properties of outwash deposits which are taken as unconsolidated geo-materials with the characteristics of non-uniformity, heterogeneity and multiphase have attracted much attention in engineering. According to the results of laboratory direct shear test on the remolded samples, the soil particle parameters of numerical model based on in-situ particle size cumulative curves and 3D granular discrete element method were determined. Then, numerical experiments on different lithology, stone content and gradation composition were conducted. The results show that it is not a flat surface but a shear band that yields in the sample. The curve of particle velocity vs distance from the designed shear surface of test model that is taken as a datum plane in the vertical section of sample shows in "S" shape. The shear disturbance area is about twice the maximum diameter of stone blocks. The greater the stiffness of stone is, the rougher the shear surface is. The shear strength of outwash deposits is largely controlled by lithology and stone content, and the bite force between stone blocks is the root reason of larger friction angle. It is also shown that strain hardening and low shear dilatancy occur under high confining pressure as well as possibility of shear shrinkage. But it is easy to behave shear dilatation and strain softening under low confining pressure. The relationship between particle frictional coefficient and stone content presents an approximately quadratic parabola increase. The strain energy first increases and then drops with the increase of frictional energy. The cohesion increases with soil stiffness increasing but decreases with stone stiffness increasing. Numerical results are consistent with the laboratory test results of remolded samples, which indicate that this method can be a beneficial supplement to determine the parameters of engineering deposit bodies.展开更多
The macro mechanical properties of materials with characteristics of large scale and complicated structural composition can be analyzed through its reconstructed meso-structures.In this work,the meso-structures of tal...The macro mechanical properties of materials with characteristics of large scale and complicated structural composition can be analyzed through its reconstructed meso-structures.In this work,the meso-structures of talus deposits that widely exist in the hydro-power engineering in the southwest of China were first reconstructed by small particles according to the in-situ photographs based on the self-adaptive PCNN digital image processing,and then numerical direct shear tests were carried out for studying the mechanical properties of talus deposits.Results indicate that the reconstructed meso-structures of talus deposits are more consistent with the actual situation because the self-adaptive PCNN digital image processing has a higher discrimination in the details of soil-rock segmentation.The existence and random distribution of rock blocks make the initial shear stiffness,the peak strength and the residual strength higher than those of the "pure soil" with particle size less than 1.25 cm apparently,but reduce the displacements required for the talus deposits reaching its peak shear strength.The increase of rock proportion causes a significant improvement in the internal friction angle of talus deposit,which to a certain degree leads to the characteristics of shear stress-displacement curves having a changing trend from the plastic strain softening deformation to the nonlinear strain hardening deformation,while an unconspicuous increase in cohesion.The uncertainty and heterogeneity of rock distributions cause the differences of rock proportion within shear zone,leading to a relatively strong fluctuation in peak strengths during the shear process,while movement features of rock blocks,such as translation,rotation and crossing,expand the scope of shear zone,increase the required shear force,and also directly lead to the misjudgment that the lower shear strength is obtained from the samples with high rock proportion.That,however,just explains the reason why the shear strength gained from a small amount of indoor test data is not consistent with engineering practice.展开更多
Considering strain localization in the form of a narrow band initiated just at peak stress, three analytical expressions for stressstrain curves of quasibrittle geomaterial (such as rock and concrete) in uniaxial tens...Considering strain localization in the form of a narrow band initiated just at peak stress, three analytical expressions for stressstrain curves of quasibrittle geomaterial (such as rock and concrete) in uniaxial tension, direct shear and uniaxial compression were presented, respectively. The three derived stressstrain curves were generalized as a unified formula. Beyond the onset of strain localization, a linear strain-softening constitutive relation for localized band was assigned. The size of the band was controlled by internal or characteristic length according to gradient-dependent plasticity. Elastic strain within the entire specimen was assumed to be uniform and decreased with the increase of plastic strain in localized band. Total strain of the specimen was decomposed into elastic and plastic parts. Plastic strain of the specimen was the average value of plastic strains in localized band over the entire specimen. For different heights, the predicted softening branches of the relative stressstrain curves in uniaxial compression are consistent with the previously experimental results for normal concrete specimens. The present expressions for the post-peak stressdeformation curves in uniaxial tension and direct shear agree with the previously numerical results based on gradient-dependent plasticity.展开更多
The mechanical behavior of the joints inside a loess layer is greatly important in weak intercalation studies owing to its involvement in a wide range of landslides in the loess region in China.The shear behavior of t...The mechanical behavior of the joints inside a loess layer is greatly important in weak intercalation studies owing to its involvement in a wide range of landslides in the loess region in China.The shear behavior of the joints in the loess stratum during direct shear and cyclic loadings was investigated using the PFC2D discrete element software.Loess mudstone and mudstone with weak intercalated layer materials were subjected to direct testing,and cyclic shear tests were conducted with consideration to the influence of normal stress and shear velocity.The macroscopic properties and damage patterns were obtained for six numerical configurations;namely,loess-weathered mudstone with 0°,10°,and-10°joints and weathered mudstone with 0°,10°,and-10°weak intercalated layers.The numerical test results revealed that,in the direct shear tests,the shear stress and shear displacement of the samples increased with the normal stress.In the cyclic shear tests with a total cycle number N=20,the shear stress-shear strain curve of the six different configurations exhibited a hysteresis loop.The numerical tests also revealed that,under cyclic shear,the normal stress and shear velocity affected the shear strength.The degree of damage increased as the shear velocity decreased from 0.1 mm/s to 0.005 mm/s for all six numerical configurations.Compared with the damage pattern of the direct shear tests,the damage of the cyclic shear tests mainly comprised shear cracks and fractures,some shaking consolidation settlement and fewer shear strain occurred around the joints.In the direct shear tests,more compression cracks and fractures occurred in the samples.The damage mainly developed along the joints,and shearing-off damage occurred.The results obtained by this study further elucidate the failure mechanism and microscopic damage response of the joints in the loess stratum in Northwest China.展开更多
Using newly developed dynamic shearing devices, the dynamic sheafing strength of frozen soil-conerete interface was studied experimentally. By placing concrete blocks in the lower half of the shear box and frozen soil...Using newly developed dynamic shearing devices, the dynamic sheafing strength of frozen soil-conerete interface was studied experimentally. By placing concrete blocks in the lower half of the shear box and frozen soil sample in the upper part, a series of dynamic shear tests on their interfaces were carried out. The obtained results are summarized and the main influencing factors are revealed.展开更多
The tests on the shear property of geocell reinforced soils were carried out by using large-scale direct shear equipment with shear-box-dimensions of 500 mm×500 mm×400 mm (length×width×height). Thr...The tests on the shear property of geocell reinforced soils were carried out by using large-scale direct shear equipment with shear-box-dimensions of 500 mm×500 mm×400 mm (length×width×height). Three types of specimens, silty gravel soil, geocell reinforced silty gravel soil and geocell reinforced cement stabilizing silty gravel soil were used to investigate the shear stress-displacement behavior, the shear strength and the strengthening mechanism of geocell reinforced soils. The comparisons of large-scale shear test with triaxial compression test for the same type of soil were conducted to evaluate the influences of testing method on the shear strength as well. The test results show that the unreinforced soil and geocell reinforced soil give similar nonlinear features on the behavior of shear stress and displacement. The geocell reinforced cement stabilizing soil has a quasi-elastic characteristic in the case of normal stress coming up to 1.0 GPa. The tests with the reinforcement of geocell result in an increase of 244% in cohesion, and the tests with the geocell and the cement stabilization result in an increase of 10 times in cohesion compared with the unreinforced soil. The friction angle does not change markedly. The geocell reinforcement develops a large amount of cohesion on the shear strength of soils.展开更多
Following a rice or wheat harvest, a large amount of crop residue (straw) is retained in fields. The straw is often incorporated into the soil in order to increase the soil organic carbon storage and to reduce soil ...Following a rice or wheat harvest, a large amount of crop residue (straw) is retained in fields. The straw is often incorporated into the soil in order to increase the soil organic carbon storage and to reduce soil erosion. However, it has become apparent that the incorporated straw can significantly alter soil shear properties, which can dramatically affect energy inputs for tilling and other soil management practices. In this study, laboratory-remolded wheat straw-soil samples were compared with field-collected straw-soil samples; we found high correlations for the cohesion (R2=0.9084) and internal friction angle (R2=0.9548) properties of the samples. Shear tests on rice and wheat straw with different moisture content levels clearly demonstrated the relatively higher shear strength of wheat straw compared to rice straw. The cohesion of remolded rice and wheat straw-soil samples exhibited an increasing linear trend with an increase in densities, whereas the internal friction angle data for these samples exhibited a quadratic trend. Overlapping the cohesion curves revealed that the wheat straw-soil and rice straw-soil samples had the same cohesion at a straw density of 0.63%. Similar results were obtained when the internal fraction angle curves overlapped; the resultant point of intersection was observed at a straw density of 0.46%. As a whole, the remolded sample methodology was found suitable to simulate the shear properties of soils sampled directly from fields.展开更多
In the enhanced geothermal system(EGS),the injected fluid will induce shear sliding of rock fractures(i.e.,hydroshearing),which consequently,would increase the fracture aperture and improve the heat transfer efficienc...In the enhanced geothermal system(EGS),the injected fluid will induce shear sliding of rock fractures(i.e.,hydroshearing),which consequently,would increase the fracture aperture and improve the heat transfer efficiency of the geothermal reservoir.In this study,theoretical analysis,experimental research and numerical simulation were performed to uncover the permeability and heat transfer enhancement mechanism of the Hot-Dry-Rock(HDR)mass under the impact of shearing.By conducting the direct shear test with the fractured rock samples,the evolution process of fracture aperture during the shearing tests was observed,during which process,cubic law was adopted to depict the rock fracture permeability.To investigate the seepage characteristics and temperature distribution of the fractured HDR under the influence of shearing,a simulation study of shear-seepage-heat transfer in a fractured rock mass has been conducted to validate the observed shear-induced fracture dilation during the direct shear test.The results demonstrate that(1)the hydroshearing increases the dilation of granite fracture and enhances the permeability of the HDR rock mass,while the temperature around the HDR fracture will reduce.(2)Fracture roughness is of vital importance to enhance the permeability during the shearing tests.To be more specific,a rougher fracture always implies a higher permeability and a greater heat extraction efficiency.(3)The shear induced heat extracting efficiency is dominated by the increased fluid flux in the earlier period of the EGS reservoir,and this efficiency is controlled by the outlet water temperature since the fluid flux becomes stable after the shearing test.Therefore,balancing the hydroshearing enhanced heat extraction efficiency and EGS reservoir lifespan would be significant to the sustainable development and utilization of geothermal energy.展开更多
A simplified in situ direct shear test (DST) was developed for measuring the shear strength of soils in fields. In this test, a latticed sheafing frame replaces the upper half of the shear box used in the convention...A simplified in situ direct shear test (DST) was developed for measuring the shear strength of soils in fields. In this test, a latticed sheafing frame replaces the upper half of the shear box used in the conventional direct shear box test. The latticed shearing frame is directly embedded in the ground to be tested after a construction process and is pulled with a flexible chain while a constant dead load is applied to the sample in the sheafing frame. This simplified in situ DST has been validated by comparing its results with those of triaxial tests on samples with parallel gradations under normal stresses less than 100 kPa. In this study, the DST was further validated by carrying out tests on samples with the same gradations, rather than on samples with parallel gradations, under normal stresses up to 880 kPa. In addition, the DST was performed inside fills in two applications.展开更多
For estimating the long-term stability of underground framework,it is vital to learn the mechanical and rheological characteristics of rock in multiple water saturation conditions.However,the majority of previous stud...For estimating the long-term stability of underground framework,it is vital to learn the mechanical and rheological characteristics of rock in multiple water saturation conditions.However,the majority of previous studies explored the rheological properties of rock in air-dried and water saturated conditions,as well as the water effects on compressive and tensile strengths.In this study,andesite was subjected to direct shear tests under five water saturation conditions,which were controlled by varying the wetting and drying time.The tests were conducted at alternating displacement rates under three vertical stresses.The results reveal that the shear strength decreases exponentially as water saturation increases,and that the increase in shear strength with a tenfold increase in displacement rate is nearly constant for each of the vertical stresses.Based on the findings of the shear tests in this study and the compression and tension tests in previous studies,the influences of both water saturation and loading rate on the Hoek-Brown failure criterion for the andesite was examined.These results indicate that the brittleness index of the andesite,which is defined as the ratio of uniaxial compressive strength to tensile strength,is independent of both water saturation and loading rate and that the influences of the water saturation dependence and the loading rate dependence of the failure criterion can be converted between each other.展开更多
基金funded by the National Natural Science Foundation of China(Grant Nos.U22A20166 and 12172230)the Guangdong Basic and Applied Basic Research Foundation(Grant No.2023A1515012654)+1 种基金funded by the National Natural Science Foundation of China(Grant Nos.U22A20166 and 12172230)the Guangdong Basic and Applied Basic Research Foundation(Grant No.2023A1515012654)。
文摘Understanding the anisotropic creep behaviors of shale under direct shearing is a challenging issue.In this context,we conducted shear-creep and steady-creep tests on shale with five bedding orientations (i.e.0°,30°,45°,60°,and 90°),under multiple levels of direct shearing for the first time.The results show that the anisotropic creep of shale exhibits a significant stress-dependent behavior.Under a low shear stress,the creep compliance of shale increases linearly with the logarithm of time at all bedding orientations,and the increase depends on the bedding orientation and creep time.Under high shear stress conditions,the creep compliance of shale is minimal when the bedding orientation is 0°,and the steady-creep rate of shale increases significantly with increasing bedding orientations of 30°,45°,60°,and 90°.The stress-strain values corresponding to the inception of the accelerated creep stage show an increasing and then decreasing trend with the bedding orientation.A semilogarithmic model that could reflect the stress dependence of the steady-creep rate while considering the hardening and damage process is proposed.The model minimizes the deviation of the calculated steady-state creep rate from the observed value and reveals the behavior of the bedding orientation's influence on the steady-creep rate.The applicability of the five classical empirical creep models is quantitatively evaluated.It shows that the logarithmic model can well explain the experimental creep strain and creep rate,and it can accurately predict long-term shear creep deformation.Based on an improved logarithmic model,the variations in creep parameters with shear stress and bedding orientations are discussed.With abovementioned findings,a mathematical method for constructing an anisotropic shear creep model of shale is proposed,which can characterize the nonlinear dependence of the anisotropic shear creep behavior of shale on the bedding orientation.
基金funded by the Key Research and Development Task of Xinjiang Uygur Autonomous Region, China (2022B03024-3)
文摘Serious riverbank erosion,caused by scouring and soil siltation on the bank slope in the lower reaches of the Tarim River,Northwest China urgently requires a solution.Plant roots play an important role in enhancing soil shear strength on the slopes to maintain slope soils,but the extent of enhancement of soil shear strength by different root distribution patterns is unclear.The study used a combination of indoor experiments and numerical simulation to investigate the effects of varying plant root morphologies on the shear strength of the sandy soil in the Tarim River.The results showed that:(1)by counting the root morphology of dominant vegetation on the bank slope,we summarized the root morphology of dominant vegetation along the coast as vertical,horizontal,and claw type;(2)the shear strength of root-soil composites(RSCs)was significantly higher than that of remolded soil,and the presence of root system made the strain-softening of soil body significantly weakened so that RSCs had better mechanical properties;and(3)compared with the lateral roots,the average particle contact degree of vertical root system was higher,and the transition zone of shear strength was more prominent.Hence,vegetation with vertical root system had the best effect on soil protection and slope fixation.The results of this study have important guiding significance for prevention and control of soil erosion in the Tarim River basin,the restoration of riparian ecosystems,and the planning of water conservancy projects.
基金funded by the National Natural Science Foundation of China(No.41972266)Chongqing Natural Science Foundation(No.CSTB2024NSCQ-MSX0006).
文摘Some rock joints exhibit significant brittleness,characterized by a sharp decrease in shear stress upon reaching the peak strength.However,existing models often fail to accurately represent this behavior and are encumbered by numerous parameters lacking clear mechanical significance.This study presents a new statistical damage constitutive model rooted in both damage mechanics and statistics,containing only three model parameters.The proposed model encompasses all stages of joint shearing,including the compaction stage,linear stage,plastic yielding stage,drop stage,strain softening stage,and residual strength stage.To derive the analytical expression of the constitutive model,three boundary conditions are introduced.Experimental data from both natural and artificial rock joints is utilized to validate the model,resulting in average absolute relative errors ranging from 3%to 8%.Moreover,a comparative analysis with established models illustrates that the proposed model captures stress drop and post-peak strain softening more effectively,with model parameters possessing clearer mechanical interpretations.Furthermore,parameter analysis is conducted to investigate the impacts of model parameters on the curves and unveil the relationship between these parameters and the mechanical properties of rock joints.Importantly,the proposed model is straightforward in form,and all model parameters can be obtained from direct shear tests,thus facilitating the utilization in numerical simulations.
基金This work is jointly supported by the National Natural Science Foundation of China(No.41904057)the National Key Research and Development Program of China(No.2018YFC1503402).
文摘The Shimian area of Sichuan sits at the junction of the Bayan Har block.Sichuan-Yunnan rhombic block,and Yangtze block,where several faults intersect.This region features intense tectonic activity and frequent earthquakes.In this study,we used local seismic waveform data recorded using dense arrays deployed in the Shimian area to obtain the shear wave splitting parameters at 55 seismic stations and thereby determine the crustal anisotropic characteristics of the region.We then analyzed the crustal stress pattern and tectonic setting and explored their relationship in the study area.Although some stations returned a polarization direction of NNW-SSE.a dominant polarization direction of NW-SE was obtained for the fast shear wave at most seismic stations in the study area.The polarization directions of the fast shear wave were highly consistent throughout the study-area.This orientation was in accordance with the direction of the regional principal compressive stress and parallel to the trend of the Xianshuihe and Daliangshan faults.The distribution of crustal anisotropy in this area was affected by the regional tectonic stress field and the fault structures.The mean delay time between fast and slow shear waves was 3.83 ms/km.slightly greater than the values obtained in other regions of Sichuan.This indicates that the crustal media in our study area had a high anisotropic strength and also reveals the influence of tectonic complexity resulting from the intersection of multiple faults on the strength of seismic anisotropy.
基金the National Natural Science Foundation of China(No.51704183)the Postdoctoral Science Foundation of China(No.2018M640646).
文摘The rock bridges sandwiched in incipiently jointed rock mass were considered as barriers that block the fluid seepage,and provide certain shear strength reservation.For better revealing the influence of hydraulic pressure on the failure behaviour of rock bridges,direct shear tests were carried out through a newly proposed method on rock samples that contain two parallel incipient joints.By developing the gypsum-silicone pad coupling samples,a conventional triaxial test system was qualified to implement direct shear tests with satisfied sealing capability.The results showed that the rock bridges could be failed through the tensile failure,shear failure and mixed failure mechanism.The hydraulic pressure would facilitate the tensile failure mechanism and induce rougher fracture surfaces;while the normal stress would facilitate the shear failure mechanism and induce less rough fracture.The hydraulic pressure reduced the global shear strength of the rock block through reducing the efficient normal stress applied on the rock bridge area,which was highly dependent on the joint persistence,k.Moreover,because of the iterating occurrence of the hydraulic pressure lag with the fracture propagation,the rock bridge failure stage in the shear stress-shear displacement curves displayed a fluctuation trend.
文摘Each rock joint is unique by nature which means that utilization of replicas in direct shear tests is required in experimental parameter studies.However,a method to acquire knowledge about the ability of the replicas to imitate the shear mechanical behavior of the rock joint and their dispersion in direct shear testing is lacking.In this study,a novel method is presented for geometric quality assurance of replicas.The aim is to facilitate generation of high-quality direct shear testing data as a prerequisite for reliable subsequent analyses of the results.In Part 1 of this study,two quality assurance parameters,smf and V_(Hp100),are derived and their usefulness for evaluation of geometric deviations,i.e.geometric reproducibility,is shown.In Part 2,the parameters are validated by showing a correlation between the parameters and the shear mechanical behavior,which qualifies the parameters for usage in the quality assurance method.Unique results from direct shear tests presenting comparisons between replicas and the rock joint show that replicas fulfilling proposed threshold values of σ_(mf)<0.06 mm and|V_(Hp100)|<0.2 mm have a narrow dispersion and imitate the shear mechanical behavior of the rock joint in all aspects apart from having a slightly lower peak shear strength.The wear in these replicas,which have similar morphology as the rock joint,is in the same areas as in the rock joint.The wear is slightly larger in the rock joint and therefore the discrepancy in peak shear strength derives from differences in material properties,possibly from differences in toughness.It is shown by application of the suggested method that the quality assured replicas manufactured following the process employed in this study phenomenologically capture the shear strength characteristics,which makes them useful in parameter studies.
基金Natural Science Foundation of Jiangsu Province,Grant/Award Number:BK20210527National Natural Science Foundation of China,Grant/Award Number:42107158Training Program for Innovation and Entrepreneurship,China University of Mining and Technology。
文摘In recent years,the exploration of seabed has been intensified,but the submarine soils of silt and sand in the Yellow Sea area have not been well investigated so far.In this study,the physical and mechanical properties of silt and sand from the Yellow Sea were measured using a direct shear apparatus and their microstructures were observed using a scanning electron microscope.The test results suggest that the shear strength of silt and sand increases linearly with the increase of normal stress.Based on the direct shear test,the scanning electron microscope was used to observe the section surface of sand.It is observed that the section surface becomes rough,with many“V”‐shaped cracks.Many particles appear on the surface of the silt structure and tend to be disintegrated.The X‐ray diffraction experiment reveals that the sand and silt have different compositions.The shear strength of sand is slightly greater than that of silt under high stress,which is related to the shape of soil particles and the mineral composition.These results can be a reference for further study of other soils in the Yellow Sea;meanwhile,they can serve as soil parameters for the stability and durability analyses of offshore infrastructure construction.
文摘Grouted rock bolts subject to axial loading in the field exhibit various failure modes,among which the most predominant one is the bolt-grout interface failure.Thus,mechanical characterization of the grout is essential for understanding its performance in ground support.To date,few studies have been conducted to characterize the mechanical behaviour of fiber-reinforced grout(FRG)in rock bolt reinforcement.Here we experimentally studied the mechanical behaviour of FRG under uniaxial compression,indirect tension,and direct shear loading conditions.We also conducted a series of pullout tests of rebar bolt encapsulated with different grouts including conventional cementitious grout and FRG.FRG was developed using 15%silica fume(SF)replacement of cement(by weight)and steel fiber to achieve highstrength and crack-resistance to overcome drawbacks of the conventional grout.Two types of steel fibers including straight and wavy steel fibers were further added to enhance the grout quality.The effect of fiber shape and fiber volume proportion on the grout mechanical properties were examined.Our experimental results showed that the addition of SF and steel fiber by 1.5%fiber volume proportion could lead to the highest compressive,tensile,and shear strengths of the grout.The minimum volume of fiber that could improve the mechanical properties of grout was found at 0.5%.The scanning electron microscopy(SEM)analysis demonstrated that steel fibers act as an excellent bridge to prevent the cracks from propagating at the interfacial region and hence to aid in maintaining the integrity of the cementitious grout.Our laboratory pullout tests further confirmed that FRG could prevent the cylindrical grout annulus from radial crack and hence improve the rebar’s load carrying capacity.Therefore,FRG has a potential to be utilized in civil and mining applications where high-strength and crack-resistance support is required.
基金jointly supported by the National Natural Science Foundation of China(Grant Number 12262018)the Technology Funding Scheme of China Construction Second Engineering Bureau LTD(Grant Number 2020ZX150002)Special Funds for Guiding Local Scientific and Technological Development by The Central Government(Grant Number 22ZY1QA005)。
文摘Moraines,characterized by the accumulation of rock and soil debris transported by glacial activity,present unique challenges for tunnel construction,particularly in portal sections,due to prevailing geographical and climatic conditions that facilitate freeze-thaw action.Despite these challenges,there is a dearth of studies investigating the influence of freeze-thaw action and water content on the mechanical properties of moraines,and no research on calculating surrounding rock pressure in moraine tunnels subjected to freeze-thaw conditions.In this study,direct shear tests under freeze-thaw cycles were conducted to examine the effects of freeze-thaw cycles and water content on the mechanical properties of frozen moraine.A comprehensive parameter K,integrating the number of freeze-thaws and water content,was introduced to model cohesion c.Drawing on Terzaghi Theory,we propose an improved algorithm for calculating surrounding rock pressure at the portal section of moraine tunnels.Using a tunnel as a case study,surrounding rock pressure was calculated under various conditions to validate the Improved Algorithm's efficacy.The results show that:(1)Strength loss exhibits a linear trend with the number of freeze-thaw cycles at water content levels of 4%and 8%,while at 12%water content,previous freeze-thaw cycles induce more significant damage to the soil.(2)Moraine saturation peaks between 8%and 12%water content.Following repeated freeze-thaw cycles,moraine shear strength initially increases before decreasing with varying water content.(3)The internal friction angle of moraine experiences slight reductions with prolonged freeze-thaw cycles,but both freeze-thaw cycles and water content significantly influence cohesion.(4)Vertical surrounding rock pressure increases after the initial freeze-thaw cycle,particularly with higher water content,although freeze-thaw cycles have minimal effect on it.(5)Freeze-thaw cycles lead to a substantial increase in lateral surrounding rock pressure,necessitating reinforced support structures at the arch wall,arch waist,and arch foot in engineering projects to mitigate freeze-thaw effects.This study provides a foundation for designing and selecting tunnel support structures in similar geological conditions.
基金Project(U1865203)supported by the Key Projects of the Yalong River Joint Fund of the National Natural Science Foundation of ChinaProject(51279201)supported by the National Natural Science Foundation of ChinaProjects(2019YFC0605103,2019YFC0605100)supported by the National Key R&D Program of China。
文摘Rock bolts are widely used in rock engineering projects to improve the shear capacity of the jointed rock mass.The bolt inclination angle with respect to the shear plane has a remarkable influence on the bolting performance.In this study,a new artificial molding method based on 3D scanning and printing technology was first proposed to prepare bolted joints with an inclined bolt.Then,the effects of the bolt inclination angle and boundary conditions on the shear behavior and failure characteristic of bolted joints were addressed by conducting direct shear tests under both CNL and CNS conditions.Results indicated that rock bolt could significantly improve the shear behavior of rock joints,especially in the post-yield deformation region.With the increase of bolt inclination angle,both the maximum shear stress and the maximum friction coefficient increased first and then decreased,while the maximum normal displacement decreased monotonously.Compared with CNL conditions,the maximum shear stress was larger,whereas the maximum normal displacement and friction coefficient were smaller under the CNS conditions.Furthermore,more asperity damage was observed under the CNS conditions due to the increased normal stress on the shear plane.
基金Project(2011CB013504) supported by the National Basic Research Program of ChinaProjects(50911130366, 11172090) supported by the National Natural Science Foundation of ChinaProject supported by Central University Basic Research Special Fund, China
文摘The mechanical properties of outwash deposits which are taken as unconsolidated geo-materials with the characteristics of non-uniformity, heterogeneity and multiphase have attracted much attention in engineering. According to the results of laboratory direct shear test on the remolded samples, the soil particle parameters of numerical model based on in-situ particle size cumulative curves and 3D granular discrete element method were determined. Then, numerical experiments on different lithology, stone content and gradation composition were conducted. The results show that it is not a flat surface but a shear band that yields in the sample. The curve of particle velocity vs distance from the designed shear surface of test model that is taken as a datum plane in the vertical section of sample shows in "S" shape. The shear disturbance area is about twice the maximum diameter of stone blocks. The greater the stiffness of stone is, the rougher the shear surface is. The shear strength of outwash deposits is largely controlled by lithology and stone content, and the bite force between stone blocks is the root reason of larger friction angle. It is also shown that strain hardening and low shear dilatancy occur under high confining pressure as well as possibility of shear shrinkage. But it is easy to behave shear dilatation and strain softening under low confining pressure. The relationship between particle frictional coefficient and stone content presents an approximately quadratic parabola increase. The strain energy first increases and then drops with the increase of frictional energy. The cohesion increases with soil stiffness increasing but decreases with stone stiffness increasing. Numerical results are consistent with the laboratory test results of remolded samples, which indicate that this method can be a beneficial supplement to determine the parameters of engineering deposit bodies.
基金Project(2013BAB06B00) supported by the National Key Technology R&D Programof ChinaProject(2011CB013504) supported by the National Basic Research Program of ChinaProject(50911130366) supported by the National Natural Science Foundation of China
文摘The macro mechanical properties of materials with characteristics of large scale and complicated structural composition can be analyzed through its reconstructed meso-structures.In this work,the meso-structures of talus deposits that widely exist in the hydro-power engineering in the southwest of China were first reconstructed by small particles according to the in-situ photographs based on the self-adaptive PCNN digital image processing,and then numerical direct shear tests were carried out for studying the mechanical properties of talus deposits.Results indicate that the reconstructed meso-structures of talus deposits are more consistent with the actual situation because the self-adaptive PCNN digital image processing has a higher discrimination in the details of soil-rock segmentation.The existence and random distribution of rock blocks make the initial shear stiffness,the peak strength and the residual strength higher than those of the "pure soil" with particle size less than 1.25 cm apparently,but reduce the displacements required for the talus deposits reaching its peak shear strength.The increase of rock proportion causes a significant improvement in the internal friction angle of talus deposit,which to a certain degree leads to the characteristics of shear stress-displacement curves having a changing trend from the plastic strain softening deformation to the nonlinear strain hardening deformation,while an unconspicuous increase in cohesion.The uncertainty and heterogeneity of rock distributions cause the differences of rock proportion within shear zone,leading to a relatively strong fluctuation in peak strengths during the shear process,while movement features of rock blocks,such as translation,rotation and crossing,expand the scope of shear zone,increase the required shear force,and also directly lead to the misjudgment that the lower shear strength is obtained from the samples with high rock proportion.That,however,just explains the reason why the shear strength gained from a small amount of indoor test data is not consistent with engineering practice.
文摘Considering strain localization in the form of a narrow band initiated just at peak stress, three analytical expressions for stressstrain curves of quasibrittle geomaterial (such as rock and concrete) in uniaxial tension, direct shear and uniaxial compression were presented, respectively. The three derived stressstrain curves were generalized as a unified formula. Beyond the onset of strain localization, a linear strain-softening constitutive relation for localized band was assigned. The size of the band was controlled by internal or characteristic length according to gradient-dependent plasticity. Elastic strain within the entire specimen was assumed to be uniform and decreased with the increase of plastic strain in localized band. Total strain of the specimen was decomposed into elastic and plastic parts. Plastic strain of the specimen was the average value of plastic strains in localized band over the entire specimen. For different heights, the predicted softening branches of the relative stressstrain curves in uniaxial compression are consistent with the previously experimental results for normal concrete specimens. The present expressions for the post-peak stressdeformation curves in uniaxial tension and direct shear agree with the previously numerical results based on gradient-dependent plasticity.
基金sponsored by National Natural Science Foundation of China(No.41902269)Chinese Universities Scientific Fund(2020TC095)。
文摘The mechanical behavior of the joints inside a loess layer is greatly important in weak intercalation studies owing to its involvement in a wide range of landslides in the loess region in China.The shear behavior of the joints in the loess stratum during direct shear and cyclic loadings was investigated using the PFC2D discrete element software.Loess mudstone and mudstone with weak intercalated layer materials were subjected to direct testing,and cyclic shear tests were conducted with consideration to the influence of normal stress and shear velocity.The macroscopic properties and damage patterns were obtained for six numerical configurations;namely,loess-weathered mudstone with 0°,10°,and-10°joints and weathered mudstone with 0°,10°,and-10°weak intercalated layers.The numerical test results revealed that,in the direct shear tests,the shear stress and shear displacement of the samples increased with the normal stress.In the cyclic shear tests with a total cycle number N=20,the shear stress-shear strain curve of the six different configurations exhibited a hysteresis loop.The numerical tests also revealed that,under cyclic shear,the normal stress and shear velocity affected the shear strength.The degree of damage increased as the shear velocity decreased from 0.1 mm/s to 0.005 mm/s for all six numerical configurations.Compared with the damage pattern of the direct shear tests,the damage of the cyclic shear tests mainly comprised shear cracks and fractures,some shaking consolidation settlement and fewer shear strain occurred around the joints.In the direct shear tests,more compression cracks and fractures occurred in the samples.The damage mainly developed along the joints,and shearing-off damage occurred.The results obtained by this study further elucidate the failure mechanism and microscopic damage response of the joints in the loess stratum in Northwest China.
基金supported by the National Natural Science Foundation of China (Grant No. 41171064)the National Basic Research Program of China (973 Program Grant No. 2012CB026104)
文摘Using newly developed dynamic shearing devices, the dynamic sheafing strength of frozen soil-conerete interface was studied experimentally. By placing concrete blocks in the lower half of the shear box and frozen soil sample in the upper part, a series of dynamic shear tests on their interfaces were carried out. The obtained results are summarized and the main influencing factors are revealed.
基金Project(40672178) supported by the National Natural Science Foundation of ChinaProject(2004844009) supported by the Chinese Scholarship Council
文摘The tests on the shear property of geocell reinforced soils were carried out by using large-scale direct shear equipment with shear-box-dimensions of 500 mm×500 mm×400 mm (length×width×height). Three types of specimens, silty gravel soil, geocell reinforced silty gravel soil and geocell reinforced cement stabilizing silty gravel soil were used to investigate the shear stress-displacement behavior, the shear strength and the strengthening mechanism of geocell reinforced soils. The comparisons of large-scale shear test with triaxial compression test for the same type of soil were conducted to evaluate the influences of testing method on the shear strength as well. The test results show that the unreinforced soil and geocell reinforced soil give similar nonlinear features on the behavior of shear stress and displacement. The geocell reinforced cement stabilizing soil has a quasi-elastic characteristic in the case of normal stress coming up to 1.0 GPa. The tests with the reinforcement of geocell result in an increase of 244% in cohesion, and the tests with the geocell and the cement stabilization result in an increase of 10 times in cohesion compared with the unreinforced soil. The friction angle does not change markedly. The geocell reinforcement develops a large amount of cohesion on the shear strength of soils.
基金financially supported by the National Natural Science Foundation of China (51275250)
文摘Following a rice or wheat harvest, a large amount of crop residue (straw) is retained in fields. The straw is often incorporated into the soil in order to increase the soil organic carbon storage and to reduce soil erosion. However, it has become apparent that the incorporated straw can significantly alter soil shear properties, which can dramatically affect energy inputs for tilling and other soil management practices. In this study, laboratory-remolded wheat straw-soil samples were compared with field-collected straw-soil samples; we found high correlations for the cohesion (R2=0.9084) and internal friction angle (R2=0.9548) properties of the samples. Shear tests on rice and wheat straw with different moisture content levels clearly demonstrated the relatively higher shear strength of wheat straw compared to rice straw. The cohesion of remolded rice and wheat straw-soil samples exhibited an increasing linear trend with an increase in densities, whereas the internal friction angle data for these samples exhibited a quadratic trend. Overlapping the cohesion curves revealed that the wheat straw-soil and rice straw-soil samples had the same cohesion at a straw density of 0.63%. Similar results were obtained when the internal fraction angle curves overlapped; the resultant point of intersection was observed at a straw density of 0.46%. As a whole, the remolded sample methodology was found suitable to simulate the shear properties of soils sampled directly from fields.
基金supported by the Fundamental Research Funds for the Central Universities(2020XJNY03)the YueQi Distinguished Scholar Project of China University of Mining&Technology,Beijing。
文摘In the enhanced geothermal system(EGS),the injected fluid will induce shear sliding of rock fractures(i.e.,hydroshearing),which consequently,would increase the fracture aperture and improve the heat transfer efficiency of the geothermal reservoir.In this study,theoretical analysis,experimental research and numerical simulation were performed to uncover the permeability and heat transfer enhancement mechanism of the Hot-Dry-Rock(HDR)mass under the impact of shearing.By conducting the direct shear test with the fractured rock samples,the evolution process of fracture aperture during the shearing tests was observed,during which process,cubic law was adopted to depict the rock fracture permeability.To investigate the seepage characteristics and temperature distribution of the fractured HDR under the influence of shearing,a simulation study of shear-seepage-heat transfer in a fractured rock mass has been conducted to validate the observed shear-induced fracture dilation during the direct shear test.The results demonstrate that(1)the hydroshearing increases the dilation of granite fracture and enhances the permeability of the HDR rock mass,while the temperature around the HDR fracture will reduce.(2)Fracture roughness is of vital importance to enhance the permeability during the shearing tests.To be more specific,a rougher fracture always implies a higher permeability and a greater heat extraction efficiency.(3)The shear induced heat extracting efficiency is dominated by the increased fluid flux in the earlier period of the EGS reservoir,and this efficiency is controlled by the outlet water temperature since the fluid flux becomes stable after the shearing test.Therefore,balancing the hydroshearing enhanced heat extraction efficiency and EGS reservoir lifespan would be significant to the sustainable development and utilization of geothermal energy.
基金supported by the Special Foundation of the State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University (Grant No. 2009586012)
文摘A simplified in situ direct shear test (DST) was developed for measuring the shear strength of soils in fields. In this test, a latticed sheafing frame replaces the upper half of the shear box used in the conventional direct shear box test. The latticed shearing frame is directly embedded in the ground to be tested after a construction process and is pulled with a flexible chain while a constant dead load is applied to the sample in the sheafing frame. This simplified in situ DST has been validated by comparing its results with those of triaxial tests on samples with parallel gradations under normal stresses less than 100 kPa. In this study, the DST was further validated by carrying out tests on samples with the same gradations, rather than on samples with parallel gradations, under normal stresses up to 880 kPa. In addition, the DST was performed inside fills in two applications.
文摘For estimating the long-term stability of underground framework,it is vital to learn the mechanical and rheological characteristics of rock in multiple water saturation conditions.However,the majority of previous studies explored the rheological properties of rock in air-dried and water saturated conditions,as well as the water effects on compressive and tensile strengths.In this study,andesite was subjected to direct shear tests under five water saturation conditions,which were controlled by varying the wetting and drying time.The tests were conducted at alternating displacement rates under three vertical stresses.The results reveal that the shear strength decreases exponentially as water saturation increases,and that the increase in shear strength with a tenfold increase in displacement rate is nearly constant for each of the vertical stresses.Based on the findings of the shear tests in this study and the compression and tension tests in previous studies,the influences of both water saturation and loading rate on the Hoek-Brown failure criterion for the andesite was examined.These results indicate that the brittleness index of the andesite,which is defined as the ratio of uniaxial compressive strength to tensile strength,is independent of both water saturation and loading rate and that the influences of the water saturation dependence and the loading rate dependence of the failure criterion can be converted between each other.