期刊文献+
共找到568篇文章
< 1 2 29 >
每页显示 20 50 100
Effects of cooling rate on microstructure and microhardness of directionally solidified Galvalume alloy
1
作者 Ji-peng Li De-gao Qiao +4 位作者 Jian Li Xiao-yang Luo Peng Peng Xian-tao Yan Xu-dong Zhang 《China Foundry》 SCIE EI CAS CSCD 2024年第3期213-220,共8页
The influences of cooling rate on the phase constitution,microstructural length scale,and microhardness of directionally solidified Galvalume(Zn-55Al-1.6Si)alloy were investigated by directional solidification experim... The influences of cooling rate on the phase constitution,microstructural length scale,and microhardness of directionally solidified Galvalume(Zn-55Al-1.6Si)alloy were investigated by directional solidification experiments at different withdrawal speeds(5,10,20,50,100,200,and 400μm·s^(-1)).The results show that the microstructure of directionally solidified Galvalume alloys is composed of primary Al dendrites,Si-rich phase and(Zn-Al-Si)ternary eutectics at the withdrawal speed ranging from 5 to 400μm·s^(-1).As the withdrawal speed increases,the segregation of Si element intensifies,resulting in an increase in the area fraction of the Si-rich phase.In addition,the primary Al dendrites show significant refinement with an increase in the withdrawal speed.The relationship between the primary dendrite arm spacing(λ_(1))and the thermal parameters of solidification is obtained:λ_(1)=127.3V^(-0.31).Moreover,as the withdrawal speed increases from 5 to 400μm·s^(-1),the microhardness of the alloy increases from 90 HV to 151 HV.This is a combined effect of grain refinement and second-phase strengthening. 展开更多
关键词 Galvalume alloy directional solidification microstructure length scale MICROHARDNESS
下载PDF
The corrosion characteristics and mechanism of directionally solidified Mg-3Zn-xCa alloys 被引量:1
2
作者 Yi Zhang Xiaohui Feng +4 位作者 Qiuyan Huang Yingju Li Xuehui Hao Changzheng Wang Yuansheng Yang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第10期3673-3687,共15页
An investigation into the corrosion characteristics and mechanism of directionally solidified(DSed) Mg-3Zn-xCa(x = 0, 0.2, 0.5,0.8 wt.%) alloys in 0.9 wt.% Na Cl solution is presented. The DSed microstructure consists... An investigation into the corrosion characteristics and mechanism of directionally solidified(DSed) Mg-3Zn-xCa(x = 0, 0.2, 0.5,0.8 wt.%) alloys in 0.9 wt.% Na Cl solution is presented. The DSed microstructure consists of columnar dendrites and eutectics distributed in the interdendritic region. The primary dendritic arm spacing(PDAS) and the volume fraction(fv) of the secondary phases are under the significant impact of the content of Ca. The corrosion rates evaluated using electrochemical measurements and immersion tests are accelerated monotonously with the increase of Ca content in DSed alloys. The corrosion resistance of the DSed alloys is significantly affected by the corrosion products film(CPF) and the secondary phases. The corrosion products of DSed Mg-3Zn alloy contain Mg(OH)_(2) and ZnO. The existence of ZnO greatly enhances the corrosion resistance of DSed Mg-3Zn alloy. As for the DSed alloys containing Ca content, a relatively protective CPF without deep pits can form on the surface of DSed Mg-3Zn-0.2Ca specimen during the corrosion. The f_(v)of the secondary phases dominates the corrosion rate of the DSed Mg-Zn-Ca alloys. The corrosion of DSed Mg-3Zn-xCa alloys initiates as a result of microgalvanic coupling between the cathodes of secondary phases and α-Mg matrix anode. Then, the corrosion gradually extends longitudinally with the breakdown of CPF. 展开更多
关键词 Mg-Zn-Ca alloy directional solidification Electrochemical characterization Corrosion mechanism
下载PDF
Analysis on phase selection and microstructure evolution in directionally solidified Zn-Al-Mg-Ce alloy
3
作者 Ji-peng Li De-gao Qiao +3 位作者 Shi-wen Dong Peng Peng Xian-tao Yan Xu-dong Zhang 《China Foundry》 SCIE CAS CSCD 2023年第4期347-355,共9页
In the process of hot-dip Zn-Al-Mg alloy coating,the plating solution dissipates heat in the direction perpendicular to the steel plate,which is considered to be a process of directional solidification.To understand t... In the process of hot-dip Zn-Al-Mg alloy coating,the plating solution dissipates heat in the direction perpendicular to the steel plate,which is considered to be a process of directional solidification.To understand the relationship between microstructure and cooling rate of Zn-Al-Mg alloys,both the phase constitution and microstructure characteristic length scales of Zn-9.5Al-3Mg-0.01Ce(wt.%)alloy were investigated by the directional solidification experiments at different growth velocities(V=40,80,160,250μm·s^(-1)).The experimental results show that the microstructure of directionally solidified Zn-9.5Al-3Mg-0.01Ce alloy is composed of primary Al dendrites and(Zn-Al-Mg2Zn11)ternary eutectics at the growth velocities ranging from 40 to 250μm·s^(-1).The primary Al dendrites are aligned regularly along the growth direction,accompanied with obvious secondary dendrites.The relationship between the microstructure length scale and the thermal parameters of solidification is obtained:λ1=374.66V-0.383,andλ2=167.5V-0.563(λ1is the primary dendrite arm spacing,andλ2 is the secondary dendrit arm spacing).In addition,through the interface response function(IRF)and the nucleation and constitutional undercooling(NCU),the phase selection of Zn-9.5Al-3Mg-0.01Ce is obtained:(Zn+Al+Mg2Zn11)ternary eutectics in the Zn-9.5Al-3Mg-0.01Ce alloy will be replaced by ternary eutectics(Zn+Al+MgZn2)when the growth rate is lower than 7.53μm·s^(-1). 展开更多
关键词 Zn-Al-Mg alloy directional solidification microstructure length scale phase selection
下载PDF
Microstructures,micro-segregation and solidification path of directionally solidified Ti-45Al-5Nb alloy 被引量:7
4
作者 Liang-shun Luo Tong Liu +3 位作者 Kun Li Yan-qing Su Jing-jie Guo Heng-zhi Fu 《China Foundry》 SCIE 2016年第2期107-113,共7页
To investigate the effect of solidification parameters on the solidification path and microstructure evolution of Ti-45Al-5Nb(at.%) alloy, Bridgman-type directional solidification and thermodynamics calculations were ... To investigate the effect of solidification parameters on the solidification path and microstructure evolution of Ti-45Al-5Nb(at.%) alloy, Bridgman-type directional solidification and thermodynamics calculations were performed on the alloy. The microstructures, micro-segregation and solidification path were investigated.The results show that the β phase is the primary phase of the alloy at growth rates of 5-20 μm·s^(-1) under the temperature gradients of 15-20 K·mm^(-1), and the primary phase is transformed into an α phase at relatively higher growth rates(V >20 μm·s^(-1)). The mainly S-segregation and β-segregation can be observed in Ti-45Al-5Nb alloy at a growth rate of 10 μm·s^(-1) under a temperature gradient of 15 K·mm^(-1). The increase of temperature gradient to 20 K·mm^(-1) can eliminate β-segregation, but has no obvious effect on S-segregation. The results also show that 5 at.% Nb addition can expand the β phase region, increase the melting point of the alloy and induce the solidification path to become complicated. The equilibrium solidification path of Ti-45Al-5Nb alloy can be described as L L→β L+β L+β→αα+β_R β→ααα→γα+γα→α_2+γγ_R+(α_2+γ), in which β_R and γ_R mean the residual β and 展开更多
关键词 TiAl-Nb alloy directional solidification MICROSTRUCTURE MICRO-SEGREGATION solidification path
下载PDF
Directional solidification of Ti-45Al-8Nb-(W,B,Y) alloy 被引量:5
5
作者 DING Xianfei LIN Junpin HE Jianping YE Feng CHEN Guoliang 《Rare Metals》 SCIE EI CAS CSCD 2010年第3期292-297,共6页
Using a Bridgman vertical vacuum furnace,Ti-45Al-8Nb-(W,B,Y) (at.%) bars,which were prepared from a plasma arc melting (PAM) ingot,were directionally solidified at growth rates of 10,15,and 20 μm/s.Polysyntheti... Using a Bridgman vertical vacuum furnace,Ti-45Al-8Nb-(W,B,Y) (at.%) bars,which were prepared from a plasma arc melting (PAM) ingot,were directionally solidified at growth rates of 10,15,and 20 μm/s.Polysynthetic twinned (PST) crystal with an aligned lamellar microstructure was obtained at the growth rate of 15 μm/s because of high Nb addition.The principle of PST crystal growth and the effect of Nb element were discussed.The results of investigations on microstructure and micromechanical properties of the directionally solidified (DS) bars of Ti-45Al-8Nb-(W,B,Y) alloy are briefly summarized. 展开更多
关键词 directional solidification TiA1 alloys larnellar microstructure crystal growth
下载PDF
Phase-field simulation of secondary dendrite growth in directional solidification of binary alloys 被引量:4
6
作者 Li Feng Ni-ni Lu +3 位作者 Ya-long Gao Chang-sheng Zhu Jun-he Zhong Rong-zhen Xiao 《China Foundry》 SCIE 2019年第2期97-104,共8页
Phase field method was used to simulate the effect of grains orientation angle θ_(11) and azimuth θ_A of non-preferentially growing dendrites on the secondary dendrites of preferentially growing dendrites. In the si... Phase field method was used to simulate the effect of grains orientation angle θ_(11) and azimuth θ_A of non-preferentially growing dendrites on the secondary dendrites of preferentially growing dendrites. In the simulation process, two single-factor influence experiments were designed for columnar crystal structures. The simulation results showed that, when θ_(11) < 45o and θ_A < 45o, as θ_(11) was enlarged, the growth direction of the secondary dendrites on the preferentially growing dendrites at the converging grain boundary(GB) presented an increasing inclination to that of preferentially growing dendrites; with increasing θ_A, the growth direction of the secondary dendrites on the preferentially growing dendrites at the converging GB exhibited greater deflection,and the secondary dendrites grew with branches; the secondary dendrites on the preferentially growing dendrites at diverging GBs grew along a direction vertical to the growth direction of the preferentially growing dendrites.When θ_A = 45o and θ_(11) = 45o, the secondary dendrites grew in a direction vertical to the growth direction of preferentially growing dendrites. The morphologies of the dendrites obtained through simulation can also be found in metallographs of practical solidification experiments. This implies that the effect of a grain's orientation angle and azimuth of non-preferentially growing dendrites on the secondary dendrites of preferentially growing dendrites does exist and frequently appears in the practical solidification process. 展开更多
关键词 PHASE-FIELD method BINARY alloy directional solidification SECONDARY DENDRITES
下载PDF
Phase-field simulation of competitive growth of grains in a binary alloy during directional solidification 被引量:2
7
作者 Li Feng Ya-long Gao +3 位作者 Ni-ni Lu Chang-sheng Zhu Guo-sheng An Jun-he Zhong 《China Foundry》 SCIE 2018年第5期333-342,共10页
Taking Al-2%mole-Cu binary alloy as an example, the influence of grain orientation on competitive growth of dendrites under different competitive modes was investigated by using the three-dimensional(3-D) phasefield m... Taking Al-2%mole-Cu binary alloy as an example, the influence of grain orientation on competitive growth of dendrites under different competitive modes was investigated by using the three-dimensional(3-D) phasefield method. The result of phase-field simulation was verified by applying cold spray and directional remelting. In the simulation process, two competitive modes were designed: in Scheme 1, the monolayer columnar grains in multilayer columnar crystals had different orientations; while in Scheme 2, they had the same orientation. The simulation result showed that in Scheme 1, the growth of the dendrites, whose orientation had a certain included angle with the direction of temperature gradient, was restrained by the growth of other dendrites whose direction was parallel to the direction of temperature gradient. Moreover, the larger the included angle between the grain orientation and temperature gradient, the earlier the cessation of dendrite growth. The secondary dendrites of dendrites whose grain orientation was parallel to the temperature gradient flourished with increasing included angles between the grain orientation and temperature gradient. In Scheme 2, the greater the included angle between grain orientation and temperature gradient, the easier the dendrites whose orientation showed a certain included angle with temperature gradient inserted between those grew parallel to the temperature gradient, and the better the growth condition thereafter. Some growing dendrites after intercalation were deflected to the temperature gradient, and the greater the included angle, the lower the deflection. The morphologies of the competitive growth dendrites obtained through simulation can also be found in metallographs of practical solidification experiments. This implies that the two modes of competitive growth of dendrites characterized in the simulation do exist and frequently appear in practical solidification processes. 展开更多
关键词 PHASE-FIELD method binary alloy directional solidification different PLANES COMPETITIVE GROWTH
下载PDF
Effect of sample diameter on primary and secondary dendrite arm spacings during directional solidification of Pb-26wt.%Bi hypo-peritectic alloy 被引量:2
8
作者 HU Xiaowu YAN Hong +2 位作者 CHEN Wenjing LI Shuangming FU Hengzhi 《Rare Metals》 SCIE EI CAS CSCD 2011年第4期424-431,共8页
The microstructure scales of dendrites, such as primary and secondary dendrite arm spacings, control the segregation profiles and the formation of secondary phases within interdendritic regions, which determine the pr... The microstructure scales of dendrites, such as primary and secondary dendrite arm spacings, control the segregation profiles and the formation of secondary phases within interdendritic regions, which determine the properties of solidified structures. Investigations on primary and secondary dendrite arm spacings of primary a-phase during directionally solidified Pb-26wt%Bi hypo-peritectic alloy were carried out in this research, and systematic studies were conducted using cylindrical samples with different diameters (Ф = 1.8 and 7.0 mm) in order to analyze the effects of sample diameter on the primary and secondary dendrite arm spacings. In this work, the dependence of dendrite arm spacings on growth velocity was established. In addition, the experimental data concerning the primary and secondary dendrite ann spacings were compared with the main predictive dendritic models from the literatures. A comparison between experimental results for dendrite arm spacings of the 1.8-mm-diameter sample and 7.0-ram-diameter sample was also conducted. 展开更多
关键词 lead bismuth alloys dendrite arm spacing directional solidification DENDRITES
下载PDF
Dependency of microstructure and microhardness on withdrawal rate of Ti-43Al-2Cr-2Nb alloy prepared by electromagnetic cold crucible directional solidification 被引量:2
9
作者 Yong-zhe Wang Hong-sheng Ding +2 位作者 Rui-run Chen Jing-jie Guo Heng-zhi Fu 《China Foundry》 SCIE 2016年第4期289-293,共5页
The intermetallic Ti-43Al-2Cr-2Nb(at.%) alloy was directionally solidified in an electromagnetic cold crucible with different withdrawal rates(V) ranging from 0.2 to 1.0 mm·min^(-1), at a constant temperature gra... The intermetallic Ti-43Al-2Cr-2Nb(at.%) alloy was directionally solidified in an electromagnetic cold crucible with different withdrawal rates(V) ranging from 0.2 to 1.0 mm·min^(-1), at a constant temperature gradients(G=18 K·mm^(-1)). Macrostructures of the alloy were observed by optical microscopy. Microstructures of the alloy were characterized by scanning electron microscopy(SEM) in back-scattered electron mode and transmission electron microscopy. Results showed that morphologies of macrostructure depend greatly on the applied withdrawal rate. Continuous columnar grains can be obtained under slow withdrawal rates ranging from 0.2 to 0.6 mm·min^(-1). The microstructure of the alloy was composed of α_2/γ lamellar structures and a small number of mixtures of B2 phases and blocky γ phases. The columnar grain size(d) and interlamellar spacing(λ) decrease with an increasing withdrawal rate. The effect of withdrawal rate on microhardness was also investigated. The microhardness of the directional y solidified Ti-43Al-2Cr-2Nb alloy increases with an increase in withdrawal rate. This is mainly attributed to the increase of B2 and α_2 phases as well as the refinement of lamellae. 展开更多
关键词 TiAl-based alloys directional solidification MICROSTRUCTURE MICROHARDNESS
下载PDF
Elaboration of AlSi10Mg casting alloys using directional solidification processing 被引量:1
10
作者 Khadoudja Ghedjati Eric Fleury +3 位作者 Mohamed Seghir Hamani Mostefa Benchiheub Khaider Bouacha Bernard Bolle 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2015年第5期509-515,共7页
The effects of pulling velocity on the solidification behavior and microstructural parameters of A1Sil0Mg alloys prepared in a Bridgman-type directional solidification furnace were investigated. The microstructure, pa... The effects of pulling velocity on the solidification behavior and microstructural parameters of A1Sil0Mg alloys prepared in a Bridgman-type directional solidification furnace were investigated. The microstructure, particularly the secondary dendritic arm spacing (SDAS), and the Brinell hardness (BH) of the solidified A1Sil0Mg alloys were characterized for samples with cylindrical shapes and differ- ent conicities (θ = 0°, 5°, and 10°). Microstructural studies revealed an increased density of ct-A1 phase dendrites and a decreased interden- dritic distance with increasing pulling velocity. The dendrites were found to be preferentially oriented along the pulling direction for low pulling velocities. For larger pulling velocities, the dendrites grew first in the cooling direction but then broke as others nucleated and coars- ened. The HB values of the solidified samples increased as the pulling velocity increased. In regard to sample conicity, smaller dendrites were observed for an apex angle of θ = 5°, resulting in the largest HB value. This result was interpreted in terms of the favorable orientation of the dendrite along the pulling direction. 展开更多
关键词 aluminum-silicon-magnesium alloys directional solidification Bridgman technique mierostructure HARDNESS heat flow growth
下载PDF
Progress in research on cold crucible directional solidification of titanium based alloys 被引量:1
11
作者 Chen Ruirun Guo Jingjie +4 位作者 Chen Xiaoyu Dong Shulin Ding Hongsheng Su Yanqing Fu Hengzhi 《China Foundry》 SCIE CAS 2014年第4期332-338,共7页
Cold crucible directional solidification(CCDS)is a newly developed technique,which combines the advantages of the cold crucible and continuous melting.It can be applied to directionally solidify reactive,high purity a... Cold crucible directional solidification(CCDS)is a newly developed technique,which combines the advantages of the cold crucible and continuous melting.It can be applied to directionally solidify reactive,high purity and refractory materials.This paper describes the principle of CCDS and its characteristics;development of the measurement and numerical calculation of the magnetic field,flow field and temperature field in CCDS;and the CCDS of Ti based alloys.The paper also reviews original data obtained by some scholars,including the present authors,reported in separate publications in recent years.In Ti based alloys,Ti6Al4V,TiAl alloys and high Nb-containing TiAl alloys,have been directionally solidified in different cold crucibles.The crosssections of the cold crucibles include round,near rectangular and square with different sizes.Tensile testing results show that the elongation of directionally solidified Ti6Al4V can be improved to 12.7%from as cast5.4%.The strength and the elongation of the directionally solidified Ti47Al2Cr2Nb and Ti44Al6Nb1.0Cr2.0V are 650 MPa/3%and 602.5MPa/1.20%,respectively.The ingots after CCDS can be used to prepare turbine or engine blades,and are candidates to replace Ni super-alloy at temperatures of 700 to 900°C. 展开更多
关键词 cold crucible directional solidification numerical calculation titanium alloy TIAL mechanical properties
下载PDF
Microstructure Evolution of Ti-47Al-2Cr-2Nb Alloy in the Liquid-Metal-Cooling (LMC) Directional-Solidification Process 被引量:1
12
作者 肖志霞 张虎 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2011年第2期198-202,共5页
The microstructure evolution of Ti-47Al-2Cr-2Nb alloy was investigated on liquid metal cooling type directional solidified apparatus at high temperature gradient.The analysis shows that it is solidified with primary ... The microstructure evolution of Ti-47Al-2Cr-2Nb alloy was investigated on liquid metal cooling type directional solidified apparatus at high temperature gradient.The analysis shows that it is solidified with primary β cells/dendrites,and then α phase is formed through peritectic reaction.Once the columnar grains grow into the steady state,the lamellar orientation inclined with the angle of 45° to the withdrawal direction is more favored than that with parallel to the withdrawal direction.In addition,α phase grain nucleates from β-interdendrite regions,and grows up to the dendritic trunk.If no other α grain hinders its growth,it would occupy the whole dendrite,or it would stop at the dendritic trunk for the weakened motivating drive in the β dendritic core. 展开更多
关键词 TiAl-based alloy directional solidification lamellar orientation peritectic reaction
下载PDF
Primary cellular/dendritic spacing selection of Al 4.95%Zn alloy under near rapid directional solidification condition 被引量:1
13
作者 Feng Jian(冯坚) Li Tao(李涛) +2 位作者 Lin Xin(林鑫) Huang Weidong(黄卫东) Zhou Yaohe(周尧和) 《中国有色金属学会会刊:英文版》 CSCD 1999年第3期468-471,共4页
Al 4.95%Zn alloy is directionally solidified in a modified Bridgman apparatus with higher temperature gradient to investigate response of cellular/dendritic microstructures and primary spacing to the variation of grow... Al 4.95%Zn alloy is directionally solidified in a modified Bridgman apparatus with higher temperature gradient to investigate response of cellular/dendritic microstructures and primary spacing to the variation of growth velocity under near rapid directional solidification condition. The results show that, with increasing growth rate, there exists a transition from dendrite to fine cell and a wide distribution range in primary cellular/dendritic spacing at the given temperature gradient. The maximum, λ max , minimum, λ min , and average primary spacing, λ , as functions of growth velocity, v , can be given by λ max =12 340 v -0.835 3 , λ min =2 953.7 v -0.771 7 , λ =7 820.3 v -0.833 3 , respectively. , as functions of growth velocity, v , can be given by λ max =12 340 v -0.835 3 , λ min =2 953.7 v -0.771 7 , λ =7 820.3 v -0.833 3 , respectively. 展开更多
关键词 Al 4.95%Zn alloy NEAR RAPID directional solidification cellular/dendritic microstructures primary SPACING
下载PDF
Microstructure characteristics of Ni-43Ti-4Al-2Nb-2Hf alloy prepared by conventional casting and directional solidification 被引量:1
14
作者 Pan Liwen Zheng Lijing +4 位作者 Zhou Lei Zhang Huarui Tang Xiaoxia Ma Limin Zhang Hu 《China Foundry》 SCIE CAS 2012年第2期101-107,共7页
To further investigate the microstructure characteristic and solidification mechanism,so as to provide knowledge for the microstructure control of a NiTi-Al based high-temperature structural material,the microstructur... To further investigate the microstructure characteristic and solidification mechanism,so as to provide knowledge for the microstructure control of a NiTi-Al based high-temperature structural material,the microstructure of Ni-43Ti-4Al-2Nb-2Hf(at.%)alloy ingots prepared by conventional casting(arc-melting)and directional solidification (DS)at various drawing velocities(2 mm·min -1 ,18 mm·min -1 ,30 mm·min -1 and 60 mm·min -1 ,respectively)was investigated by means of electron probe microanalyses.Experimental results reveal that the microstructures are composed of NiTi matrix phase,β-Nb phase and Ti 2 Ni phase for samples obtained by both conventional casting and DS.Conventional casting has an equiaxial structure,while DS has a slender and acicular cellular structure which grows along the[001]orientation preferentially.Small amounts of whiteβ-Nb phase and black Ti 2 Ni phase co-exist at the grain boundaries or intercellular regions.With an increase in drawing velocity,the NiTi matrix phase is inclined to grow along(100)and(200)crystallographic planes,and the cellular arm spacing reduce gradually, but the directionality of the solidified structure weakens significantly.The homogeneous dispersion ofβ-Nb phase and the decrease of Ti2Ni phase in DS samples are beneficial to improving the mechanical properties.Solidification mechanism analysis indicates that the dark grey NiTi matrix phase initially precipitates from the liquid phase,and then the divorced eutectic reaction takes place,which produces the light gray matrix phase andβ-Nb phase.Finally, the peritectic reaction happens,which generates the black Ti2Ni phase.The complete solidified path of the alloy is L→NiTi+L→NiTi+β-Nb+L→NiTi+β-Nb+Ti 2 Ni. 展开更多
关键词 Ni-Ti-Al-Nb-Hf alloy conventional casting directional solidification drawing velocity microstructural characteristic solidification mechanism
下载PDF
Directional Solidification Velocity of Undercooled Cu_(70)Ni_(30) Alloy Melt 被引量:1
15
作者 Research Notes JinfuLI Xueping ZHANG and Yaohe ZHOU Gencang YANG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2001年第5期572-574,共3页
关键词 directional solidification VELOCITY of UNDERCOOLED CU VELOCITY alloy MELT
下载PDF
Directional solidification and physical properties measurements of the zinc-aluminum eutectic alloy 被引量:3
16
作者 S.Engin U.Byük +1 位作者 H.Kaya N.Maraslι 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2011年第6期659-664,共6页
Zn-5wt% Al eutectic alloy was directionally solidified with different growth rates (5.32-250.0μm/s) at a constant temperature gradient of 8.50 K/mm using a Bridgman-type growth apparatus.The values of eutectic spac... Zn-5wt% Al eutectic alloy was directionally solidified with different growth rates (5.32-250.0μm/s) at a constant temperature gradient of 8.50 K/mm using a Bridgman-type growth apparatus.The values of eutectic spacing were measured from transverse sections of the samples.The dependences of the eutectic spacing and undercooling on growth rate are determined as λ=9.21V-0.53 and ΔT=0.0245V0.53,respectively.The results obtained in this work were compared with the Jackson-Hunt eutectic theory and the similar experimental results in the literature.Microhardness of directionally solidified samples was also measured by using a microhardness test device.The dependency of the microhardness on growth rate is found as Hv=115.64V0.13.Afterwards,the electrical resistivity (r) of the casting alloy changes from 40×10-9 to 108×10-9 Ω·m with the temperature rising in the range of 300-630 K.The enthalpy of fusion (ΔH) and specific heat (Cp) for the Zn-Al eutectic alloy are calculated to be 113.37 J/g and 0.309 J/(g·K),respectively by means of differential scanning calorimetry (DSC) from heating trace during the transformation from liquid to solid. 展开更多
关键词 eutectic alloys directional solidification microhardness electrical conductivity enthalpy specific heat
下载PDF
Continuous and directional solidification technology of titanium alloys with cold crucible 被引量:4
17
作者 陈瑞润 丁宏升 +2 位作者 郭景杰 毕维生 傅恒志 《中国有色金属学会会刊:英文版》 CSCD 2006年第A02期154-159,共6页
关键词 钛合金 连续凝固工艺 直接凝固工艺 冷坩锅 定向凝固
下载PDF
Microstructure Characteristics of Ni-Nb Near Eutectic Alloy during EBFZM Directional Solidification 被引量:1
18
作者 Jinjiang YU Jun ZHANG and Hengzhi FU State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072, China Jinchen ZHAO General Research institute for iron & Steel, Beijing 100081, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2001年第1期97-98,共2页
Microstructure Characteristic of Ni-Nb near eutectic alloy is systematically investigated during directional solidification with electron beam floating zone melting (EBFZM). The effect of the Zone melting rate on the ... Microstructure Characteristic of Ni-Nb near eutectic alloy is systematically investigated during directional solidification with electron beam floating zone melting (EBFZM). The effect of the Zone melting rate on the microstructure has also been studied. 展开更多
关键词 NI Microstructure Characteristics of Ni-Nb Near Eutectic alloy during EBFZM directional solidification
下载PDF
Phase-field simulation of formation of cellular dendrites and fine cellular structures at high growth velocities during directional solidification of Ti_(56) Al_(44) alloy 被引量:2
19
作者 李新中 郭景杰 +2 位作者 苏彦庆 吴士平 傅恒志 《中国有色金属学会会刊:英文版》 EI CSCD 2005年第3期529-535,共7页
A phase-field model whose free energy of the solidification system derived from the Calphad thermodynamic modeling of phase diagram was used to simulate formation of cellular dendrites and fine cellular structures of ... A phase-field model whose free energy of the solidification system derived from the Calphad thermodynamic modeling of phase diagram was used to simulate formation of cellular dendrites and fine cellular structures of Ti56Al44 alloy during directional solidification at high growth velocities. The liquid-solid phase transition of L→β was chosen. The dynamics of breakdown of initially planar interfaces into cellular dendrites and fine cellular structures were shown firstly at two growth velocities. Then the unidirectional free growths of two initial nucleations evolving to fine cellular dendrites were investigated. The tip splitting phenomenon is observed and the negative temperature gradient in the liquid represents its supercooling directional solidification. The simulation results show the realistic evolution of interfaces and microstructures and they agree with experimental one. 展开更多
关键词 相-场仿真 直接固化 钛铝合金 自由能 Calphad热力学模型
下载PDF
Microstructure evolution of Cu-Pb monotectic alloys during directional solidification 被引量:2
20
作者 崔红保 郭景杰 +5 位作者 苏彦庆 丁宏生 吴士平 毕维生 徐达鸣 傅恒志 《中国有色金属学会会刊:英文版》 EI CSCD 2006年第4期783-790,共8页
Planar, cellular and dendrite morphologies were observed at different concentrations in the directional solidification of Cu-Pb monotectic alloys. In Cu-Pb hypomonotectic alloys, the directional solidification microst... Planar, cellular and dendrite morphologies were observed at different concentrations in the directional solidification of Cu-Pb monotectic alloys. In Cu-Pb hypomonotectic alloys, the directional solidification microstructure changes from columnar dendrite to the irregular rod composite structure with increasing lead content and growth rate. In Cu-Pb hypermonotectic alloys, the structure changes from the band structure and elongated droplets to irregular rod composite structure with increasing growth rate. The range of composition of forming the rod composite structure around the monotectic points increases with the increasing growth rate. The transient morphology of Cu-Pb alloys in the directional solidification was obtained. The solid/liquid interface of Cu-Pb alloys presents planar and the second liquid droplets are pushed by growing front under the high temperature gradient. With increasing growth rate or decreasing temperature gradient the planar interface becomes unstable and the cellular structures with L2 phase at the cell boundaries are developed. 展开更多
关键词 偏晶合金 铜合金 定向凝固 显微结构
下载PDF
上一页 1 2 29 下一页 到第
使用帮助 返回顶部