期刊文献+
共找到578篇文章
< 1 2 29 >
每页显示 20 50 100
Maximum Power Point Tracking in Variable Speed Wind Turbine Based on Permanent Magnet Synchronous Generator Using Maximum Torque Sliding Mode Control Strategy 被引量:3
1
作者 Esmaeil Ghaderi Hossein Tohidi Behnam Khosrozadeh 《Journal of Electronic Science and Technology》 CAS CSCD 2017年第4期391-399,共9页
The present study was carried out in order to track the maximum power point in a variable speed turbine by minimizing electromechanical torque changes using a sliding mode control strategy. In this strategy, first, th... The present study was carried out in order to track the maximum power point in a variable speed turbine by minimizing electromechanical torque changes using a sliding mode control strategy. In this strategy, first, the rotor speed is set at an optimal point for different wind speeds. As a result of which, the tip speed ratio reaches an optimal point, mechanical power coefficient is maximized, and wind turbine produces its maximum power and mechanical torque. Then, the maximum mechanical torque is tracked using electromechanical torque. In this technique, tracking error integral of maximum mechanical torque, the error, and the derivative of error are used as state variables. During changes in wind speed, sliding mode control is designed to absorb the maximum energy from the wind and minimize the response time of maximum power point tracking(MPPT). In this method, the actual control input signal is formed from a second order integral operation of the original sliding mode control input signal. The result of the second order integral in this model includes control signal integrity, full chattering attenuation, and prevention from large fluctuations in the power generator output. The simulation results, calculated by using MATLAB/m-file software, have shown the effectiveness of the proposed control strategy for wind energy systems based on the permanent magnet synchronous generator(PMSG). 展开更多
关键词 Maximum power point tracking permanent magnet synchronous generator(PMSG) sliding mode control wind turbine
下载PDF
Performance analysis of 20 Pole 1.5 KW Three Phase Permanent Magnet Synchronous Generator for low Speed Vertical Axis Wind Turbine 被引量:2
2
作者 Shahrukh Adnan Khan Rajprasad K. Rajkumar +1 位作者 Rajparthiban K. Rajkumar Aravind CV 《Energy and Power Engineering》 2013年第4期423-428,共6页
This paper gives performance analysis of a three phase Permanent Magnet Synchronous Generator (PMSG) connected to a Vertical Axis Wind Turbine (VAWT). Low speed wind condition (less than 5 m/s) is taken in considerati... This paper gives performance analysis of a three phase Permanent Magnet Synchronous Generator (PMSG) connected to a Vertical Axis Wind Turbine (VAWT). Low speed wind condition (less than 5 m/s) is taken in consideration and the entire simulation is carried in Matlab/Simulink environment. The rated power for the generator is fixed at 1.5 KW and number of pole at 20. It is observed under low wind speed of6 m/s, a turbine having approximately1 mof radius and2.6 mof height develops 150 Nm mechanical torque that can generate power up to 1.5 KW. The generator is designed using modeling tool and is fabricated. The fabricated generator is tested in the laboratory with the simulation result for the error analysis. The range of error is about 5%-27% for the same output power value. The limitations and possible causes for error are presented and discussed. 展开更多
关键词 Vertical Axis wind turbine Three Phase Multi-pole permanent magnet synchronous generator Low wind Speed Modeling Performance Analysis
下载PDF
Integrated Equivalent Model of Permanent Magnet Synchronous Generator Based Wind Turbine for Large-scale Offshore Wind Farm Simulation 被引量:1
3
作者 Ming Zou Yan Wang +3 位作者 Chengyong Zhao Jianzhong Xu Xiaojiang Guo Xu Sun 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2023年第5期1415-1426,共12页
The high-speed simulation of large-scale offshore wind farms(OWFs) preserving the internal machine information has become a huge challenge due to the large wind turbine(WT) count and microsecond-range time step. Hence... The high-speed simulation of large-scale offshore wind farms(OWFs) preserving the internal machine information has become a huge challenge due to the large wind turbine(WT) count and microsecond-range time step. Hence, it is undoable to investigate the internal node information of the OWF in the electro-magnetic transient(EMT) programs. To fill this gap,this paper presents an equivalent modeling method for largescale OWF, whose accuracy and efficiency are guaranteed by integrating the individual devices of permanent magnet synchronous generator(PMSG) based WT. The node-elimination algorithm is used while the internal machine information is recursively updated. Unlike the existing aggregation methods, the developed EMT model can reflect the characteristics of each WT under different wind speeds and WT parameters without modifying the codes. The access to each WT controller is preserved so that the time-varying dynamics of all the WTs could be simulated. Comparisons of the proposed model with the detailed model in PSCAD/EMTDC have shown very high precision and high efficiency. The proposed modeling procedures can be used as reference for other types of WTs once the structures and parameters are given. 展开更多
关键词 Offshore wind farm(OWF) electro-magnetic transient(EMT) integrated equivalent modelling permanent magnet synchronous generator(PMSG)based wind turbine(WT)
原文传递
Comparative Performance of Fixed-Speed and Variable-Speed Wind Turbine Generator Systems 被引量:2
4
作者 Mohamed Mansour Mohamed Nejib Mansouri Mohamed Faouzi Mimouni 《Journal of Mechanics Engineering and Automation》 2011年第1期74-81,共8页
In the early development of the wind energy, the majority of the wind turbines have been operated at constant speed. Subsequently, the number of variable-speed wind turbines installed in wind farms has increased. In t... In the early development of the wind energy, the majority of the wind turbines have been operated at constant speed. Subsequently, the number of variable-speed wind turbines installed in wind farms has increased. In this paper, a comparative performance of fixed and variable speed wind generators with Pitch angle control has been presented. The first is based on a squirrel cage Induction Generator (IG) of 315 kW rated power, connected directly to the grid. The second incorporated a Permanent Magnet Synchronous Generator (PMSG) of 750 kW rated power. The performances of each studied wind generator are evaluated by simulation works and variable speed operation is highlighted as preferred mode of operation. 展开更多
关键词 Fixed speed wind generator variable speed wind generator squirrel cage induction generator permanent magnet synchronous generator (PMSG) maximum power point tracking (MPPT) pitch control.
下载PDF
The Multi-Objective Optimization of AFPM Generators with Double-Sided Internal Stator Structures for Vertical Axis Wind Turbines
5
作者 Dandan Song Lianjun Zhou +2 位作者 Ziqi Peng Senhua Luo Jun Zhu 《Energy Engineering》 EI 2021年第5期1439-1452,共14页
The axial flux permanent magnet(AFPM)generator with double-sided internal stator structure is highly suitable for vertical axis wind turbines due to its high power density.The performance of the AFPM generator with do... The axial flux permanent magnet(AFPM)generator with double-sided internal stator structure is highly suitable for vertical axis wind turbines due to its high power density.The performance of the AFPM generator with double-sided internal stator structure can be improved by the reasonable design of electromagnetic parameters.To further improve the overall performance of the AFPM generator with double-sided internal stator structure,multivariable(coil widthω_(c),permanent magnet thickness h,pole arc coefficient α_(p) and working air gap l_(g))and multi-objective(generator efficiencyη,total harmonic distortion of the voltage THD and induced electromotive force amplitude EMF)functional relationships are innovatively established.Orthogonal analysis,mean analysis and variance analysis are performed on the influence parameters by combining the Taguchi method and response surface methodology to study the influence degrees of each influence parameter on the optimization objectives to determine the most appropriate electromagnetic parameters.The optimization results are verified by 3D finite element analysis.The optimized APFM generator with double-sided internal stator structure exhibits superior economy,stronger magnetic density,higher efficiency and improved power quality. 展开更多
关键词 wind turbine double-sided internal stator structure multi-objective optimization axial flux permanent magnet generator
下载PDF
A Novel Modified Fuzzy-predictive Control of Permanent Magnet Synchronous Generator Based Wind Energy Conversion System
6
作者 Ehsan Akbari Milad Samady Shadlu 《Chinese Journal of Electrical Engineering》 EI CSCD 2023年第4期107-121,共15页
A wind energy conversion system(WECS)based on a permanent magnet synchronous generator(PMSG)is an effective solution for renewable energy generation in modern power systems.The main advantages of PMSG include high per... A wind energy conversion system(WECS)based on a permanent magnet synchronous generator(PMSG)is an effective solution for renewable energy generation in modern power systems.The main advantages of PMSG include high performance at high and low speeds,minimal control effort owing to lower rotor inertia,self-excitation,high reliability,and simplicity of structure compared with induction generators.However,the intermittent nature of wind energy implies that maximum efficiency is not obtained from this system.Accordingly,maximum power point tracking(MPPT)in wind turbine systems has been proposed to address this problem.Traditional MPPT strategies suffer from severe output power fluctuations,low efficiency,and significant ripples in turbine rotation speed.This paper presents a novel MPPT control strategy based on fuzzy logic control(FLC)and model predictive control(MPC)to extract the maximum power from a PMSG-WECS and control the machine-side and grid-side converters.The simulation results obtained from Matlab/Simulink confirm the superiority of the control model in eliminating the output power fluctuations of the wind generators and accurately tracking the maximum power point.A comparative study between conventional MPPT and control methods is also conducted. 展开更多
关键词 Maximum power point tracking(MPPT) wind energy conversion system(WECS) permanent magnet synchronous generator(PMSG) fuzzy logic control(FLC) model predictive control(MPC)
原文传递
Control Strategy of Wind Turbine Based on Permanent Magnet Synchronous Generator and Energy Storage for Stand-Alone Systems 被引量:2
7
作者 Fujin Deng Dong Liu +1 位作者 Zhe Chen Peng Su 《Chinese Journal of Electrical Engineering》 CSCD 2017年第1期51-62,共12页
This paper investigates a variable speed wind turbine based on permanent magnet synchronous generator and a full-scale power converter in a stand-alone system.An energy storage system(ESS)including battery and fuel ce... This paper investigates a variable speed wind turbine based on permanent magnet synchronous generator and a full-scale power converter in a stand-alone system.An energy storage system(ESS)including battery and fuel cell-electrolyzer combination is connected to the DC link of the full-scale power converter through the power electronics interface.Wind is the primary power source of the system,the battery and FC-electrolyzer combination is used as a backup and a long-term storage system to provide or absorb power in the stand-alone system,respectively.In this paper,a control strategy is proposed for the operation of this variable speed wind turbine in a stand-alone system,where the generator-side converter and the ESS operate together to meet the demand of the loads.This control strategy is competent for supporting the variation of the loads or wind speed and limiting the DC-link voltage of the full-scale power converter in a small range.A simulation model of a variable speed wind turbine in a stand-alone system is developed using the simulation tool of PSCAD/EMTDC.The dynamic performance of the stand-alone wind turbine system and the proposed control strategy is assessed and emphasized with the simulation results. 展开更多
关键词 Variable speed wind turbine(VSWT) permanent magnet synchronous generator(PMSG) stand-alone system energy storage system(ESS).
原文传递
Robust nonlinear control via feedback linearization and Lyapunov theory for permanent magnet synchronous generator-based wind energy conversion system 被引量:1
8
作者 Ridha CHEIKH Arezki MENACER +1 位作者 L.CHRIFI-ALAOUI Said DRID 《Frontiers in Energy》 SCIE CSCD 2020年第1期180-191,共12页
In this paper,the method for the nonlinear control design of a permanent magnet synchronous generator based-wind energy conversion system(WECS)is proposed in order to obtain robustness against disturbances and harvest... In this paper,the method for the nonlinear control design of a permanent magnet synchronous generator based-wind energy conversion system(WECS)is proposed in order to obtain robustness against disturbances and harvest a maximum power from a typical stochastic wind environment.The technique overcomes both the problem of nonlinearity and the uncertainty of the parameter compared to such classical control designs based on traditional control techniques.The method is based on the differential geometric feedback linearization technique(DGT)and the Lyapunov theory.The results obtained show the effectiveness and performance of the proposed approach. 展开更多
关键词 permanent magnet synchronous generator wind energy conversion system stochastic differential GEOMETRIC feedback LINEARIZATION maximum power point tracking LYAPUNOV robust control
原文传递
Modeling and control of a permanent magnet synchronous generator dedicated to standalone wind energy conversion system
9
作者 Louar FATEH Ouari AHMED +2 位作者 Omeiri AMAR Djellad ABDELHAK Bouras LAKHDAR 《Frontiers in Energy》 SCIE CSCD 2016年第2期155-163,共9页
The interest for the use of renewable energies has increased, because of the increasing concerns of the environmental problems. Among renewable energies, wind energy is now widely used. Wind turbines based on an async... The interest for the use of renewable energies has increased, because of the increasing concerns of the environmental problems. Among renewable energies, wind energy is now widely used. Wind turbines based on an asynchronous generator with a wound rotor present the inconvenience of requiring a system of tings and brooms and a multiplier, inferring significant costs of maintenance. To limit these inconveniences, certain manufacturers developed wind turbines based on synchronous machines with large number of pairs of poles coupled directly with the turbine, avoiding using the multiplier. If the generator is equipped with permanent magnets, the system of rings and brooms is eliminated. The control of the permanent magnet synchronous generator (PMSG) can be affected with the implementation of various techniques of control. This paper presented a new approach mainly based on the control strategy of power production system based on the PMSG. In fact, a mathematical model that simulates the Matlab chain was established with the introduction of control techniques, such as direct control of the torque (DTC) to control the load side converter (LSC), the control of the speed of the turbine and the DC-bus voltage ensured by PI regulators. To show the performance of the correctors used, some simulation results of the system were presented and analyzed. 展开更多
关键词 wind turbine permanent magnet synchronous
原文传递
PID-Type Fuzzy Controller for Grid-Supporting Inverter of Battery in Embedded Small Variable Speed Wind Turbine
10
作者 Ferdian Ronilaya Hajime Miyauchi Adi Kurniawan 《Journal of Power and Energy Engineering》 2014年第4期151-160,共10页
Frequency and voltage of embedded variable speed wind turbine (VSWT) driving a permanent magnet synchronous generator (PMSG) is strongly affected by wind speed fluctuations. In practice, power imbalance between supply... Frequency and voltage of embedded variable speed wind turbine (VSWT) driving a permanent magnet synchronous generator (PMSG) is strongly affected by wind speed fluctuations. In practice, power imbalance between supply and demand is also common, especially when VSWT-PMSG is connected to a weak micro grid (MG). If load demand fluctuations become high, isolated MG may be unable to stabilize the frequency and voltage so that battery storage needs to be installed into the MG to adjust energy supply and demand. To allow flexible control of active and reactive power flow from/to battery storage, grid-supporting inverters are used. For a system that contains highly nonlinear components, the use of conventional linear proportional-integral-derivative (PID) controllers may cause system performance deterioration. Additionally, these controllers show slow, oscillating responses, and complex equations are required to obtain optimum responses in other controllers. To cope with these limitations, this paper proposes PID-type fuzzy controller (PIDfc) design to control grid-supporting inverter of battery. To ensure safe battery operating limits, we also propose a new controller scheme called intelligent battery protection (IBP). This IBP is integrated into PIDfc. Several simulation tests are performed to verify the scheme’s effectiveness. The results show that the proposed PIDfc controller exhibits improved performance and acceptable responses, and can be used instead of conventional controllers. 展开更多
关键词 BATTERY PID-Type Fuzzy Controller INVERTER permanent magnet synchronous generator (PMSG) Variable Speed wind turbine (VSWT)
下载PDF
Enhancement of DC-Link Protection of PMSG Based Wind Turbine under Network Disturbance by Using New Buck Controller System
11
作者 Linda Sartika Atsushi Umemura +1 位作者 Rion Takahashi Junji Tamura 《Journal of Mechanics Engineering and Automation》 2017年第4期171-179,共9页
Protection system for DC-link circuit of back-to-back converter of PMSG (Permanent Magnet Synchronous Generator) based wind turbine is essential part for the system to ride through a network fault in grid system. Vo... Protection system for DC-link circuit of back-to-back converter of PMSG (Permanent Magnet Synchronous Generator) based wind turbine is essential part for the system to ride through a network fault in grid system. Voltage on the DC-link circuit can be increased significantly due to power unbalance between stator side converter and grid side converter. Increase of DC-link circuit voltage can lead to a damage of IGBT of the converter and control system failure. In this paper performance enhancement of DC-link protection of PMSG based Wind turbine by using new control system of buck converter is proposed. The buck converter is used to control supplied voltage of a breaking resistor to dissipate energy from the wind generator during network disturbance. In order to investigate effectiveness of the proposed DC-link protection system, fault analysis is performed in the simulation study by using PSCAD/EMTDC software program. In addition, comparative analysis between the proposed protection system and the conventional protection system using DC chopper is also performed. 展开更多
关键词 wind farm variable speed wind turbine permanent magnet synchronous generator buck controller.
下载PDF
Torque characteristics in a large permanent magnet synchronous generator with stator radial ventilating air ducts
12
作者 He HAO Wei-zhong FEI +2 位作者 Dong-min MIAO Meng-jia JIN Jian-xin SHEN 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2016年第8期814-824,共11页
In this study, we investigated the torque characteristics of large low-speed direct-drive permanent magnet synchronous generators with stator radial ventilating air ducts for offshore wind power applications. Magnet s... In this study, we investigated the torque characteristics of large low-speed direct-drive permanent magnet synchronous generators with stator radial ventilating air ducts for offshore wind power applications. Magnet shape optimization was used first to improve the torque characteristics using two-dimensional finite element analysis(FEA) in a permanent magnet synchronous generator with a common stator. The rotor step skewing technique was then employed to suppress the impacts of mechanical tolerances and defects, which further improved the torque quality of the machine. Comprehensive three-dimensional FEA was used to evaluate accurately the overall effects of stator radial ventilating air ducts and rotor step skewing on torque features. The influences of the radial ventilating ducts in the stator on torque characteristics, such as torque pulsation and average torque in the machine with and without rotor step skewing techniques, were comprehensively investigated using three-dimensional FEA. The results showed that stator radial ventilating air ducts could not only reduce the average torque but also increase the torque ripple in the machine. Furthermore, the torque ripple of the machine under certain load conditions may even be increased by rotor step skewing despite a reduction in cogging torque. 展开更多
关键词 permanent magnet synchronous generator(PMSG) Radial ventilating air duct Torque ripple Step skewing magnet shape optimization Finite element analysis wind power
原文传递
Multi-objective design optimization of a large-scale directdrive permanent magnet generator for wind energy conversion systems
13
作者 Arash Hasssanpour ISFAHANI Amirhossein Haji-Seyed BOROUJERDI Saeed HASANZADEH 《Frontiers in Energy》 SCIE CSCD 2014年第2期182-191,共10页
This paper presents a simukaneous multi- objective optimization of a direct-drive permanent magnet synchronous generator and a three-blade horizontal-axis wind turbine for a large scale wind energy conversion system. ... This paper presents a simukaneous multi- objective optimization of a direct-drive permanent magnet synchronous generator and a three-blade horizontal-axis wind turbine for a large scale wind energy conversion system. Analytical models of the generator and the turbine are used along with the cost model for optimization. Three important characteristics of the system i.e.,the total cost of the generator and blades, the annual energy output and the total mass of generator and blades are chosen as objective functions for a multi-objective optimization. Genetic algorithm (GA) is then employed to optimize the value of eight design parameters including seven generator parameters and a turbine parameter resulting in a set of Pareto optimal solutions. Four optimal solutions are then selected by applying some practical restrictions on the Pareto front. One of these optimal designs is chosen for finite element verification. A circuit-fed coupled time stepping finite element method is then performed to evaluate the no-load and the full load performance analysis of the system including the generator, a rectifier and a resistive load. The results obtained by the finite element analysis (FEA) verify the accuracy of the analytical model and the proposed method. 展开更多
关键词 permanent magnet synchronous generator wind turbine DIRECT-DRIVE multi-objective optimization
原文传递
A Fuzzy Logical MPPT Control Strategy for PMSG Wind Generation Systems
14
作者 Xing-Peng Li Wen-Lu Fu +2 位作者 Qing-Jun Shi Jian-Bing Xu Quan-Yuan Jiang 《Journal of Electronic Science and Technology》 CAS 2013年第1期72-77,共6页
Making full use of wind power is one of the main purposes of the wind turbine generator control. Conventional hill climbing search (HCS) method can realize the maximum power point tracking (MPPT). However, the ste... Making full use of wind power is one of the main purposes of the wind turbine generator control. Conventional hill climbing search (HCS) method can realize the maximum power point tracking (MPPT). However, the step size of HCS method is constant so that it cannot consider both steady-state response and dynamic response. A fuzzy logical control (FLC) algorithm is proposed to solve this problem in this paper, which can track the maximum power point (MPP) quickly and smoothly. To evaluate MPPT algorithms, four performance indices are also proposed in this paper. They are the energy captured by wind turbine, the maximum power-point tracking time when wind speed changes slowly, the fluctuation magnitude of real power during steady state, and the energy captured by wind turbine when wind speed changes fast. Three cases are designed and simulated in MATLAB/Simulink respectively. The comparison of the three MPPT strategies concludes that the proposed fuzzy logical control algorithm is more superior to the conventional HCS algorithms. 展开更多
关键词 Fuzzy logical control hill climbing search maximum power point tracking permanent magnet synchronous generator wind generation system.
下载PDF
Electrical Generator’s Manufacturing through RecycledMaterials for Self-consumption
15
作者 Francisco Javier Balbas Javier Garcia +1 位作者 Jose Ramon Aranda Alberto Cena 《Journal of Energy and Power Engineering》 2019年第10期373-379,共7页
The reduction of the useful life of some technologies for various reasons currently generates a large amount of electronic waste whose main destination is landfills located in underdeveloped countries.On the other han... The reduction of the useful life of some technologies for various reasons currently generates a large amount of electronic waste whose main destination is landfills located in underdeveloped countries.On the other hand,the lack of availability of electrical energy can encourage the use of other less efficient means of generation with a greater environmental impact.To overcome these problems,it is proposed to recover certain wastes in the manufacture of small wind turbines for use in the construction of these countries.This article provides a practical example of the design of the electric machine and its performance in building with the positive social,economic and environmental impact of the regions involved. 展开更多
关键词 LANDFILLS self-consumption wind turbine magnetS synchronous generator.
下载PDF
永磁同步发电机匝间短路故障对绕组绝缘温升特性的影响
16
作者 何玉灵 李勇 +3 位作者 张文 白怡凡 徐明星 王晓龙 《电机与控制学报》 EI CSCD 北大核心 2024年第4期18-30,共13页
本文分析了永磁同步发电机匝间短路故障前后的绕组绝缘温升特性。首先推导了正常情况和匝间短路故障下的气隙磁通密度,相电流、铁心损耗和绕组铜耗解析表达式;然后建立了发电机三维有限元仿真模型,将电磁场中计算得到的各类损耗作为热... 本文分析了永磁同步发电机匝间短路故障前后的绕组绝缘温升特性。首先推导了正常情况和匝间短路故障下的气隙磁通密度,相电流、铁心损耗和绕组铜耗解析表达式;然后建立了发电机三维有限元仿真模型,将电磁场中计算得到的各类损耗作为热源导入温度场计算绕组绝缘温度分布;最后实测了LR-5型故障模拟永磁同步发电机组在不同短路程度下的绕组绝缘温度,理论分析、仿真计算与实验结果相互吻合。结果表明:匝间短路故障后在故障绕组电流的作用下,绕组绝缘温度明显上升,并且随着短路程度的增加而加剧,由绕组绝缘热载荷分布不均而引起的变形、应变和应力也将增加;绕组鼻端处绝缘易因高温而受损,可通过改进冷却散热结构,或在鼻端绝缘局部涂覆耐热涂层提高鼻端绝缘的可靠性。 展开更多
关键词 永磁同步发电机 绕组绝缘 匝间短路 温升特性 危险位置
下载PDF
基于滑模变结构的风电机组一次调频算法研究
17
作者 李继超 贾梦欣 +3 位作者 陈超波 张彬彬 王坤 杨冰 《科学技术与工程》 北大核心 2024年第12期4998-5005,共8页
针对并网风电场中,经典一次调频控制方法存在抗干扰能力弱、机组易脱网的问题,提出一种基于滑模变结构的风电机组一次调频控制算法。首先,在永磁同步风电机组工作原理的基础上,建立含有大电网的风电机组模型。其次,为了解决传统比例积... 针对并网风电场中,经典一次调频控制方法存在抗干扰能力弱、机组易脱网的问题,提出一种基于滑模变结构的风电机组一次调频控制算法。首先,在永磁同步风电机组工作原理的基础上,建立含有大电网的风电机组模型。其次,为了解决传统比例积分微分(proportional integral differential,PID)控制下抗干扰能力弱的问题、引入经典滑模变结构控制器。然后,针对经典滑模变结构控制器导致执行机构存在抖振较多的缺点,提出一种基于sigmoid函数趋近率的滑模变结构一次调频控制算法。最后,通过MATLAB/Simulink对风电机组一次调频进行建模仿真,并与经典控制算法相比,验证了所提算法的可行性,在风速波动和电网故障的环境下,滑模变结构一次调频控制算法更具有效性。 展开更多
关键词 风电机组 永磁同步发电机(PMSM) 一次调频 滑模变结构控制器
下载PDF
虚拟惯量控制对直驱风电机组载荷影响的分析及评估
18
作者 杨超 李东翰 +3 位作者 雷显帅 李辉 李海啸 刘静 《电力系统自动化》 EI CSCD 北大核心 2024年第7期258-266,共9页
针对虚拟惯量控制诱发风电机组机械载荷的问题,开展虚拟惯量控制对采用直驱永磁同步发电机(D-PMSG)的风电机组载荷影响的理论分析和仿真评估研究。从叶片、塔筒等机械结构低阶模态出发,建立虚拟惯量控制下D-PMSG线性化多体动力学模型,... 针对虚拟惯量控制诱发风电机组机械载荷的问题,开展虚拟惯量控制对采用直驱永磁同步发电机(D-PMSG)的风电机组载荷影响的理论分析和仿真评估研究。从叶片、塔筒等机械结构低阶模态出发,建立虚拟惯量控制下D-PMSG线性化多体动力学模型,并通过线性化多体动力学模型分析虚拟惯量控制对机组载荷的影响机理。采用软件联合建模方法,构建涵盖永磁同步电机及其控制、电网、机械和气动特性等的D-PMSG非线性机电耦合模型。依据冲击载荷最大值、最大变化幅度百分比及等值疲劳载荷等指标,通过所建立的非线性机电耦合模型仿真分析并量化评估虚拟惯量控制对机组冲击载荷和动态疲劳载荷的影响。结果表明,D-PMSG附加虚拟惯量控制后,电网侧频率突变会使得传动轴和塔底侧向出现显著冲击载荷,且其随虚拟惯量时间常数增大而增大,在湍流风运行工况下机组传动轴和塔底侧向等值疲劳载荷较无附加虚拟惯量控制均有所减小。 展开更多
关键词 风力发电 直驱永磁同步发电机 虚拟惯量控制 机械载荷
下载PDF
结合风速预测的直驱风电机组减载调频策略
19
作者 王印松 袁环环 《华北电力大学学报(自然科学版)》 CAS 北大核心 2024年第3期101-109,共9页
直驱永磁风电机组常用的减载调频控制策略缺乏对风电机组运行经济性和调频能力的考虑,易导致系统出现调频能力不足或备用功率冗余的问题,对此提出了一种基于变减载率的优化减载调频策略。首先划分不同的风速模式,确立不同模式下的超速... 直驱永磁风电机组常用的减载调频控制策略缺乏对风电机组运行经济性和调频能力的考虑,易导致系统出现调频能力不足或备用功率冗余的问题,对此提出了一种基于变减载率的优化减载调频策略。首先划分不同的风速模式,确立不同模式下的超速与变桨距协调控制方案;其次考虑系统调频能力和发电量两因素,设计函数求取不同工况下的最优减载率;由于风速波动频繁,风机控制具有延迟,因此利用风速预测和滑动窗口法对最优减载率做进一步调整;最后搭建系统仿真模型,通过改进的频率控制动态调整减载率参与系统调频。仿真实验表明,所提控制策略与常用的策略相比在实时风速、负荷扰动下系统频率动态偏差减小、达到最低值的时间延长,风机发电量增加,桨距角变化量减小。该策略能满足调频需求,提升调频质量,减小机械磨损,提高风机运行的经济性。 展开更多
关键词 直驱永磁风电机组 可变减载率 超速控制 变桨距控制 优化减载控制
下载PDF
永磁同步风力发电系统的最大功率跟踪模糊分数阶控制 被引量:1
20
作者 姜礼洁 王晓燕 +1 位作者 苏杰 张镇韬 《现代电力》 北大核心 2024年第2期230-239,共10页
在“双碳”背景下,风电作为零碳电力和新能源发电的主力军,在助力社会全面绿色低碳转型方面发挥了关键性作用。在保证发电稳定的前提下实现风能的最大化利用,提升风力发电系统发电量至为重要。文中针对永磁同一步风力发电系统的最大功... 在“双碳”背景下,风电作为零碳电力和新能源发电的主力军,在助力社会全面绿色低碳转型方面发挥了关键性作用。在保证发电稳定的前提下实现风能的最大化利用,提升风力发电系统发电量至为重要。文中针对永磁同一步风力发电系统的最大功率跟踪(maximum power point tracking, MPPT)问题进行研究。首先建立了永磁同步风力发电系统的机理仿真模型,用两电平双PWM全功率换流器连接风力发电机与电网。然后基于以上模型,分别设计了整数阶PI控制器、分数阶PI"控制器、模糊分数阶PP控制器以实现MPPT控制。最后对以上控制策略进行了仿真研究。结果表明,无论在阶跃风速还是随机风速下,模糊分数阶PU控制器相较于其他两种均具有更出色的MPPT性能与更强的鲁棒性。 展开更多
关键词 永磁同步风力发电系统 两电平双PWM全功率换流器 模糊分数阶控制器 最大功率跟踪 发电稳定
下载PDF
上一页 1 2 29 下一页 到第
使用帮助 返回顶部