The measurement and control of high temperature play very important roles in national defense,military,scientific experiments,industrial and agricultural production.Photoelectric pyrometer is one of the important radi...The measurement and control of high temperature play very important roles in national defense,military,scientific experiments,industrial and agricultural production.Photoelectric pyrometer is one of the important radiation thermometers for non-contact temperature measurement.It has an important application in the field of high temperature measurement,and its performance directly affects the accuracy of temperature measurement.By improving the design of the detection optical system of the photoelectric pyrometer,the imaging performance of the photoelectric pyrometer can be improved effectively,and the temperature measurement accuracy can be improved.In this paper,the temperature measurement principle of photoelectric pyrometer,the wo rking principle of the detection optical system and the composition of the system are introduced.The optical components that affect the imaging of the optical system of the photoelectric pyrometer are analyzed.The optical pyrometer detection optical system is simulated by ZEMAX software,based on the analysis results,the Modulation Transfer Function(MTF)and the spot Diagram are used as the main evaluation criteria to optimize the design of the objective lens of the photoelectric pyrometer detection optical system.The imaging performance of the photoelectric pyrometer detection optical system and the accuracy of temperature measurement of the photoelectric pyrometer are improved by optimization design of the detection optical system.展开更多
A streaked optical pyrometer (SOP) is developed and calibrated for the measurement of the temperature of shocked materials. In order to achieve a higher relative sensitivity, a onechannel scheme is adopted for the s...A streaked optical pyrometer (SOP) is developed and calibrated for the measurement of the temperature of shocked materials. In order to achieve a higher relative sensitivity, a onechannel scheme is adopted for the system. The system is calibrated with a shocked step-shaped aluminum sample in the SG-III prototype laser facility. The relation between the count number in the detection system and the sample temperature is thus obtained, which can be adopted to infer the temperature of any shocked materials in future experiments.展开更多
An optical fiber pyrometer prototype has been developed for accurate measurement of overheating gas temperature.The optical fiber pyrometer and its technique could have the potential of measuring temperature up to 2 0...An optical fiber pyrometer prototype has been developed for accurate measurement of overheating gas temperature.The optical fiber pyrometer and its technique could have the potential of measuring temperature up to 2 000 ℃. The operation principle of the pyrometer is based on Planck's law and Stephen-Boltzmann's law. The test results are presented.展开更多
Based on the theory of thermal radiation,a contact type optical fiber pyrometer applied in IC engine is put forward.It is composed of three parts:a blackbody probe,optical system,electrical process system.The key tech...Based on the theory of thermal radiation,a contact type optical fiber pyrometer applied in IC engine is put forward.It is composed of three parts:a blackbody probe,optical system,electrical process system.The key technology of design is discussed.Experiment is given to prove that the pyrometer has much higher responsive speed,distinguishability and much longer running life than other pyrometers.展开更多
Abstract: A new pyrometer, which can solve the affection of emissivity change in temperature measuring, has been developed by double Y - type optical fibers. The mathematical model of the new pyrometer is presented an...Abstract: A new pyrometer, which can solve the affection of emissivity change in temperature measuring, has been developed by double Y - type optical fibers. The mathematical model of the new pyrometer is presented and the errors of the new pyrometer are analyzed.展开更多
Based on the concept of thermo-radiation theory,the principle of non-contact temperature measurement with optical fiber is introduced.The new pyrometer operates on the basis of two-way temperature signal division calc...Based on the concept of thermo-radiation theory,the principle of non-contact temperature measurement with optical fiber is introduced.The new pyrometer operates on the basis of two-way temperature signal division calculation via microcomputer signal processing system.Its design method and smart construction of the electro-optical system possess such advantages as high measurement accuracy,freedom from electric interference and other perturbations as well as flexible applications.The indication scale of the measured temperature and experiment results are given in this paper.展开更多
In this paper, developed wireless portable infrared pyrometer with dual channel fiber optic is described. The pyrometer measures surface temperature in wide infrared spectral range of 2 - 25 um. A data processing algo...In this paper, developed wireless portable infrared pyrometer with dual channel fiber optic is described. The pyrometer measures surface temperature in wide infrared spectral range of 2 - 25 um. A data processing algorithm based on the methods of synchronous detection providing展开更多
The velocity interferometer system for any reflector(VISAR) coupled with a streaked optical pyrometer(SOP) system is used as a diagnostic tool in inertial confinement fusion(ICF) experiments involving equations of sta...The velocity interferometer system for any reflector(VISAR) coupled with a streaked optical pyrometer(SOP) system is used as a diagnostic tool in inertial confinement fusion(ICF) experiments involving equations of state and shock timing.To validate the process of adiabatically compressing the fuel shell through precise tuning of shocks in experimental campaigns for the double-cone ignition(DCI) scheme of ICF, a compact line-imaging VISAR with an SOP system is designed and implemented at the Shenguang-II upgrade laser facility. The temporal and spatial resolutions of the system are better than 30 ps and 7 μm, respectively. An illumination lens is used to adjust the lighting spot size matching with the target size. A polarization beam splitter and λ/4 waveplate are used to increase the transmission efficiency of our system. The VISAR and SOP work at 660 and 450 nm, respectively, to differentiate the signals from the scattered lights of the drive lasers. The VISAR can measure the shock velocity. At the same time, the SOP system can give the shock timing and relative strength. This system has been used in different DCI campaigns, where the generation and propagation processes of multi-shock are carefully diagnosed.展开更多
Although the streaked optical pyrometer(SOP)system has been widely adopted in shock temperature measurements,its reliability has always been of concern.Here,two calibrated Planckian radiators with different color temp...Although the streaked optical pyrometer(SOP)system has been widely adopted in shock temperature measurements,its reliability has always been of concern.Here,two calibrated Planckian radiators with different color temperatures were used to calibrate and verify the SOP system by comparing the two calibration standards using both multi-channel and single-channel methods.A high-color-temperature standard lamp and a multi-channel filter were specifically designed for the measurement system.To verify the reliability of the SOP system,the relative deviation between the measured data and the standard value of less than 5%was calibrated out,which demonstrates the reliability of the SOP system.Furthermore,a method to analyze the uncertainty and sensitivity of the SOP system is proposed.A series of laserinduced shock experiments were conducted at the‘Shenguang-Ⅱ’laser facility to verify the reliability of the SOP system for temperature measurements at tens of thousands of kelvin.The measured temperature of the quartz in our experiments agreed fairly well with previous works,which serves as evidence for the reliability of the SOP system.展开更多
基金Jilin Province Science and Technology Development Plan Project(20190701024GH)。
文摘The measurement and control of high temperature play very important roles in national defense,military,scientific experiments,industrial and agricultural production.Photoelectric pyrometer is one of the important radiation thermometers for non-contact temperature measurement.It has an important application in the field of high temperature measurement,and its performance directly affects the accuracy of temperature measurement.By improving the design of the detection optical system of the photoelectric pyrometer,the imaging performance of the photoelectric pyrometer can be improved effectively,and the temperature measurement accuracy can be improved.In this paper,the temperature measurement principle of photoelectric pyrometer,the wo rking principle of the detection optical system and the composition of the system are introduced.The optical components that affect the imaging of the optical system of the photoelectric pyrometer are analyzed.The optical pyrometer detection optical system is simulated by ZEMAX software,based on the analysis results,the Modulation Transfer Function(MTF)and the spot Diagram are used as the main evaluation criteria to optimize the design of the objective lens of the photoelectric pyrometer detection optical system.The imaging performance of the photoelectric pyrometer detection optical system and the accuracy of temperature measurement of the photoelectric pyrometer are improved by optimization design of the detection optical system.
基金supported by National Natural Science Foundation of China(Nos.11005097 and 1175179)the Innovation Project of the Chinese Academy of Sciences(No.KJCX2-YW-N36)the Project 2010A0102003 supported by CAEP
文摘A streaked optical pyrometer (SOP) is developed and calibrated for the measurement of the temperature of shocked materials. In order to achieve a higher relative sensitivity, a onechannel scheme is adopted for the system. The system is calibrated with a shocked step-shaped aluminum sample in the SG-III prototype laser facility. The relation between the count number in the detection system and the sample temperature is thus obtained, which can be adopted to infer the temperature of any shocked materials in future experiments.
文摘An optical fiber pyrometer prototype has been developed for accurate measurement of overheating gas temperature.The optical fiber pyrometer and its technique could have the potential of measuring temperature up to 2 000 ℃. The operation principle of the pyrometer is based on Planck's law and Stephen-Boltzmann's law. The test results are presented.
文摘Based on the theory of thermal radiation,a contact type optical fiber pyrometer applied in IC engine is put forward.It is composed of three parts:a blackbody probe,optical system,electrical process system.The key technology of design is discussed.Experiment is given to prove that the pyrometer has much higher responsive speed,distinguishability and much longer running life than other pyrometers.
文摘Abstract: A new pyrometer, which can solve the affection of emissivity change in temperature measuring, has been developed by double Y - type optical fibers. The mathematical model of the new pyrometer is presented and the errors of the new pyrometer are analyzed.
文摘Based on the concept of thermo-radiation theory,the principle of non-contact temperature measurement with optical fiber is introduced.The new pyrometer operates on the basis of two-way temperature signal division calculation via microcomputer signal processing system.Its design method and smart construction of the electro-optical system possess such advantages as high measurement accuracy,freedom from electric interference and other perturbations as well as flexible applications.The indication scale of the measured temperature and experiment results are given in this paper.
文摘In this paper, developed wireless portable infrared pyrometer with dual channel fiber optic is described. The pyrometer measures surface temperature in wide infrared spectral range of 2 - 25 um. A data processing algorithm based on the methods of synchronous detection providing
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant Nos.XDA25030500 and XDA25010300)the CAS Youth Interdisciplinary Team(Grant No.JCTD-2022-05)+2 种基金the Youth Innovation Promotion Association of the Chinese Academy of Sciencesthe National Natural Science Foundation of China(Grant Nos.11873061 and 12073043)the National Key R&D Program of China(Grant Nos.2022YFA1603200 and 2022YFA1603204)。
文摘The velocity interferometer system for any reflector(VISAR) coupled with a streaked optical pyrometer(SOP) system is used as a diagnostic tool in inertial confinement fusion(ICF) experiments involving equations of state and shock timing.To validate the process of adiabatically compressing the fuel shell through precise tuning of shocks in experimental campaigns for the double-cone ignition(DCI) scheme of ICF, a compact line-imaging VISAR with an SOP system is designed and implemented at the Shenguang-II upgrade laser facility. The temporal and spatial resolutions of the system are better than 30 ps and 7 μm, respectively. An illumination lens is used to adjust the lighting spot size matching with the target size. A polarization beam splitter and λ/4 waveplate are used to increase the transmission efficiency of our system. The VISAR and SOP work at 660 and 450 nm, respectively, to differentiate the signals from the scattered lights of the drive lasers. The VISAR can measure the shock velocity. At the same time, the SOP system can give the shock timing and relative strength. This system has been used in different DCI campaigns, where the generation and propagation processes of multi-shock are carefully diagnosed.
基金supported by the National Key R&D Program of China (No. 2017YFA0403200)the Science Challenge Project (No. TZ2016001)
文摘Although the streaked optical pyrometer(SOP)system has been widely adopted in shock temperature measurements,its reliability has always been of concern.Here,two calibrated Planckian radiators with different color temperatures were used to calibrate and verify the SOP system by comparing the two calibration standards using both multi-channel and single-channel methods.A high-color-temperature standard lamp and a multi-channel filter were specifically designed for the measurement system.To verify the reliability of the SOP system,the relative deviation between the measured data and the standard value of less than 5%was calibrated out,which demonstrates the reliability of the SOP system.Furthermore,a method to analyze the uncertainty and sensitivity of the SOP system is proposed.A series of laserinduced shock experiments were conducted at the‘Shenguang-Ⅱ’laser facility to verify the reliability of the SOP system for temperature measurements at tens of thousands of kelvin.The measured temperature of the quartz in our experiments agreed fairly well with previous works,which serves as evidence for the reliability of the SOP system.