Mg-6%Al-5%Pb(mass fraction) anodes with different contents of zinc were prepared by melting and casting.The electrochemical discharge behavior of these anodes in 3.5% NaCl solutions was investigated by galvanostatic t...Mg-6%Al-5%Pb(mass fraction) anodes with different contents of zinc were prepared by melting and casting.The electrochemical discharge behavior of these anodes in 3.5% NaCl solutions was investigated by galvanostatic test and electrochemical impedance spectroscopy(EIS).The microstructures and the corroded surfaces of these anodes were studied by scanning electron microscopy(SEM) and emission spectrum analysis(ESA).The phase structures and the corrosion products of the anodes were analyzed by X-ray diffraction(XRD).The results show that zinc promotes the grain refinement of Mg-6%Al-5%Pb anode and makes the average discharge potential of Mg-6%Al-5%Pb anode more negative during galvanostatic test.Mg-6%Al-5%Pb anode with the addition of 1%(mass fraction) zinc has the best electrochemical performance.The activation mechanism of zinc to Mg-6%Al-5%Pb anode is as follows:The hydrolyzation of dissolved Zn2+ ions reduces the pH value of the solution near the surface of the anode and accelerates the dissolution of Mg(OH)2 film;The precipitated Zn(OH)2 with similar structure as Mg(OH)2 combines with Mg(OH)2 film easily and makes it break down.展开更多
b The discharge performance of Mg-Al-Pb-La anode was investigated by electrochemical techniques and compared withthat of Mg-Al-Pb alloy. The results indicate that the Mg-Al-Pb-La anode provides enhanced corrosion resi...b The discharge performance of Mg-Al-Pb-La anode was investigated by electrochemical techniques and compared withthat of Mg-Al-Pb alloy. The results indicate that the Mg-Al-Pb-La anode provides enhanced corrosion resistance at open circlepotential, and exhibits better discharge activity than the Mg-Al-Pb alloy. The utilization efficiency of Mg-Al-Pb-La anode ishigher than that of commercial Mg-Al-Zn (AZ) and Mg-Al-Mn (AM) alloys. A single Mg-air battery with Mg-Al-Pb-La alloy asthe anode and air as the cathode has an average discharge potential of 1.295 V and a discharge capacity of 1370 mA·h/g duringdischarge at 10 mA/cm2, which is higher than that of batteries using Mg-Li anodes. The enhancement in discharge performance ofthe Mg-Al-Pb-La anode is caused by its modified microstructure, which reduces the self-corrosion and accelerates the spalling ofoxidation products during battery discharge. Furthermore, the dissolution mechanism of Mg-Al-Pb-La anode during the dischargeprocess was analyzed.展开更多
To obtain a new kind of Mg?Al?Pb alloy anode material with low content of Pb, the corrosion and discharge behavior of Mg?9%Al?2.5%Pb (hereafter in mass fraction) alloy were investigated by immersion tests and electroc...To obtain a new kind of Mg?Al?Pb alloy anode material with low content of Pb, the corrosion and discharge behavior of Mg?9%Al?2.5%Pb (hereafter in mass fraction) alloy were investigated by immersion tests and electrochemical techniques, and compared with those of Mg?6%Al?5%Pb alloy. The results indicate that Mg?9%Al?2.5%Pb alloy exhibits a lower self-corrosion rate and higher utilization efficiency in contrast with Mg?6%Al?5%Pb alloy because of the higher content of Al. As the result of the decrease of Pb content, the discharge activity of Mg?9%Al?2.5%Pb alloy is relatively weaker but still meets the requirement of anode. These results reveal that Mg?9%Al?2.5%Pb alloy with a low content of Pb can serve as a good candidate for the anode material used in seawater activated battery.展开更多
Magnesium is a promising metal used as anodes for chemical power sources. This metal could theoretically provide negative discharge potential and exhibit large capacity during the discharge process. However, when the ...Magnesium is a promising metal used as anodes for chemical power sources. This metal could theoretically provide negative discharge potential and exhibit large capacity during the discharge process. However, when the magnesium anode is adopted for practical applications, several issues, such as the discharge products adhered to the electrode surface, the self-discharge occurring on the anode material, and the detachment of metallic particles, adversely affect its inherently good discharge performance. In this work, the types of chemical power sources using magnesium as anodes were elaborated, and the approaches to enhance its anode performance were analyzed.展开更多
Mg-Al-Pb alloy is a good candidate for the anode material of magnesium seawater battery. For improving the low current utilization efficiency of Mg-Al-Pb alloy, the influence of Ce on the microstructures and electroch...Mg-Al-Pb alloy is a good candidate for the anode material of magnesium seawater battery. For improving the low current utilization efficiency of Mg-Al-Pb alloy, the influence of Ce on the microstructures and electrochemical corrosion properties in a 3.5% NaCl solution was investigated using scanning electron microscope and electrochemical measurements. The results indicate that Ce refines the grain structure of Mg-Al-Pb alloy. The formation of strip Al11Ce3 second phase promotes the uniform distribution of Mg17Al12 phase in Mg-Al-Pb-Ce alloy. The addition of cerium accelerates the discharge activity of Mg-Al-Pb alloy. Due to a large number of cathodic Al11Ce3 and MglyAla2 phases, Ce promotes the micro-galvanic corrosion and leads to larger corrosion current density and hydrogen evolution rate in Mg-Al-Pb-Ce alloy than those in Mg-Al-Pb alloy. However, Mg-Al-Pb alloy expresses smaller utilization efficiency than Mg-Al-Pb-Ce alloy because of grain detachment.展开更多
Prenatal alcohol exposure disrupts the development of normal fetal respiratory function, but whether it perturbs respiratory rhythmical discharge activity is unclear. Furthermore, it is unknown whether the 5-hydroxytr...Prenatal alcohol exposure disrupts the development of normal fetal respiratory function, but whether it perturbs respiratory rhythmical discharge activity is unclear. Furthermore, it is unknown whether the 5-hydroxytryptamine 2A receptor(5-HT2AR) is involved in the effects of prenatal alcohol exposure. In the present study, pregnant female rats received drinking water containing alcohol at concentrations of 0%, 1%, 2%, 4%, 8% or 10%(v/v) throughout the gestation period. Slices of the medulla from 2-day-old neonatal rats were obtained to record respiratory rhythmical discharge activity. 5-HT2 AR protein and m RNA levels in the pre-B?tzinger complex of the respiratory center were measured by western blot analysis and quantitative RT-PCR, respectively. Compared with the 0% alcohol group, respiratory rhythmical discharge activity in medullary slices in the 4%, 8% and 10% alcohol groups was decreased, and the reduction was greatest in the 8% alcohol group. Respiratory rhythmical discharge activity in the 10% alcohol group was irregular. Thus, 8% was the most effective alcohol concentration at attenuating respiratory rhythmical discharge activity. These findings suggest that prenatal alcohol exposure attenuates respiratory rhythmical discharge activity in neonatal rats by downregulating 5-HT2 AR protein and m RNA levels.展开更多
Aiming at studying the influence of actuating frequency on plasma assisted detonation initiation by alternating current dielectric barrier discharge, a loosely coupled method is used to simulate the detonation initiat...Aiming at studying the influence of actuating frequency on plasma assisted detonation initiation by alternating current dielectric barrier discharge, a loosely coupled method is used to simulate the detonation initiation process of a hydrogenoxygen mixture in a detonation tube at different actuating frequencies. Both the discharge products and the detonation forming process which is assisted by the plasma are analyzed. It is found that the patterns of the temporal and spatial distributions of discharge products in one cycle are not changed by the actuating frequency. However, the concentration of every species decreases as the actuating frequency rises, and atom O is the most sensitive to this variation, which is related to the decrease of discharge power. With respect to the reaction flow of the detonation tube, the deflagration-todetonation transition(DDT) time and distance both increase as the actuating frequency rises, but the degree of effect on DDT development during flow field evolution is erratic. Generally, the actuating frequency affects none of the amplitude value of the pressure, temperature, species concentration of the flow field, and the combustion degree within the reaction zone.展开更多
基金Project(JPPT-115-168) supported by the National Key Science and Technological Program of China
文摘Mg-6%Al-5%Pb(mass fraction) anodes with different contents of zinc were prepared by melting and casting.The electrochemical discharge behavior of these anodes in 3.5% NaCl solutions was investigated by galvanostatic test and electrochemical impedance spectroscopy(EIS).The microstructures and the corroded surfaces of these anodes were studied by scanning electron microscopy(SEM) and emission spectrum analysis(ESA).The phase structures and the corrosion products of the anodes were analyzed by X-ray diffraction(XRD).The results show that zinc promotes the grain refinement of Mg-6%Al-5%Pb anode and makes the average discharge potential of Mg-6%Al-5%Pb anode more negative during galvanostatic test.Mg-6%Al-5%Pb anode with the addition of 1%(mass fraction) zinc has the best electrochemical performance.The activation mechanism of zinc to Mg-6%Al-5%Pb anode is as follows:The hydrolyzation of dissolved Zn2+ ions reduces the pH value of the solution near the surface of the anode and accelerates the dissolution of Mg(OH)2 film;The precipitated Zn(OH)2 with similar structure as Mg(OH)2 combines with Mg(OH)2 film easily and makes it break down.
基金Project(2015JC3004)supported by the Science and Technology Plan of Hunan Province,ChinaProject(2016JJ2147)supported by the Natural Science Foundation of Hunan Province,ChinaProject(51401243)supported by the National Natural Science Foundation of China
文摘b The discharge performance of Mg-Al-Pb-La anode was investigated by electrochemical techniques and compared withthat of Mg-Al-Pb alloy. The results indicate that the Mg-Al-Pb-La anode provides enhanced corrosion resistance at open circlepotential, and exhibits better discharge activity than the Mg-Al-Pb alloy. The utilization efficiency of Mg-Al-Pb-La anode ishigher than that of commercial Mg-Al-Zn (AZ) and Mg-Al-Mn (AM) alloys. A single Mg-air battery with Mg-Al-Pb-La alloy asthe anode and air as the cathode has an average discharge potential of 1.295 V and a discharge capacity of 1370 mA·h/g duringdischarge at 10 mA/cm2, which is higher than that of batteries using Mg-Li anodes. The enhancement in discharge performance ofthe Mg-Al-Pb-La anode is caused by its modified microstructure, which reduces the self-corrosion and accelerates the spalling ofoxidation products during battery discharge. Furthermore, the dissolution mechanism of Mg-Al-Pb-La anode during the dischargeprocess was analyzed.
基金Projects(5140124351101171)supported by the National Natural Science Foundation of China+1 种基金Projects(2015T808832014M552151)supported by China Postdoctoral Science Foundation
文摘To obtain a new kind of Mg?Al?Pb alloy anode material with low content of Pb, the corrosion and discharge behavior of Mg?9%Al?2.5%Pb (hereafter in mass fraction) alloy were investigated by immersion tests and electrochemical techniques, and compared with those of Mg?6%Al?5%Pb alloy. The results indicate that Mg?9%Al?2.5%Pb alloy exhibits a lower self-corrosion rate and higher utilization efficiency in contrast with Mg?6%Al?5%Pb alloy because of the higher content of Al. As the result of the decrease of Pb content, the discharge activity of Mg?9%Al?2.5%Pb alloy is relatively weaker but still meets the requirement of anode. These results reveal that Mg?9%Al?2.5%Pb alloy with a low content of Pb can serve as a good candidate for the anode material used in seawater activated battery.
基金Project supported by the Postdoctoral Science Foundation of Central South UniversityProject(2014M552151)supported by the China Postdoctoral Science FoundationProject(51101171)supported by the National Natural Science Foundation of China
文摘Magnesium is a promising metal used as anodes for chemical power sources. This metal could theoretically provide negative discharge potential and exhibit large capacity during the discharge process. However, when the magnesium anode is adopted for practical applications, several issues, such as the discharge products adhered to the electrode surface, the self-discharge occurring on the anode material, and the detachment of metallic particles, adversely affect its inherently good discharge performance. In this work, the types of chemical power sources using magnesium as anodes were elaborated, and the approaches to enhance its anode performance were analyzed.
基金Project(2015JC3004)supported by Science and Technology Plan Projects of Hunan Province,ChinaProject(51401243)supported by the National Natural Science Foundation of China
文摘Mg-Al-Pb alloy is a good candidate for the anode material of magnesium seawater battery. For improving the low current utilization efficiency of Mg-Al-Pb alloy, the influence of Ce on the microstructures and electrochemical corrosion properties in a 3.5% NaCl solution was investigated using scanning electron microscope and electrochemical measurements. The results indicate that Ce refines the grain structure of Mg-Al-Pb alloy. The formation of strip Al11Ce3 second phase promotes the uniform distribution of Mg17Al12 phase in Mg-Al-Pb-Ce alloy. The addition of cerium accelerates the discharge activity of Mg-Al-Pb alloy. Due to a large number of cathodic Al11Ce3 and MglyAla2 phases, Ce promotes the micro-galvanic corrosion and leads to larger corrosion current density and hydrogen evolution rate in Mg-Al-Pb-Ce alloy than those in Mg-Al-Pb alloy. However, Mg-Al-Pb alloy expresses smaller utilization efficiency than Mg-Al-Pb-Ce alloy because of grain detachment.
基金the Natural Science Foundation of Henan Province in China,No.102102310156the Foundation of Xinxiang Technology Bureau in China,No.ZG14004
文摘Prenatal alcohol exposure disrupts the development of normal fetal respiratory function, but whether it perturbs respiratory rhythmical discharge activity is unclear. Furthermore, it is unknown whether the 5-hydroxytryptamine 2A receptor(5-HT2AR) is involved in the effects of prenatal alcohol exposure. In the present study, pregnant female rats received drinking water containing alcohol at concentrations of 0%, 1%, 2%, 4%, 8% or 10%(v/v) throughout the gestation period. Slices of the medulla from 2-day-old neonatal rats were obtained to record respiratory rhythmical discharge activity. 5-HT2 AR protein and m RNA levels in the pre-B?tzinger complex of the respiratory center were measured by western blot analysis and quantitative RT-PCR, respectively. Compared with the 0% alcohol group, respiratory rhythmical discharge activity in medullary slices in the 4%, 8% and 10% alcohol groups was decreased, and the reduction was greatest in the 8% alcohol group. Respiratory rhythmical discharge activity in the 10% alcohol group was irregular. Thus, 8% was the most effective alcohol concentration at attenuating respiratory rhythmical discharge activity. These findings suggest that prenatal alcohol exposure attenuates respiratory rhythmical discharge activity in neonatal rats by downregulating 5-HT2 AR protein and m RNA levels.
基金Project supported by the Open Project of Science and Technology on Scramjet Laboratory,China(Grant No.CG-2014-05-118)the National Natural Science Foundation of China(Grant No.91441123)
文摘Aiming at studying the influence of actuating frequency on plasma assisted detonation initiation by alternating current dielectric barrier discharge, a loosely coupled method is used to simulate the detonation initiation process of a hydrogenoxygen mixture in a detonation tube at different actuating frequencies. Both the discharge products and the detonation forming process which is assisted by the plasma are analyzed. It is found that the patterns of the temporal and spatial distributions of discharge products in one cycle are not changed by the actuating frequency. However, the concentration of every species decreases as the actuating frequency rises, and atom O is the most sensitive to this variation, which is related to the decrease of discharge power. With respect to the reaction flow of the detonation tube, the deflagration-todetonation transition(DDT) time and distance both increase as the actuating frequency rises, but the degree of effect on DDT development during flow field evolution is erratic. Generally, the actuating frequency affects none of the amplitude value of the pressure, temperature, species concentration of the flow field, and the combustion degree within the reaction zone.