In this work,a gas-solid two-phase gliding arc discharge(GS-GAD)reactor was built.Gliding arc was formed in the gap between the blade electrodes,and solid powder was deposited on the sieve plate positioned beneath the...In this work,a gas-solid two-phase gliding arc discharge(GS-GAD)reactor was built.Gliding arc was formed in the gap between the blade electrodes,and solid powder was deposited on the sieve plate positioned beneath the blade electrodes.A range of experimental parameters,including the inter-electrode spacing,gas flow rate,applied voltage,and the type of the powder,were systematically varied to elucidate the influence of solid powder matter on the dynamics of gliding arc discharge(GAD).The discharge images were captured by ICCD and digital camera to investigate the mass transfer characteristics of GS-GAD,and the electrical parameters,such as the effective values of voltage,current,and discharge power were record to reveal the discharge characteristics of GS-GAD.The results demonstrate that powder undergoes spontaneous movement towards the upper region of the gliding arc due to the influence of electric field force.Increasing the discharge voltage,decreasing relative dielectric constant of the powder and reducing the electrode-to-sieve-plate distance all contribute to a greater involvement of powder in the GAD process,subsequently resulting in an enhanced powder concentration within the GAD region.Additionally,powder located beneath the gliding arc experiences downward resistance caused by the opposing gas flow and arc.Excessive gas flow rate notably hampers the powder concentration within the discharge region,and the velocity of powder motion in the upper part of the GAD region is reduced.Under the condition of electrode-to-sieve-plate distance of 30 mm,gas flow rate of 1.5 L/min,and peak-to-peak voltage of 31 kV,the best combination of arc gliding and powder spark discharge phenomena can be achieved with the addition of Al_(2)O_(3) powder.展开更多
The present work investigates the potential applications of nitrogen oxides(NO_(x)),particularly nitric oxide(NO)and nitrogen dioxide(NO_(2)),generated through discharge plasma in diverse sectors such as medicine,nitr...The present work investigates the potential applications of nitrogen oxides(NO_(x)),particularly nitric oxide(NO)and nitrogen dioxide(NO_(2)),generated through discharge plasma in diverse sectors such as medicine,nitrogen fixation,energy,and environmental protection.In this study,a rotating sliding arc discharge reactor was initially employed to produce high concentrations of gaseous NO_(x),followed by the utilization of a molybdenum wire redox reactor for NO_(2)-to-NO conversion.The outcomes reveal that the discharge states and generations of NO_(x) are affected by varying parameters,including the applied energies,frequencies and airflow states(1.3-2.6 m/s are the laminar flow,2.6-5.2 m/s are the transition state,5.2-6.5 m/s are the turbulent flow),and the concentrations of NO_(x) within the arc discharge are higher than that in the spark discharge.Moreover,the concentrations of NO,NO_(2) and NO_(x) gradually increased,and the concentration ratios of NO/NO_(2) and NO_(x)/NO_(2) decreased with increasing the applied energy for one cycle from 14.8 mJ to 24.3 mJ.Meanwhile,the concentrations of NO,NO_(2) and NO_(x) gradually decreased,and the concentration ratios of NO/NO_(2) and NO_(x)/NO_(2) first decreased and then increased with increasing the applied frequencies from 5.0 kHz to 9.0 kHz.Further,the concentrations of NO,NO_(2) and NO_(x) gradually decreased,and the concentration ratios of NO/NO_(2) and NO_(x)/NO_(2) first increased and then decreased with increasing the air flow speeds from 1.3 m/s to 6.5 m/s.Lastly,the concentrations of NO increased and NO_(2) decreased with increasing temperature from 25℃ to 400℃ using molybdenum converted.These findings provide experimental support for the application of plasma in the fields of medicine,nitrogen fixation,energy and environmental protection.展开更多
Highly efficient and green ammonia production is an important demand for modern agriculture.In this study,a two-step ammonia production method is developed using a gliding arc discharge in combination with Cu/Cu_(2)O ...Highly efficient and green ammonia production is an important demand for modern agriculture.In this study,a two-step ammonia production method is developed using a gliding arc discharge in combination with Cu/Cu_(2)O electrocatalysis.In this method,NO_(x)is provided by the gliding arc discharge and then electrolyzed by Cu/Cu_(2)O after alkaline absorption.The electrical characteristics,the optical characteristics and the NO_(x)production are investigated in discharges at different input voltage and the gas flow.The dependence of ammonia production through Cu/Cu_(2)O electrocatalysis on pH value and reduction potential are determined by colorimetric method.In our study,two discharge modes are observed.At high input voltage and low gas flow,the discharge is operated with a stable plasma channel which is called the steady arc gliding discharge mode(A-G mode).As lowering input voltage and raising gas flow,the plasma channel is destroyed and high frequency breakdown occurs instead,which is known as the breakdown gliding discharge mode(B-G mode).The optimal NO_(x)production of 7.34 mmol h^(-1)is obtained in the transition stage of the two discharge modes.The ammonia yield reaches0.402 mmol h^(-1)cm^(-2)at pH value of 12.7 and reduction potential of-1.0 V versus reversible hydrogen electrode(RHE).展开更多
PCDD/Fs have been become a serious issue because of their toxicological effects and associated adverse health implications. In this study, the gliding arc plasma was tested for treatment of polychlorinated dibenzo-p-d...PCDD/Fs have been become a serious issue because of their toxicological effects and associated adverse health implications. In this study, the gliding arc plasma was tested for treatment of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs), which was synthesized from pentachlorophenol in atmospheric condition at 350℃ with or without the catalysis of CuCl2. From the experiment, we found that the destruction efficiency of PCDD/F homologues after gliding was discharge ranged from 25% to 79%. This result demonstrates that gliding arc plasma is an effective technology to decompose PCDDs/Fs in flue gas. A plausible degradation mechanism for PCDD/Fs by gliding arc was discussed. Finally, a multistage reactor structure of gliding arc was proposed to upgrade removal efficiency for PCDD/Fs.展开更多
Wheat (Triticum aestivum) seeds were treated with atmospheric pressure gliding arc discharge plasmas to investigate the effects on water absorption, seed germination rate, seedling growth and yield in wheat. The sur...Wheat (Triticum aestivum) seeds were treated with atmospheric pressure gliding arc discharge plasmas to investigate the effects on water absorption, seed germination rate, seedling growth and yield in wheat. The surface architectures and functionalities of the seeds were found to modify due to plasma treatments. 6 rain treatment was provided 95%-100% germination rate. For the treatment duration of 3 and 9 rain the growth activity, dry matter accumulation, leaves chlorophyll contents, longest spikes, number of spikes/spikelet and total soluble protein content in shoots were improved. The grain yield of wheat was increased ,--20% by 6 min treatment with H2O/O2 plasma with respect to control.展开更多
A study is conducted to determine the effect of a kind of high-pressure arc discharge plasma on the degradation rate and kinetic equations of chlorpyrifos in different solvents with the treated times and concentration...A study is conducted to determine the effect of a kind of high-pressure arc discharge plasma on the degradation rate and kinetic equations of chlorpyrifos in different solvents with the treated times and concentrations as variables. The degradation rate was sorted in different solvents as water, methanol, acetone and then acetoacetate. The tendencies of the degradation rates with treated time in water and methanol were optimally fitted with first-order kinetics equations while those in acetone and acetoacetate were fitted with zeroth-order kinetics equations. The difference was attributed to the stronger polarity of water and methanol. The weak correlation of the degradation rates with time was mainly because the high-temperature of the arc discharge tube and the chemically-active species generated by the discharge. The degradation half-life was extended with increase of chlorpyrifos concentration. A degradation half-life less than 3 min was achieved for chlorpyrifos in water and methanol when the initial concentration was less than 300 μg/ml.展开更多
In agriculture production,plant health is threatened by pathogens parasitic on seeds;hence,it is necessary to disinfect harvested seeds before germination.In this study,a technique of gliding arc plasma treatment was ...In agriculture production,plant health is threatened by pathogens parasitic on seeds;hence,it is necessary to disinfect harvested seeds before germination.In this study,a technique of gliding arc plasma treatment was proposed and investigated.The experiment was conducted to treat Astragalus membranaceus(A.membranaceus)seeds that were artificially infected with Fusarium oxysporum(F.oxysporum).The plasma treatment duration varied from 30 s to 270 s.Direct and indirect treatments were compared to evaluate the inactivation efficiency of the F.oxysporum spores on the surface of seeds.The results indicated that the direct treatment behaved significantly better in disinfection than the indirect way.Meanwhile,experiments of the quantitative assessment of seed germination were also conducted,including the germination rate,the germination potential,and the germination index.The results showed that the inactivation efficiency increased as the plasma treatment time was extended.When the treatment time was90 s,the inactivation efficiency reached more than 98%.The plasma treatment of 270 s had a complete devitalization of F.oxysporum spores on the surface of the seeds.After the treatment of 30 s and 90 s,the seed germination parameters improved significantly.This study verified the inactivation efficacy of gliding arc discharge plasma under atmospheric pressure.The technique of gliding arc treatment shows advantages of energy saving and adaptation and has the potential to be utilized in industry.展开更多
Nitric oxide (NO) is increasingly being used in medical treatments of high blood pressure, acute respiratory distress syndrome and other illnesses related to the lungs. Currently a NO inhalation system consists of a...Nitric oxide (NO) is increasingly being used in medical treatments of high blood pressure, acute respiratory distress syndrome and other illnesses related to the lungs. Currently a NO inhalation system consists of a gas cylinder of N2 mixed with a high concentration of NO. This arrangement is potentially risky due to the possibility of an accidental leak of NO from the cylinder. The presence of NO in the air leads to the formation of nitric dioxide (NO2), which is toxic to the lungs. Therefore, an on-site generator of NO would be highly desirable for medical doctors to use with patients with lung disease. To develop the NO inhalation system without a gas cylinder, which would include a high concentration of NO, NAMIHIRA et al have recently reported on the production of NO from room air using a pulsed arc discharge. In the present work, the temperature of the pulsed arc discharge plasma used to generate NO was measured to optimize the discharge condition. The results of the temperature measurements showed the temperature of the pulsed arc discharge plasma reached about 10,000 K immediately after discharge initiation and gradually decreased over tens of microseconds. In addition, it was found that NO was formed in a discharge plasma having temperatures higher than 9,000 K and a smaller input energy into the discharge plasma generates NO more efficiently than a larger one.展开更多
The simultaneous removal of ethyl acetate, benzene and toluene with relatively low or high initial concentration is studied using a laboratory scale gliding arc gas discharge (GA) reactor. Good decomposition efficienc...The simultaneous removal of ethyl acetate, benzene and toluene with relatively low or high initial concentration is studied using a laboratory scale gliding arc gas discharge (GA) reactor. Good decomposition efficiencies are obtained which proves that the GA is effective for the treatment of volatile organic compounds (VOCs) with either low or high concentration. A theoretical decomposition mechanism is proposed based on detection of the species in the plasma region and analysis of the decomposition by-products. This preliminary investigation reveals that the GA has potential to be applied to the treatment of exhaust air during color printing and coating works, by either direct removal or combination with activated carbon adsorption/desorption process.展开更多
Atmospheric pressure air/Ar/H_2O gliding arc discharge plasma is produced by a pulsed dc power supply. An optical emission spectroscopic(OES) diagnostic technique is used for the characterization of plasmas and for ...Atmospheric pressure air/Ar/H_2O gliding arc discharge plasma is produced by a pulsed dc power supply. An optical emission spectroscopic(OES) diagnostic technique is used for the characterization of plasmas and for identifications of OH and O radicals along with other species in the plasmas. The OES diagnostic technique reveals the excitation Tx?≈?5550–9000 K, rotational Tr?≈?1350–2700 K and gas Tg?≈?850–1600 K temperatures, and electron density n?(1.1-1.9) ′101 4 cm^(-3) e under different experimental conditions. The production and destruction of OH and O radicals are investigated as functions of applied voltage and air flow rate. Relative intensities of OH and O radicals indicate that their production rates are increased with increasing Ar content in the gas mixture and applied voltage. nereveals that the higher densities of OH and O radicals are produced in the discharge due to more effective electron impact dissociation of H_2O and O_2 molecules caused by higher kinetic energies as gained by electrons from the enhanced electric field as well as by enhanced n e.The productions of OH and O are decreasing with increasing air flow rate due to removal of Joule heat from the discharge region but enhanced air flow rate significantly modifies discharge maintenance properties. Besides, Tgsignificantly reduces with the enhanced air flow rate. This investigation reveals that Ar plays a significant role in the production of OH and O radicals.展开更多
In this study, graphene sheets are prepared under a hydrogen atmosphere without a catalyst, and the growth mechanism of graphene by direct current arc discharge is investigated experimentally and numerically. The size...In this study, graphene sheets are prepared under a hydrogen atmosphere without a catalyst, and the growth mechanism of graphene by direct current arc discharge is investigated experimentally and numerically. The size and layer numbers of graphene sheets increase with the arc current.Distributions of temperature, velocity, and mass fraction of carbon are obtained through numerical simulations. A high current corresponds to a high saturation temperature, evaporation rate, and mass density of carbon clusters. When the carbon vapor is saturated, the saturation temperatures are 3274.9, 3313.9, and 3363.6 K, and the mass densities are 6.4×1022,8.42×1022, and 1.23×1023 m-3 under currents of 150, 200, and 250 A, respectively. A hydrogen-induced marginal growth model is used to explain the growth mechanism. Under a high current, the condensation coefficient and van der Waals force increase owing to the higher saturation temperature and mass density of carbon clusters, which is consistent with experimental results.展开更多
By adopting the optical multi-channel analyzer combined with fourier transform infrared (FTIR) spectrometer, the dominant free radicals and products generated by arc discharge were measured and studied, and the main...By adopting the optical multi-channel analyzer combined with fourier transform infrared (FTIR) spectrometer, the dominant free radicals and products generated by arc discharge were measured and studied, and the main plasma chemical reaction process in the nitric oxide production by arc discharge was identified. Plasma chemical kinetic curves of O, O2, N2, N and NO were simulated by using CHEMKIN and MATLAB. The results show that the main plasma chemical reaction process of nitric oxide production by arc discharge is a replacement reaction between O and N2, where NO can be generated instantaneously when discharging reaches stable.展开更多
As a new method to cure acute respiratory distress syndrome (ARDS), high blood pressure and some illnesses related to the lung, NO has recently received more attention. Thermal plasmas produced by arc discharge can ...As a new method to cure acute respiratory distress syndrome (ARDS), high blood pressure and some illnesses related to the lung, NO has recently received more attention. Thermal plasmas produced by arc discharge can create medical NO, but the concentration of NO2 produced by arc discharge must be controlled simultaneously. This paper investigates the characteristics and regulations of NO production at different flow distribution by pulsed arc discharge in dry air with a special pulsed power, The experimental results show that the flow distribution has a considerable effect on the NO concentration, the stabilization of NO. The production of NO2 could be controlled and the ratio of NO2/NO was decreased to about 10% in the arc discharge. Therefore, the arc discharge could produce stable inhaled NO for medical treatment by changing the flow distribution.展开更多
A 2D self-consistent numerical model of the whole argon-arc discharge region that includes electrodes is developed in this work to facilitate analysis of the physical processes occurring in atmospheric arc plasma.The ...A 2D self-consistent numerical model of the whole argon-arc discharge region that includes electrodes is developed in this work to facilitate analysis of the physical processes occurring in atmospheric arc plasma.The 2D arc column model contains the ionization and thermal nonequilibrium,which is coupled with a 1D electrode sheath model.The influence of plasma-species diffusion near the electrode region is investigated based on Maxwell–Stefan equations and the generalized Ohm’s law.The numerical results of argon free-burning arcs at atmospheric pressure are then investigated.The simulation shows that the plasma is obviously in the state of thermal and ionization equilibrium in the arc core region,while it deviates from thermal and ionization equilibrium in the arc fringe region.The actual electron density decreases rapidly in the nearanode and near-cathode regions due to non-equilibrium ionization,resulting in a large electron number gradient in these regions.The results indicate that electron diffusion has an important role in the near-cathode and near-anode regions.When the anode arc root gradually contracts,it is easy to obtain a positive voltage drop of the anode sheath(I=50 A),while it remains difficult to acquire a positive anode sheath voltage drop(I=150 A).The current–voltage characteristics predicted by our model are found to be identical to the experimental values.展开更多
The preparation of crystalline C3N4 films was investigated using pulsed arc discharge from mixed methanol and ammonia water at atmospheric pressure. The X-ray diffraction (XRD) patterns of the films prepared at a su...The preparation of crystalline C3N4 films was investigated using pulsed arc discharge from mixed methanol and ammonia water at atmospheric pressure. The X-ray diffraction (XRD) patterns of the films prepared at a substrate temperature of 450℃ suggested that the film was composed of α-C3N4 and fl-C3N4 crystallites. Raman spectra exhibited distinct peaks which are in good agreement with those predicted theoretically for C3N4 crystallites.展开更多
A technique of improvement on diamond nucleation based on pulsed arc discharge plasma at atmospheric pressure was developed. The pulsed arc discharge was induced respectively by nitrogen, argon and methanol gas. After...A technique of improvement on diamond nucleation based on pulsed arc discharge plasma at atmospheric pressure was developed. The pulsed arc discharge was induced respectively by nitrogen, argon and methanol gas. After the arc plasma pretreatment, a nucleation density higher than 1010 cm-2 may be obtained subsequently in chemical vapor deposition (CVD) on a mirror-polished silicon substrate without any other mechanical treatment. The effects of the arc discharge plasma on the diamond nucleation were investigated by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), infrared spectroscopy (IR) and Raman spec-troscopy. The enhancement of nucleation is postulated to be a result of the formation of carbon-like phase materials or nitrogenation on the substrate surface without surface defect produced by arc discharge.展开更多
In spite of the current prevalence of the CVD-based processes, the electric arc remains an interesting process for the synthesis of carbon nanoforms, thanks to its versatility, robustness and easiness. It also allows ...In spite of the current prevalence of the CVD-based processes, the electric arc remains an interesting process for the synthesis of carbon nanoforms, thanks to its versatility, robustness and easiness. It also allows performing in-situ substitution of carbon atoms by hetero-elements in the graphene lattice. Our work aims to establish a correlation between the plasma properties, type and chemical composition (and the substitution rate) of the obtained single-wall carbon nan- otubes. The plasma was characterized by optical emission spectroscopy and the products were analyzed by high resolution transmission electron microscopy and core level Electron Energy-Loss Spectroscopy (EELS). Results show that a high boron content leads to a plasma temperature decrease and hinders the formation of nanotubes. This effect can be compensated by increasing the arc current and/or yttrium content. The optimal conditions for the synthesis of boron- and/or nitrogen-substituted nanotubes correspond to a high axial plasma temperature associated to a strong radial gradient. EELS analysis confirmed that the boron incorporates into the graphenic lattice.展开更多
We report studies on the growth of gold nanoparticles by a seed-mediated approach in solution. The synthetic method is adapted from one we published earlier (Ashkarran et al. Appl. Phys. A 2009, 96, 423). The synthe...We report studies on the growth of gold nanoparticles by a seed-mediated approach in solution. The synthetic method is adapted from one we published earlier (Ashkarran et al. Appl. Phys. A 2009, 96, 423). The synthesized gold nanoparticles were characterized by X-ray diffraction (XRD), dynamic light scattering (DLS), UV-Vis spectroscopy, optical imaging and atomic force microscopy (AFM). Optical absorption spectroscopy of the prepared samples at 15 A arc current in HAuCI4 solution shows a surface plasmon resonance around 520 nm. It is found that sodium citrate acts as a stabilizer and surface capping agent of the colloidal nanoparticles. The intensity of the plasmonic peak of the prepared gold nanoparticles for 1 minute arc duration gradually increases due to seed mediation for up to 6 hours. The formation time of gold nanoparticles at higher seed concentrations is less than that at lower seed concentrations.展开更多
The thermionic vacuum arc (TVA) is a new type of plasma source, which generates a pure metal and ceramic vapour plasma containing ions with a directed energy. TVA discharges can be ignited in high vacuum conditions ...The thermionic vacuum arc (TVA) is a new type of plasma source, which generates a pure metal and ceramic vapour plasma containing ions with a directed energy. TVA discharges can be ignited in high vacuum conditions between a heated cathode (electron gun) and an anode (tungsten crucible) containing the material. The accelerated electron beam, incident on the anode, heats the crucible, together with its contents, to a high temperature. After establishing a steadystate density of the evaporating anode material atoms, and when the voltage applied is high enough, a bright discharge is ignited between the electrodes. We generated silver and Al2O3 TVA discharges in order to compare the metal and ceramic TVA discharges. The electrical and optical characteristics of silver and Al2O3 TVA discharges were analysed. The TVA is also a new technique for the deposition of thin films. The film condenses on the sample from the plasma state of the vapour phase of the anode material, generated by a TVA. We deposited silver and Al2O3 thin films onto an aluminium substrate layer-by-layer using their TVA discharges, and produced micro and/or nano-layer Ag-Al2O3 composite samples. The composite samples using scanning electron microscopy was also analysed.展开更多
Carbon encapsulated iron nanoparticles (CEINPs) with very thin shells and good core-shell structures were prepared by DC arc discharge at argon intake temperature (AIT) of 800 ℃. The results of high resolution tr...Carbon encapsulated iron nanoparticles (CEINPs) with very thin shells and good core-shell structures were prepared by DC arc discharge at argon intake temperature (AIT) of 800 ℃. The results of high resolution transmission electron microscope (HRTEM), energy dispersive X-ray (EDX) spectroscope, X-ray diffraction (XRD), and X-ray photoelectron spectroscope (XPS) characterizations on the product B show that the thickness of the carbon shells of CEINPs in the product B is in the range of ca. 0.5-5.3 nm, i. e., which can be as thin as only two layers of graphite. The average diameter of the CEINPs is about 24. 7 nm. The total content of Fe element in the product B is 77.0 wt%. The saturation magnetization (Ms) and coercivity (Hc) of the product B are 107.4 emu/g and 143 Oe. resnectivelv. The formation of the CEINPs in the oroduct B is discussed briefly.展开更多
基金supported by 173 Program of China,and National Natural Science Foundation of China(No.92271116).
文摘In this work,a gas-solid two-phase gliding arc discharge(GS-GAD)reactor was built.Gliding arc was formed in the gap between the blade electrodes,and solid powder was deposited on the sieve plate positioned beneath the blade electrodes.A range of experimental parameters,including the inter-electrode spacing,gas flow rate,applied voltage,and the type of the powder,were systematically varied to elucidate the influence of solid powder matter on the dynamics of gliding arc discharge(GAD).The discharge images were captured by ICCD and digital camera to investigate the mass transfer characteristics of GS-GAD,and the electrical parameters,such as the effective values of voltage,current,and discharge power were record to reveal the discharge characteristics of GS-GAD.The results demonstrate that powder undergoes spontaneous movement towards the upper region of the gliding arc due to the influence of electric field force.Increasing the discharge voltage,decreasing relative dielectric constant of the powder and reducing the electrode-to-sieve-plate distance all contribute to a greater involvement of powder in the GAD process,subsequently resulting in an enhanced powder concentration within the GAD region.Additionally,powder located beneath the gliding arc experiences downward resistance caused by the opposing gas flow and arc.Excessive gas flow rate notably hampers the powder concentration within the discharge region,and the velocity of powder motion in the upper part of the GAD region is reduced.Under the condition of electrode-to-sieve-plate distance of 30 mm,gas flow rate of 1.5 L/min,and peak-to-peak voltage of 31 kV,the best combination of arc gliding and powder spark discharge phenomena can be achieved with the addition of Al_(2)O_(3) powder.
基金partially supported by National Natural Science Foundation of China(No.52477141)the Natural Science Foundation of the Jiangsu Province(No.BK20191162)+2 种基金Fundamental Research Funds for the Central Universities(No.B210203006)the Research Fund of Innovation and Entrepreneurship Education Reform for Chinese Universities(No.16CCJG01Z004)Changzhou Science and Technology Program(No.CJ20190046).
文摘The present work investigates the potential applications of nitrogen oxides(NO_(x)),particularly nitric oxide(NO)and nitrogen dioxide(NO_(2)),generated through discharge plasma in diverse sectors such as medicine,nitrogen fixation,energy,and environmental protection.In this study,a rotating sliding arc discharge reactor was initially employed to produce high concentrations of gaseous NO_(x),followed by the utilization of a molybdenum wire redox reactor for NO_(2)-to-NO conversion.The outcomes reveal that the discharge states and generations of NO_(x) are affected by varying parameters,including the applied energies,frequencies and airflow states(1.3-2.6 m/s are the laminar flow,2.6-5.2 m/s are the transition state,5.2-6.5 m/s are the turbulent flow),and the concentrations of NO_(x) within the arc discharge are higher than that in the spark discharge.Moreover,the concentrations of NO,NO_(2) and NO_(x) gradually increased,and the concentration ratios of NO/NO_(2) and NO_(x)/NO_(2) decreased with increasing the applied energy for one cycle from 14.8 mJ to 24.3 mJ.Meanwhile,the concentrations of NO,NO_(2) and NO_(x) gradually decreased,and the concentration ratios of NO/NO_(2) and NO_(x)/NO_(2) first decreased and then increased with increasing the applied frequencies from 5.0 kHz to 9.0 kHz.Further,the concentrations of NO,NO_(2) and NO_(x) gradually decreased,and the concentration ratios of NO/NO_(2) and NO_(x)/NO_(2) first increased and then decreased with increasing the air flow speeds from 1.3 m/s to 6.5 m/s.Lastly,the concentrations of NO increased and NO_(2) decreased with increasing temperature from 25℃ to 400℃ using molybdenum converted.These findings provide experimental support for the application of plasma in the fields of medicine,nitrogen fixation,energy and environmental protection.
文摘Highly efficient and green ammonia production is an important demand for modern agriculture.In this study,a two-step ammonia production method is developed using a gliding arc discharge in combination with Cu/Cu_(2)O electrocatalysis.In this method,NO_(x)is provided by the gliding arc discharge and then electrolyzed by Cu/Cu_(2)O after alkaline absorption.The electrical characteristics,the optical characteristics and the NO_(x)production are investigated in discharges at different input voltage and the gas flow.The dependence of ammonia production through Cu/Cu_(2)O electrocatalysis on pH value and reduction potential are determined by colorimetric method.In our study,two discharge modes are observed.At high input voltage and low gas flow,the discharge is operated with a stable plasma channel which is called the steady arc gliding discharge mode(A-G mode).As lowering input voltage and raising gas flow,the plasma channel is destroyed and high frequency breakdown occurs instead,which is known as the breakdown gliding discharge mode(B-G mode).The optimal NO_(x)production of 7.34 mmol h^(-1)is obtained in the transition stage of the two discharge modes.The ammonia yield reaches0.402 mmol h^(-1)cm^(-2)at pH value of 12.7 and reduction potential of-1.0 V versus reversible hydrogen electrode(RHE).
基金Project supported by the National Natural Science Foundation of China(No.50476058)Natural Science Foundation of Zhejiang Province(No.X506214)
文摘PCDD/Fs have been become a serious issue because of their toxicological effects and associated adverse health implications. In this study, the gliding arc plasma was tested for treatment of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs), which was synthesized from pentachlorophenol in atmospheric condition at 350℃ with or without the catalysis of CuCl2. From the experiment, we found that the destruction efficiency of PCDD/F homologues after gliding was discharge ranged from 25% to 79%. This result demonstrates that gliding arc plasma is an effective technology to decompose PCDDs/Fs in flue gas. A plausible degradation mechanism for PCDD/Fs by gliding arc was discussed. Finally, a multistage reactor structure of gliding arc was proposed to upgrade removal efficiency for PCDD/Fs.
基金Partial financial support has been provided by the Ministry of Science and Technology, Republic of Bangladesh: 39.00.0000.09.06.79.2017/2/98ESBangladesh Council for Scientific and Industrial Research (BCSIR) for providing Professor Abdullah Al-Muti Sharfuddin fellowship
文摘Wheat (Triticum aestivum) seeds were treated with atmospheric pressure gliding arc discharge plasmas to investigate the effects on water absorption, seed germination rate, seedling growth and yield in wheat. The surface architectures and functionalities of the seeds were found to modify due to plasma treatments. 6 rain treatment was provided 95%-100% germination rate. For the treatment duration of 3 and 9 rain the growth activity, dry matter accumulation, leaves chlorophyll contents, longest spikes, number of spikes/spikelet and total soluble protein content in shoots were improved. The grain yield of wheat was increased ,--20% by 6 min treatment with H2O/O2 plasma with respect to control.
基金supported by the National Natural Science Foundation of China(No.5017700)Provincial Nature Science Foundation of Shanxi(No.20051078)
文摘A study is conducted to determine the effect of a kind of high-pressure arc discharge plasma on the degradation rate and kinetic equations of chlorpyrifos in different solvents with the treated times and concentrations as variables. The degradation rate was sorted in different solvents as water, methanol, acetone and then acetoacetate. The tendencies of the degradation rates with treated time in water and methanol were optimally fitted with first-order kinetics equations while those in acetone and acetoacetate were fitted with zeroth-order kinetics equations. The difference was attributed to the stronger polarity of water and methanol. The weak correlation of the degradation rates with time was mainly because the high-temperature of the arc discharge tube and the chemically-active species generated by the discharge. The degradation half-life was extended with increase of chlorpyrifos concentration. A degradation half-life less than 3 min was achieved for chlorpyrifos in water and methanol when the initial concentration was less than 300 μg/ml.
文摘In agriculture production,plant health is threatened by pathogens parasitic on seeds;hence,it is necessary to disinfect harvested seeds before germination.In this study,a technique of gliding arc plasma treatment was proposed and investigated.The experiment was conducted to treat Astragalus membranaceus(A.membranaceus)seeds that were artificially infected with Fusarium oxysporum(F.oxysporum).The plasma treatment duration varied from 30 s to 270 s.Direct and indirect treatments were compared to evaluate the inactivation efficiency of the F.oxysporum spores on the surface of seeds.The results indicated that the direct treatment behaved significantly better in disinfection than the indirect way.Meanwhile,experiments of the quantitative assessment of seed germination were also conducted,including the germination rate,the germination potential,and the germination index.The results showed that the inactivation efficiency increased as the plasma treatment time was extended.When the treatment time was90 s,the inactivation efficiency reached more than 98%.The plasma treatment of 270 s had a complete devitalization of F.oxysporum spores on the surface of the seeds.After the treatment of 30 s and 90 s,the seed germination parameters improved significantly.This study verified the inactivation efficacy of gliding arc discharge plasma under atmospheric pressure.The technique of gliding arc treatment shows advantages of energy saving and adaptation and has the potential to be utilized in industry.
基金the Industrial Technology Research Grant Program in '05 from the New Energy and Industrial Technology Development Organization (NEDO) of Japan
文摘Nitric oxide (NO) is increasingly being used in medical treatments of high blood pressure, acute respiratory distress syndrome and other illnesses related to the lungs. Currently a NO inhalation system consists of a gas cylinder of N2 mixed with a high concentration of NO. This arrangement is potentially risky due to the possibility of an accidental leak of NO from the cylinder. The presence of NO in the air leads to the formation of nitric dioxide (NO2), which is toxic to the lungs. Therefore, an on-site generator of NO would be highly desirable for medical doctors to use with patients with lung disease. To develop the NO inhalation system without a gas cylinder, which would include a high concentration of NO, NAMIHIRA et al have recently reported on the production of NO from room air using a pulsed arc discharge. In the present work, the temperature of the pulsed arc discharge plasma used to generate NO was measured to optimize the discharge condition. The results of the temperature measurements showed the temperature of the pulsed arc discharge plasma reached about 10,000 K immediately after discharge initiation and gradually decreased over tens of microseconds. In addition, it was found that NO was formed in a discharge plasma having temperatures higher than 9,000 K and a smaller input energy into the discharge plasma generates NO more efficiently than a larger one.
基金Project (No. 50476058) supported by the National Natural ScienceFoundation of China
文摘The simultaneous removal of ethyl acetate, benzene and toluene with relatively low or high initial concentration is studied using a laboratory scale gliding arc gas discharge (GA) reactor. Good decomposition efficiencies are obtained which proves that the GA is effective for the treatment of volatile organic compounds (VOCs) with either low or high concentration. A theoretical decomposition mechanism is proposed based on detection of the species in the plasma region and analysis of the decomposition by-products. This preliminary investigation reveals that the GA has potential to be applied to the treatment of exhaust air during color printing and coating works, by either direct removal or combination with activated carbon adsorption/desorption process.
基金financial support has been provided by the University Grants Commission:A-663-5/52/UGC/Eng-9/2013 and A-670-5/52/UGC/Eng-4/2013,University of Rajshahi
文摘Atmospheric pressure air/Ar/H_2O gliding arc discharge plasma is produced by a pulsed dc power supply. An optical emission spectroscopic(OES) diagnostic technique is used for the characterization of plasmas and for identifications of OH and O radicals along with other species in the plasmas. The OES diagnostic technique reveals the excitation Tx?≈?5550–9000 K, rotational Tr?≈?1350–2700 K and gas Tg?≈?850–1600 K temperatures, and electron density n?(1.1-1.9) ′101 4 cm^(-3) e under different experimental conditions. The production and destruction of OH and O radicals are investigated as functions of applied voltage and air flow rate. Relative intensities of OH and O radicals indicate that their production rates are increased with increasing Ar content in the gas mixture and applied voltage. nereveals that the higher densities of OH and O radicals are produced in the discharge due to more effective electron impact dissociation of H_2O and O_2 molecules caused by higher kinetic energies as gained by electrons from the enhanced electric field as well as by enhanced n e.The productions of OH and O are decreasing with increasing air flow rate due to removal of Joule heat from the discharge region but enhanced air flow rate significantly modifies discharge maintenance properties. Besides, Tgsignificantly reduces with the enhanced air flow rate. This investigation reveals that Ar plays a significant role in the production of OH and O radicals.
基金supported by National Natural Science Foundation of China (No. 11765010)the National Key Research and Development Program of China (No. 2019YFC1907900)+2 种基金the Applied Basic Research Programs of Yunnan Provincial Science and Technology Department (No. 202001AW070004)the Freely Exploring Fund for Academicians in Yunnan Province (No. 2018HA006)the Key Laboratory of Resource Chemistry, Ministry of Education (No. KLRCME2001)
文摘In this study, graphene sheets are prepared under a hydrogen atmosphere without a catalyst, and the growth mechanism of graphene by direct current arc discharge is investigated experimentally and numerically. The size and layer numbers of graphene sheets increase with the arc current.Distributions of temperature, velocity, and mass fraction of carbon are obtained through numerical simulations. A high current corresponds to a high saturation temperature, evaporation rate, and mass density of carbon clusters. When the carbon vapor is saturated, the saturation temperatures are 3274.9, 3313.9, and 3363.6 K, and the mass densities are 6.4×1022,8.42×1022, and 1.23×1023 m-3 under currents of 150, 200, and 250 A, respectively. A hydrogen-induced marginal growth model is used to explain the growth mechanism. Under a high current, the condensation coefficient and van der Waals force increase owing to the higher saturation temperature and mass density of carbon clusters, which is consistent with experimental results.
基金supported by National Natural Science Foundation of China(No.50677026)Postgraduates Innovation Foundation of Huazhong University of Science and Technology of China(HF-08-11-2011-261)the third batch of Teaching Research Foundation of "Teaching Quality Project" in Huazhong University of Science and Technology of China(No.46)
文摘By adopting the optical multi-channel analyzer combined with fourier transform infrared (FTIR) spectrometer, the dominant free radicals and products generated by arc discharge were measured and studied, and the main plasma chemical reaction process in the nitric oxide production by arc discharge was identified. Plasma chemical kinetic curves of O, O2, N2, N and NO were simulated by using CHEMKIN and MATLAB. The results show that the main plasma chemical reaction process of nitric oxide production by arc discharge is a replacement reaction between O and N2, where NO can be generated instantaneously when discharging reaches stable.
基金National Natural Science Foundation of China (Nos.50677026 and 50347009)the National Key Technologies R&D Program Special Foundation of China (No.2003A12)
文摘As a new method to cure acute respiratory distress syndrome (ARDS), high blood pressure and some illnesses related to the lung, NO has recently received more attention. Thermal plasmas produced by arc discharge can create medical NO, but the concentration of NO2 produced by arc discharge must be controlled simultaneously. This paper investigates the characteristics and regulations of NO production at different flow distribution by pulsed arc discharge in dry air with a special pulsed power, The experimental results show that the flow distribution has a considerable effect on the NO concentration, the stabilization of NO. The production of NO2 could be controlled and the ratio of NO2/NO was decreased to about 10% in the arc discharge. Therefore, the arc discharge could produce stable inhaled NO for medical treatment by changing the flow distribution.
基金supported by National Natural Science Foundation of China(Nos.11875256,12005023,11705202)Scientific Research Fund Project of Anhui Jianzhu University(No.2020QDZ09)Anhui Provincial Natural Science Foundation(No.1808085MA12)。
文摘A 2D self-consistent numerical model of the whole argon-arc discharge region that includes electrodes is developed in this work to facilitate analysis of the physical processes occurring in atmospheric arc plasma.The 2D arc column model contains the ionization and thermal nonequilibrium,which is coupled with a 1D electrode sheath model.The influence of plasma-species diffusion near the electrode region is investigated based on Maxwell–Stefan equations and the generalized Ohm’s law.The numerical results of argon free-burning arcs at atmospheric pressure are then investigated.The simulation shows that the plasma is obviously in the state of thermal and ionization equilibrium in the arc core region,while it deviates from thermal and ionization equilibrium in the arc fringe region.The actual electron density decreases rapidly in the nearanode and near-cathode regions due to non-equilibrium ionization,resulting in a large electron number gradient in these regions.The results indicate that electron diffusion has an important role in the near-cathode and near-anode regions.When the anode arc root gradually contracts,it is easy to obtain a positive voltage drop of the anode sheath(I=50 A),while it remains difficult to acquire a positive anode sheath voltage drop(I=150 A).The current–voltage characteristics predicted by our model are found to be identical to the experimental values.
基金supported by Natural Science Foundation of Hubei Province(No.2005ABA023)
文摘The preparation of crystalline C3N4 films was investigated using pulsed arc discharge from mixed methanol and ammonia water at atmospheric pressure. The X-ray diffraction (XRD) patterns of the films prepared at a substrate temperature of 450℃ suggested that the film was composed of α-C3N4 and fl-C3N4 crystallites. Raman spectra exhibited distinct peaks which are in good agreement with those predicted theoretically for C3N4 crystallites.
基金The project supported by the ChenGuang project of Wuhan City (No.20025001014)
文摘A technique of improvement on diamond nucleation based on pulsed arc discharge plasma at atmospheric pressure was developed. The pulsed arc discharge was induced respectively by nitrogen, argon and methanol gas. After the arc plasma pretreatment, a nucleation density higher than 1010 cm-2 may be obtained subsequently in chemical vapor deposition (CVD) on a mirror-polished silicon substrate without any other mechanical treatment. The effects of the arc discharge plasma on the diamond nucleation were investigated by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), infrared spectroscopy (IR) and Raman spec-troscopy. The enhancement of nucleation is postulated to be a result of the formation of carbon-like phase materials or nitrogenation on the substrate surface without surface defect produced by arc discharge.
文摘In spite of the current prevalence of the CVD-based processes, the electric arc remains an interesting process for the synthesis of carbon nanoforms, thanks to its versatility, robustness and easiness. It also allows performing in-situ substitution of carbon atoms by hetero-elements in the graphene lattice. Our work aims to establish a correlation between the plasma properties, type and chemical composition (and the substitution rate) of the obtained single-wall carbon nan- otubes. The plasma was characterized by optical emission spectroscopy and the products were analyzed by high resolution transmission electron microscopy and core level Electron Energy-Loss Spectroscopy (EELS). Results show that a high boron content leads to a plasma temperature decrease and hinders the formation of nanotubes. This effect can be compensated by increasing the arc current and/or yttrium content. The optimal conditions for the synthesis of boron- and/or nitrogen-substituted nanotubes correspond to a high axial plasma temperature associated to a strong radial gradient. EELS analysis confirmed that the boron incorporates into the graphenic lattice.
文摘We report studies on the growth of gold nanoparticles by a seed-mediated approach in solution. The synthetic method is adapted from one we published earlier (Ashkarran et al. Appl. Phys. A 2009, 96, 423). The synthesized gold nanoparticles were characterized by X-ray diffraction (XRD), dynamic light scattering (DLS), UV-Vis spectroscopy, optical imaging and atomic force microscopy (AFM). Optical absorption spectroscopy of the prepared samples at 15 A arc current in HAuCI4 solution shows a surface plasmon resonance around 520 nm. It is found that sodium citrate acts as a stabilizer and surface capping agent of the colloidal nanoparticles. The intensity of the plasmonic peak of the prepared gold nanoparticles for 1 minute arc duration gradually increases due to seed mediation for up to 6 hours. The formation time of gold nanoparticles at higher seed concentrations is less than that at lower seed concentrations.
基金supported by the Eskisehir Osmangazi University project(200319009)
文摘The thermionic vacuum arc (TVA) is a new type of plasma source, which generates a pure metal and ceramic vapour plasma containing ions with a directed energy. TVA discharges can be ignited in high vacuum conditions between a heated cathode (electron gun) and an anode (tungsten crucible) containing the material. The accelerated electron beam, incident on the anode, heats the crucible, together with its contents, to a high temperature. After establishing a steadystate density of the evaporating anode material atoms, and when the voltage applied is high enough, a bright discharge is ignited between the electrodes. We generated silver and Al2O3 TVA discharges in order to compare the metal and ceramic TVA discharges. The electrical and optical characteristics of silver and Al2O3 TVA discharges were analysed. The TVA is also a new technique for the deposition of thin films. The film condenses on the sample from the plasma state of the vapour phase of the anode material, generated by a TVA. We deposited silver and Al2O3 thin films onto an aluminium substrate layer-by-layer using their TVA discharges, and produced micro and/or nano-layer Ag-Al2O3 composite samples. The composite samples using scanning electron microscopy was also analysed.
文摘Carbon encapsulated iron nanoparticles (CEINPs) with very thin shells and good core-shell structures were prepared by DC arc discharge at argon intake temperature (AIT) of 800 ℃. The results of high resolution transmission electron microscope (HRTEM), energy dispersive X-ray (EDX) spectroscope, X-ray diffraction (XRD), and X-ray photoelectron spectroscope (XPS) characterizations on the product B show that the thickness of the carbon shells of CEINPs in the product B is in the range of ca. 0.5-5.3 nm, i. e., which can be as thin as only two layers of graphite. The average diameter of the CEINPs is about 24. 7 nm. The total content of Fe element in the product B is 77.0 wt%. The saturation magnetization (Ms) and coercivity (Hc) of the product B are 107.4 emu/g and 143 Oe. resnectivelv. The formation of the CEINPs in the oroduct B is discussed briefly.